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Since the beginning of the COVID-19 pandemic, pharmaceutical treatment hypotheses
have abounded, each requiring careful evaluation. A randomized controlled trial generally
provides the most credible evaluation of a treatment, but the efficiency and effectiveness of
the trial depend on the existing evidence supporting the treatment. The researcher must
therefore compile a body of evidence justifying the use of time and resources to further
investigate a treatment hypothesis in a trial. An observational study can provide this
evidence, but the lack of randomized exposure and the researcher’s inability to control
treatment administration and data collection introduce significant challenges. A proper
analysis of observational health care data thus requires contributions from experts in a
diverse set of topics ranging from epidemiology and causal analysis to relevant medical
specialties and data sources. Here we summarize these contributions as 10 rules that
serve as an end-to-end introduction to retrospective pharmacoepidemiological analyses of
observational health care data using a running example of a hypothetical COVID-19 study.
A detailed supplement presents a practical how-to guide for following each rule. When
carefully designed and properly executed, a retrospective pharmacoepidemiological
analysis framed around these rules will inform the decisions of whether and how to
investigate a treatment hypothesis in a randomized controlled trial. This work has important
implications for any future pandemic by prescribing what we can and should do while the
world waits for global vaccine distribution.
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INTRODUCTION

Imagine we are only halfway through 2020; the COVID-19
pandemic is raging, and widespread vaccination is thought to
be at least a year away. Treatment ideas abound for COVID-19,
and around the world more than 2,000 clinical treatment trials
have been initiated to begin testing a wide variety of drugs
hypothesized to help infected patients. Unfortunately,
constrained resources can only fund some subset of the
investigator-initiated trials; hence, trials resourced to begin
patient enrollment must be chosen judiciously based on the
soundness of the medical hypothesis, the availability of
preclinical evidence, and the trial’s feasibility, cost, and
potential impact. It is in this environment that you have
arrived with a novel idea for an effective pharmaceutical
intervention for COVID-19 (or the next pandemic).

The gold-standard way to evaluate your hypothesis is a
randomized controlled trial (RCT), but that takes time and
resources you (and the world) may not have at the moment.
In fact, the window to pursue your trial is limited as interest (and
resources) will increasingly focus on progress in vaccine
development. Assuming your trial would be ethically
permissible and otherwise feasible (e.g., reasonable follow-up
periods and realistic recruiting goals), is there anything you
can do right now to investigate your hypothesis and determine
the priority of testing it in an RCT? There are three common types
of retrospective studies to consider, each of which uses
observational data: cross-sectional studies, case-control studies,
and cohort studies. This paper provides a framework for
investigating your pharmaceutical hypothesis carefully and
responsibly using a retrospective cohort study. Beyond just
advocating for a clinical trial, your investigation can inform
many of the decisions regarding the details of a clinical trial
(e.g., which drugs and dosage levels to test), as well as who is most
likely to benefit from your treatment; all of this may influence
how stakeholders choose to prioritize your trial. A retrospective
analysis focused on today’s disease (even after widespread
vaccination) can also improve our understanding and
preparedness for a novel disease we encounter in the future;
completed studies targeting readily available treatment options in
a related disease could help save countless lives when the next
pandemic strikes and the world is again waiting for a vaccine.

Countries around the world have defended themselves against
SARS-CoV-2 using travel restrictions, national lockdowns,
facemask policies, and other non-pharmaceutical interventions
to stop the spread of SARS-CoV-2, and evaluating these
population-level actions requires different tools than what we
present in this paper (i.e., there is no path to an RCT for some
public health measures). Here, we use the tools of
pharmacoepidemiology, a field spanning clinical pharmacology
and epidemiology, to study the effects of drugs in large numbers
of people in order to estimate probabilities of beneficial and/or
adverse effects. We introduce this body of knowledge as 10 rules
for retrospective pharmacoepidemiological analyses designed to
evaluate a treatment hypothesis (see Figure 1 for the 10 rules and
Table 1 for common vocabulary). These rules are the result of a
community effort, including academic, health care, nonprofit,

and industry contributors, to establish a set of best practices for
retrospective analyses. A retrospective analysis aims to estimate
the comparative effectiveness of one treatment vs. another (e.g., a
new treatment vs. the standard care) using real-world evidence
(Office of the Commissioner, 2020) obtained from preexisting
data such as electronic health records (EHR), insurance claims
databases, or health care registries. We embark on a retrospective
analysis knowing that it should not stand alone as the sole
evidence supporting adoption of a new treatment;
observational study evidence should be considered suggestive
rather than conclusive. A retrospective analysis can contribute
a body of real-world evidence as a supplement to the medical
theory supporting the treatment and any preclinical studies
conducted in vitro and/or in vivo, all of which combine to
inform decisions about whether and how to pursue a
randomized trial.

COVID-19 STUDY

Here we introduce a potential COVID-19 pharmaceutical
treatment to discuss the 10 rules more concretely. Prior work
indicates that certain alpha-1 adrenergic receptor antagonists
(alpha blockers) disrupt cytokine storm syndromes, a
pathological hyperinflammatory response associated with
respiratory infection and other diseases (Staedtke et al., 2018;
Koenecke et al., 2021; Thomsen et al., 2021). Subsequently, others
determined that hyperinflammation is implicated in morbidity
and mortality in COVID-19 patients (Mehta et al., 2020; Li et al.,
2021). Many COVID-19 patients were already taking alpha
blockers prior to infection for unrelated, chronic medical
conditions. Consistent use of doxazosin (a particular alpha
blocker) prior to COVID-19 diagnosis is the exposure of
interest, and the goal is to estimate its effectiveness for
preventing in-hospital death.

We are now ready to dig into the 10 rules. Rules 1–3 describe
three guiding principles for a retrospective
pharmacoepidemiological analysis. Rules 4–7 discuss key
preparations for the analysis. Rules 8–9 address how to
develop and refine the analysis plan. Rule 10 concludes with
executing, summarizing, and reporting the results to facilitate
replicating and extending them. Each rule could have its own
paper or book chapter (and in many cases they do), and we
expand the discussion of each rule considerably in the
supplementary material to explain the concrete, actionable
steps the rules require.

GUIDING PRINCIPLES: BUILD AND FOCUS
THE TEAM

Rule 1: Form a Multidisciplinary Team
Get the right people involved at the start, in the middle, and at the
end. Every step of the way you are going to need to make
decisions about the medical rationale for the proposed
exposure, treatment practices in clinics and hospitals, the
nuances of relevant data stores and common coding practices,
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the study design, and the statistical analyses and interpretation of
results. Specifically, high-quality retrospective analyses depend
on input from committed individuals with different domain
expertise: medical, data sources, epidemiology, and causal
analysis.

COVID-19 Study
Clinicians provide insights into the differences between exposed
(those prescribed doxazosin) and unexposed groups;
understanding the conditions that lead to treatment is critical
in designing the study. Clinical experience working with patients
diagnosed with COVID-19 is also helpful for gaining insight into
the dynamics of COVID-19 testing and patient care. For example,
the protocols for testing and admitting patients have varied over
place and time, especially early in the crisis. In an evolving
pandemic, these factors motivate accounting for changing
patient populations; failing to do so could result in biased
estimates of treatment effects.

A COVID-19 study presents unique challenges. First, there is
an urgency to rapidly (and comprehensively) assess a proposed
exposure. Second, the landscape changes while the study is
underway: new datasets emerge and published results change
attitudes for different treatments. Third, near-constant sharing of
ideas and work products is crucial, but the study team members
are likely isolated. Getting feedback early and often from all
parties is crucial for reducing time-to-iterate without sacrificing
research quality (London and Kimmelman, 2020). While still
ensuring HIPAA protections are appropriately observed, tools
like Slack, GitHub, and Google Docs for conversing, collaborating

on code, and writing, respectively, facilitate the kind of rapid
progress that is otherwise hard to achieve.

Rule 2: Emulate a Randomized Controlled
Trial
Design your observational study to mimic— as closely as possible
— a randomized controlled trial with similar goals, an approach
known as trial emulation (Rubin, 2004; Rosenbaum, 2010;
Hernán and Robins, 2016; Dickerman et al., 2019). Carefully
consider what you measure, when you measure it, and in whom
you measure it. Draw a CONSORT diagram of the ideal RCT you
wish you could run (Begg et al., 1996). Emulating an RCT should
ideally include preregistration of the study and analysis plans
(described in Rule 9).

COVID-19 Study
Our retrospective analysis should emulate the desired RCT
investigating doxazosin as a prophylactic treatment for severe
symptoms among patients with COVID-19 (Konig et al., 2020).
The trial would target older adults, a group who appears to have
the greatest risk of adverse outcomes from COVID-19 (D-19
Provisional Coun, 2020). Emulating this trial requires focusing on
the same patient group in our retrospective analysis. Without
random exposure assignment, the retrospective study must
identify people taking doxazosin prior to a COVID-19
diagnosis. In the United States, many older adults take
doxazosin for conditions including hypertension and benign
prostatic hyperplasia (BPH). Thus, emulating a trial in older

FIGURE 1 | The first phase of the 10 rules involves building the right team to envision the perfect trial and then consider the limitations of an observational study. The
study then enters a preparation phase in which the details of the study are specified: hypotheses, which population to target, essential confounders to observe, and
which data sets might support the study criteria. In the analysis planning phase, the objective is to refine and validate the study definitions and selected methods without
being influenced by real results. Finally, the study concludes when the study is run, carefully summarized, and reported accurately.
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adults would be both meaningful (by studying the impact on a
group at risk for adverse outcomes from COVID-19) and feasible
(since observing doxazosin use in this group is likely). There is a
cost, however, to targeting a subset of the population; the study
can lose external validity for other patient groups (Holdcroft,
2007).

Rule 3: Realize That Rule 2 Is Impossible and
Proceed Carefully
In an observational study, our choices of what to measure and in
whom to measure it are limited by what data already exists. Even
more concerning, our inability to randomize exposure assignment
introduces categories of variables that we worry less about in
randomized controlled trials, most notably confounders.
Confounders satisfy three properties: they are associated with the
outcome (i.e., risk factors), they are associated with the exposure
(i.e., they are unequally distributed among the exposure groups), and
they are not effects of the exposure (Jager et al., 2008). If not observed
and sufficiently addressed, confounders lead to confounding, which
is a bias in the measure of a treatment effect resulting from
treatments and outcomes sharing a common cause (Hernán and
Robins, 2020). Review the different kinds of covariates that can exist
in a causal analysis of observational data and how each can impact

causal estimates (see Rule 5). Confounding by indication is likely to
occur in observational data, and the primary concern in your
observational study is the identification and mitigation of
potential confounders. Your analysis will therefore need to
address confoundedness as evidenced by observed differences in
the covariate distributions of the various exposure groups, and you
can conduct descriptive analysis characterizing observed differences
between treatment and control groups to complement qualitative
information gathering about the treatment assignment process in
order to guide your thinking about what variables will be necessary
to include in the data to mitigate confounding.

COVID-19 Study
Expanding on our previous observation that older people are
more likely to be taking doxazosin, we now consider how
confounding can emerge in an observational study and the
importance of addressing it. Without the deliberate
recruitment and randomization of an RCT, doxazosin use will
be concentrated among the older individuals eligible for our study
because both hypertension and BPH prevalence increase with age
(Partin et al., 1991; AlGhatrif et al., 2013). COVID-19 outcomes
appear to be worse with increased age, suggesting that age is a
confounder we must address. Even if doxazosin is effective at
reducing all-cause mortality, doxazosin is disproportionately

TABLE 1 | This table of common terms provides working definitions for vocabulary appearing in the following 10 rules.

Term Definition

causal effect a difference between two potential outcomes, one where the individual is exposed and one where the individual is
unexposed (or exposed to a different treatment)

cohort a group of people with some defining characteristic (e.g., a disease)
comorbidity a co-occurring medical condition in addition to the primary condition
comparison group/control group groups that identify individuals who have not received the treatment of interest and have instead received either no treatment

or a different treatment; often denoted as unexposed
confounders variables satisfying three properties: they are associated with the outcome (i.e., risk factors), they are associated with the

exposure (i.e., they are unequally distributed among the exposure groups), and they are not effects of the exposure
confounding a bias in the measure of a treatment effect resulting from treatments and outcomes sharing a common cause
confounding by indication when the condition or indication prompting exposure also affects the outcome (e.g., if the exposure of interest in a drug-

repurposing study is a diabetes drug, individuals with prior prescriptions for this drug likely have diabetes and might be
expected to have worse outcomes)

directed acyclic graph (DAG) a tool for depicting assumptions and selecting variables to include in the analysis using directed arrows representing cause-
effect relationships

exposure the treatment or experience that defines the intervention under investigation (e.g., takes a drug, undergoes physical
therapy, etc.)

external validity how generalizable the finding is beyond the study population
internal validity the degree to which the observed result is believed to be attributable to the observed treatment and not unseen factors
outcome a clearly defined, measurable indicator of health status (e.g., blood pressure level, disease recurrence within a specified

timeline, or in-hospital death)
pharmacoepidemiology a field spanning clinical pharmacology and epidemiology focused on studying the effects of drugs in large numbers of people

in order to estimate probabilities of beneficial and/or adverse effects
potential outcomes what an individual would have counterfactually experienced when either exposed or not exposed (e.g., received a drug vs.

no drug)
preregistration registering the details of a study -- hypotheses, methods, analysis plans -- before it is conducted
retrospective analysis an estimation of the comparative effectiveness of one treatment vs. another (e.g., a new treatment vs. the standard care)

using real-world evidence obtained from preexisting data such as electronic health records (EHR), insurance claims
databases, or health care registries

selection bias a distortion of the treatment-outcome association principally resulting from the lack of randomized treatment assignment
sensitivity analysis analyses conducted to observe the study result’s sensitivity to a change in population/definition/method/assumption
surrogate outcomes synthetic or permuted outcomes used to blind investigators to the real study results until various code and definition

validations are complete
trial emulation designing an observational study to mimic a randomized controlled trial with similar goals
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prescribed to older people who disproportionately have worse
outcomes. Unless we account for age, a truly beneficial treatment
effect could be estimated with negative bias (possibly making the
treatment appear harmful). This example from our COVID-19
observational study highlights the reasoning required to identify
important covariates to consider in our analyses.

PREPARATION PHASE: ESTABLISH THE
HYPOTHESES ANDACQUIRE RESOURCES
TO EVALUATE THEM

Rule 4: Formalize the Research Goal
Specify the exposure in terms of quantity, duration, frequency,
and recency. Define the comparison groups of interest (e.g.,
define unexposed). Bias (e.g., selection bias) can arise from
many sources in an observational study, but it fundamentally
stems from the lack of randomized exposure assignment,
resulting in the construction of a control group having
different concerns than the treated group with regard to
censoring, missing data, self-selection, or even eligibility for
treatment (Hernán et al., 2004). While confounding by
indication is almost guaranteed to be present in non-
experimental pharmacoepidemiology research and will be
addressed in other rules, we highlight the importance now of
identifying comparison groups in which every individual
theoretically has some probability of receiving the proposed
treatment. An example of questionable comparison group
construction could be comparing two groups with the same
disease but where the two groups take different drugs based
on significant differences in disease severity (e.g., metformin for
less advanced type 2 diabetes mellitus vs. insulin for more
advanced type 2 diabetes mellitus). Next, define an outcome
that is specific, measurable, and sufficient to answer the research
question. Finally, formalize your hypotheses (i.e., specify the null
and alternative, sidedness, primary vs. secondary exposures and
outcomes).

COVID-19 Study
A pharmaceutical study considers a particular drug, dosage,
recency, and duration by using prescription records to qualify
a patient as either exposed or unexposed to the medication
under investigation (e.g., doxazosin, ≥4 mg daily, prescription
valid through COVID-19 diagnosis date, continuous use
reflected by total days’ supply covering 80% of the previous
3 months — a quantity known as the medication possession
ratio or MPR (Andrade et al., 2006)). When quantifying
duration and recency, multiple filled prescriptions for a
drug better indicate continued use than a single fill that
may have gone unused. Prescriptions lasting until some key
date (possibly allowing for skipped doses) provide better
evidence that the drug was in use on the date of interest.
Unfortunately, researchers are usually unable to confirm the
medication was consumed as intended. Some patients deviate
from the prescribed drug regimen, and this is often
unobservable; we therefore conduct intent-to-treat analysis

by grouping patients according to inferred exposures
revealed in prescription records (Gupta, 2011). The
comparison group might include anyone who does not meet
the exposure definition, only people who have not taken the
proposed drug for a specified length of time, or perhaps only
people who have never taken any alpha blocker. Importantly,
the comparison group should not be made up of people who
cannot take alpha blockers for reasons that could relate to their
health outcomes.

As COVID-19 was entering its first peak, many countries’
chief concerns were ventilator resources and anticipated deaths.
Outcomes related to ventilator dependence ormortality may be of
particular interest. We found that using ventilator dependence as
an outcome is often problematic for two reasons. First, ventilator
usage depends on the standard of care with respect to
administering ventilator resources at a particular time and

FIGURE 2 | This directed acyclic graph (DAG) shows the types of
variable relationships described in Rule 3 using the example COVID-19 study.
A DAG has no cycles, which means no variable can cause itself, either directly
or through one or more other variables. In our effort to estimate the
causal effect of doxazosin on mortality, this DAG helps us identify which
variables will be important to adjust for in our analyses (in reality, this diagram
would include many more variables of these same types). It is the set of
confounders that has the ability to distort the association between exposure
and outcome as revealed by the arrows leading from each confounder to both
the exposure and the outcome. We highlight two observed confounders: the
demographic confounder age and the comorbidity confounder hypertension
(HTN). We also depict the unobserved confounder overall health, which we
might attempt to measure using indicators of overall health like frequency and
duration of recent inpatient stays.
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place, and the severity of patients in the data as well as treatment
protocols differed substantially by time and place during the
pandemic. Second, insufficient ventilator availability and
inconsistent ventilator coding practices makes ventilator
dependence a complicated outcome in some places. All-cause
mortality is not completely unaffected by the changing practices
related to ventilators, but mortality proves to be the more clearly
defined outcome of ultimate importance. Since we cannot
quantify the exact role of COVID-19 in hospital deaths, the
best practice is to use all-cause mortality as the primary
outcome of interest.

Rule 5: Identify and Reason About Potential
Confounders
Confounders will be present; make every effort to observe these
confounders and adjust for them appropriately. Include standard
demographic variables, relevant comorbidities, and a comorbidity
index and/or other indicators of overall health. Note that
identifying confounders before you have data will help you
better assess the utility of candidate datasets. Organize your
understanding of the key variables with a causal diagram (see
Figure 2). A directed acyclic graph (DAG) is a powerful way to
depict the causal relationships in your analysis (Greenland et al.,
1999; Pearl, 2009) and examine potential biases your analysis
might permit (VanderWeele et al., 2008). Bias might result from
an unobserved confounder that is not measured in the data and
therefore cannot be adjusted for in the analysis; a significant
unobserved confounder can invalidate all results obtained from
the study. Thinking through each variable and the corresponding
existence and direction of arrows (representing both observed
and unobserved cause-effect relationships) helps prevent
unknowingly inviting bias into your analysis and mitigate
potential sources of bias that you do include. Following
procedures for identifying a minimally sufficient adjustment
set (MSAS) of confounders in a DAG (VanderWeele et al.,
2008) can eliminate adjustment-induced bias. Ultimately, a
DAG provides an excellent visual representation of the known
or assumed relationships between variables and helps identify the
necessary variables to adjust for to minimize confounding in a
multivariable analysis. Know that nomatter what you do, you will
likely still have unobserved confounding (we describe sensitivity
analyses to quantify the magnitude of this issue in the Rule 9
supplement).

COVID-19 Study
Several alpha blockers (doxazosin included) have an FDA
indication for hypertension, so we expect the exposed
population will have higher rates of hypertension, a condition
that might lead to worse outcomes. Relevant comorbidities that
serve as confounders per clinicians’ expertise include sex, age,
diabetes mellitus, hypertension, cardiovascular disease, and
chronic obstructive pulmonary disease. For the doxazosin
hypothesis, patient location has significance as prescription
practices and the standard of care for relevant conditions vary
around the world. Even with these considerations, unobserved
confounding can still affect a study’s results. Unobserved

confounding is one reason why the results of observational
studies of hydroxychloroquine have differed from those of
RCTs (Hernandez et al., 2020).

Rule 6: Operationalize the Target Population
Select the target population for your observational study to reflect
the intended RCT population. Refine the potential study
population by setting the inclusion and exclusion criteria to
minimize confounding. Consider the impact of refining the
target population on both internal validity (focused on groups
the study includes) and external validity (focused on groups to
which the findings might extend).

COVID-19 Study
In a COVID-19 retrospective cohort study, the defining
characteristic of patients in the cohort is a COVID-19 diagnosis.
In our observational study, the exposure was administered prior to
the COVID-19 diagnosis. Using a post-treatment variable to define
the cohort can introduce post-treatment bias, so choosing to select
the sample on the basis of a post-treatment variable (COVID-19
diagnosis) implies we believe the exposure has no impact on one’s
susceptibility to infection and likelihood of diagnosis. We are aware
of no evidence that taking doxazosin changes one’s susceptibility to
SARS-CoV-2 infection; doxazosin could, however, affect whether a
person is diagnosed by mitigating symptoms to a degree that a
patient self-treats rather than seeing a doctor to receive a formal
diagnosis. Early in the pandemic, COVID-19 tests were only
available in inpatient environments and were reserved for the
sickest patients. Individuals were urged to stay home until they
truly needed hospital resources. This led to many unobserved,
undiagnosed patients. We cannot estimate the treatment effect
in this population as we do not observe the qualifying condition:
a COVID-19 diagnosis. Later in the pandemic, we face the same
problem, but for a different reason; widespread community
testing facilitates diagnoses, but these test results and diagnoses
may not enter a patient’s health records or claims history (both
common data sources for retrospective studies). We could again
lose visibility of milder cases where a patient recovers at home,
limiting our assessment to the severe cases warranting
hospitalization. This is a notable limitation of defining the
cohort by a COVID-19 diagnosis.

We focus the doxazosin study on older patients because this
group is at high risk of adverse outcomes from COVID-19.
Older men in the United States take doxazosin at a far higher
rate than women, primarily because doxazosin is a treatment
for BPH. Compared to other men of the same age, a prior BPH
diagnosis is not expected to have any impact on COVID-19
outcomes. We now make the consequential restriction to focus
the study on older men, allowing us to capture many exposed
individuals with no above-average risk for negative outcomes.
This target patient population attempts to minimize the
impact of unobserved confounding. While this may be
appealing, the exclusions have important implications.
Pragmatically, reducing the population under consideration
may reduce statistical power by limiting the sample size.
Societally, focusing the study exclusively on older men
limits the study’s internal validity to older men. It will take

Frontiers in Pharmacology | www.frontiersin.org July 2021 | Volume 12 | Article 7007766

Powell et al. Retrospective Pharmacoepidemiological Analyses

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


additional assumptions and/or further analyses to extend the
study’s findings to women and young people.

Rule 7: Get the Best Data for the Study
Invest time in getting access to the best possible data for your
study such that your desired study definitions can be realized.
Know what your data source contains, where it originated, and
how it was assembled. Know the biases and limitations of
candidate datasets. Identify the target population using
carefully selected, standardized diagnosis and/or procedure
codes. Identify chronic comorbidities using standard condition
code sets (Chronic Conditions Data Warehouse, 2020) and
sufficient patient histories.

COVID-19 Study
Identifying COVID-19 patients can be difficult because of the
nonexistence of COVID-19-specific International Classification
of Diseases (ICD) codes early on in the pandemic. It was only on
April 1, 2020 that ICD-10 U07.1 was introduced for a confirmed
diagnosis of COVID-19, and adoption of this code for billing
purposes remained variable and inconsistent for some time.
Using an established, community-derived definition for the
COVID-19 population is recommended (e.g., as provided by
the National COVID Cohort Collaborative - N3C (National
COVID Cohort Collaborative, 2020)). COVID-19 population
definitions often divide into two groups: COVID-narrow
includes confirmed COVID-19 diagnoses while COVID-broad
adds suspected COVID-19 patients who have not been tested but
exhibit multiple COVID-19 symptoms. Large hospitals that
treated thousands of COVID-19 patients and performed in-
house testing (e.g., Mount Sinai Hospital in New York City)
are best situated to precisely construct a COVID-19 cohort
(Wang et al., 2020).

In the early stages of a pandemic, finding a well-curated,
sufficiently sized data set to test your hypothesis on the novel
disease may be impossible. Expert clinical input may identify
a suitable substitute for COVID-19 that reflects the same
symptoms and disease progression your treatment is
theorized to target (e.g., cytokine storm syndrome
resulting from acute respiratory distress or pneumonia).
Identifying such a disease with established coding and
extensive patient records can jumpstart your research
while the data practices surrounding an emerging
pandemic stabilize.

The hypothetical doxazosin study requires access to each
individual’s inpatient, outpatient, and prescription drug history
for at least the year leading up to COVID-19 diagnosis. Clinical
data from the U.S. Veterans Health Administration (VHA) is an
ideal candidate data set for this type of study for several reasons.
Older adults are well represented in the VA health care system,
typically with extensive patient histories. This reduces the
likelihood of having the insufficient patient histories that
sometimes accompany individuals in a claims database who
have recently changed employers. In addition, the VA health
system would have comprehensive records: diagnoses,
procedures, prescription drug use, doctors’ notes, in-hospital
medications received, and lab results.

ANALYSIS PLANNING PHASE: DEVELOP
AND REFINE THE ANALYSIS PLAN

Rule 8: Explore and Model Your Data With
Surrogate Outcomes
Use permuted outcomes or synthetic data (Koenecke and Varian,
2020) as you build and test your analysis code to prevent being
influenced by any premature results. First, examine the univariate
and pairwise distributions of the covariates that will be used in the
analysis. Second, examine all covariate distributions after
stratification by exposure group and/or time period, compute
each individual’s propensity for treatment (i.e., estimate a
propensity score), and obtain better empirical overlap using
propensity trimming (Lee et al., 2011). A propensity score
reflects the probability that an individual would receive
treatment (i.e., belong to the exposed group) on the basis of
observed covariates. To counter confounding by indication, a
variety of analytical techniques employ propensity scores to
balance the exposed and unexposed groups by matching or
weighting using propensity scores, which assign greater weight
to the unexposed individuals who appear more similar to the
exposed individuals in terms of the observed covariates. Third,
begin modeling with an unadjusted modeling approach (e.g.,
simple logistic regression) to establish a baseline treatment effect
estimate. Finally, use additional modeling approaches that adjust
for confounders (e.g., doubly robust methods (Bang and Robins,
2005) employing propensity scores and covariate adjustment in the
outcome models), favoring methods that seek covariate balance.

COVID-19 Study
Examining the covariate distributions of the exposed and
unexposed groups will likely reveal that doxazosin users are
generally older and have more comorbidities than non-users.
Unadjusted models with no consideration of age would likely
compare a younger, healthier unexposed group to an older, less
healthy exposed group. We addressed this problem by including
age as an observed confounder and by establishing inclusion/
exclusion criteria that ensured anyone in the study could
reasonably have been exposed to doxazosin. Now, we further
exclude observations exhibiting extremely high or low propensity
for treatment (on the basis of all covariates, not just age); this
could include the extremely young, old, healthy, sick, etc. Extreme
propensities indicate that almost all similar units share the same
treatment assignment, such that there is limited information in
the data about how similar individuals would have fared if their
treatment assignment had been different.

Rule 9: Augment the Main Analysis With
Extensive Sensitivity Analyses
Plan a thorough assessment of the robustness of your results to
the many choices made along the way to estimating a treatment
effect. Start by conducting supplementary analysis designed to
illustrate clearly the role of observed confounders for both
treatment assignment and outcome modeling, as this can build
intuition about what factors are likely important in these
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processes (Athey et al., 2017). Quantify the extent of unobserved
confounding required to change your conclusions (Rosenbaum
and Rubin, 1983; Rosenbaum, 2010; VanderWeele and Ding,
2017) (i.e., determine how correlated an unobserved variable must
be with the exposure and outcome to nullify any perceived treatment
effect). Assess the robustness of your results to different modeling
techniques, hyperparameters, outcome definitions, exposure
definitions, inclusion/exclusion criteria, and other aspects of the
study design. Explore additional sets of covariates, including
different comorbidities and indicators of temporal health trends.
Conduct negative outcome experiments and treatment control
experiments (Lipsitch et al., 2010). Refine, lock in, and preregister
your formal analysis plan before examining any real model outputs
using the true outcome data.

COVID-19 Study
Robustness checks for a doxazosin study assess the impact of
making adjustments to the treatment, outcome, and population
definitions. We can test our hypothesis on both a COVID-narrow
cohort and a COVID-broad cohort. Our confidence in the treatment
will also be tied to how well our results hold up to changing the
medication possession ratio and changing the post-diagnosis
window we are monitoring for all-cause mortality. We can
explore additional covariates beyond chronic comorbidities that
may indicate increased health concerns closer to the COVID-19
diagnosis (e.g., other inpatient stays within 2 months of diagnosis).

EXECUTION PHASE: EXECUTE THE
ANALYSIS PLAN AND REPORT THE
RESULTS

Rule 10: Execute, Summarize, and Share
(With Caveats)
Execute your analysis plan with the true outcome data once you are
satisfied with the quality of your data set and have sufficiently tested
your code. If necessary, make the smallest possible refinements to
your analysis plan and execute again, always ensuring you report
deviations from your preregistered plan. Give your reader something
that looks like what they are used to seeing (i.e., conventional
measures of treatment effect, standard tables and figures).
Explicitly describe the limitations of your study. Provide all the
necessary method descriptions and code to facilitate replication.

COVID-19 Study
We include a CONSORT diagram to show the split of doxazosin
users and nonusers in the dataset, followed by their respective
outcome counts, to help visualize the study like an RCT. We are
targeting a clinical research-savvy audience including clinical
trialists, so we present the treatment effect as an odds ratio
(OR), which is a familiar metric for the likely readers. We
define our null hypothesis as OR � 1 (i.e., the exposure does
not change the odds of the outcome occurring). We then assess
doxazosin to be beneficial if we find OR < 1. We present the
associated confidence interval (CI) to convey the precision of our
treatment effect estimate. Together, the OR and CI indicate the

strength of evidence supporting further investigation of the
doxazosin hypothesis.

CONCLUSION

As the pandemic is far from over, especially in lower resource
countries and communities, we see the value both now and in
future pandemics of responsibly investigating the efficacy of
inexpensive, repurposed drugs as early treatment options while
we wait for vaccine development, mass production, and global
distribution. The primary benefits associated with conducting
these investigations with retrospective analyses lie in reducing
costs and increasing speed relative to running an RCT (assuming
the RCT would be feasible and ethical). Moreover, retrospective
pharmacoepidemiological analyses can be run even when no
patients are available (e.g., after everyone is vaccinated) to
learn more about potential treatments for future pandemics.
Retrospective analyses make it easier to explore a variety of
treatments with limited time and other resources, setting the
stage for an RCT to test the most promising interventions. In the
COVID-19 era, these are valuable benefits, but they come with a
cost. The challenges facing retrospective analyses arise from the
requirement to use data generated without a particular study in
mind. Unlike an RCT, where researchers are able to decide exactly
who will be recruited to participate, which exposure(s) will be
assessed (e.g., drug, dosage, frequency, duration, etc.), and which
outcome(s) will be measured, the observational study approach
described here limits the researcher to only those definitions of
exposure, outcome, confounders, and sample population that can
be realized with available data. This places a significant burden on
the researcher to determine whether the desired retrospective
analysis is possible to conduct with available data. When the time
and cost savings of performing a study with observational data
outweigh the costs of constrained data collection and study
design, using these 10 rules as a guide will support the
execution of a rigorous retrospective pharmacoepidemiological
analysis that speeds the time to clinical trials and, hopefully,
proven effective treatments for patients.

SUPPLEMENT: HOW TO FOLLOW THESE
10 RULES

This supplement serves to explain in detail the many
recommendations made in the 10 rule paragraphs in the main
text. Individual sentences in the rule paragraphs generally
correspond to one or more paragraphs in this supplement
explaining why the recommendation was made and how to
satisfy its requirements.

Guiding Principles: Build and Focus the
Team
Rule 1 Supplement: Form a Multidisciplinary Team
The main text states we require continuous input reflecting
different kinds of domain expertise: medical, data sources,
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epidemiology, and causal analysis. Medical expertise ensures the
study remains medically coherent while decisions are made
throughout the design of the study. Data source expertise
(including medical terminologists) can expedite the process of
finding, accessing, and understanding relevant data sources and
corresponding coding conventions, while also making known
their potential limitations. The expertise in epidemiology that
comes from working with observational health data ensures the
study design and study definitions meet accepted standards in the
literature (e.g., defining treatments, conditions, and other health
indicators with observational data). Causal inference expertise
ensures the use of appropriate analysis methods to support
making a causal claim. The degree to which each expert
contributes in each successive rule varies, but it is difficult to
underestimate the value of assembling this group at the start.

Rule 2 Supplement: Emulate a Randomized Controlled
Trial
Design your observational study to mimic— as closely as possible
— a randomized controlled trial with similar goals, an approach
known as trial emulation (Rubin, 2004; Rosenbaum, 2010;
Hernán and Robins, 2016; Dickerman et al., 2019). To start
down this path, we must first clearly state the research
objective. Most likely the clinician(s) on the team will be the
source of the medical hypothesis. What is the pathophysiological
mechanism this study seeks to understand? Which exposure(s)
might reasonably affect this mechanism? Which subset of the
population do we think the exposure(s) will benefit? Who could
reasonably be eligible to receive the proposed exposure? Which
measurable outcome(s) will reveal the efficacy of the proposed
exposure(s)? Which analyses will be needed to do the appropriate
comparisons? These details will continue to be refined as we think
through the remaining rules, and we will rely on the team’s
clinical expertise to ensure any refinements continue to support
the primary research objective.

Carefully consider what you measure, when you measure it,
and in whom you measure it. It can be helpful to lay out key
aspects of the study design just as would be done in an RCT using
a CONSORT flow diagram (Begg et al., 1996) and other
observational study reporting standards (Benchimol et al.,
2015; Langan et al., 2018). For example, a person considered
for trial participation must be deemed eligible for the trial at the
time of exposure group assignment, which must then occur
before any follow-up periods begin or outcomes are observed.
Suppose your ideal trial has an exclusion criterion barring
participation of anyone with a history of heart problems.
Heart problems that surface at some point after a person
receives the exposure might be visible in observational data;
since post-exposure health problems could not have been
observed for the purposes of RCT enrollment, we ignore them
when deciding the eligibility of patients for observational studies
(Dickerman et al., 2019).

Preregister your study and analysis plan just like an RCT.
Before an RCT begins, the individuals running the trial will have
already amassed a corpus of information about the relationship
between the exposure and outcome (e.g., in preclinical data).
They have used this information to design the trial and get

approval from an institutional review board (IRB). Given this
information, the study plan is fixed prior to collecting any patient
information in the actual trial phase. The trial emulation
proposed in this paper similarly promotes an exploratory data
analysis and modeling phase that uses surrogate outcome data to
refine the analysis plan before committing to a final outcome
analysis to be run on actual outcome data (discussed further in
Rules 8–10). Preregistering the study and documenting a final
analysis plan avoids several pitfalls associated with the recent
replication crisis: questionable research practices (John et al.,
2012), HARKing -- hypothesizing after results are known (Kerr,
1998), gardens of forking paths (Gelman and Loken, 2014), and
p-hacking (Schuemie et al., 2018). Avoiding these pitfalls is
particularly important in a pandemic study since even
preliminary results from individual studies can have profound
policy and public health implications, as well as implications for
ongoing clinical trials (Piller and Travis, 2020). While the idea of
preregistration in observational studies continues to grow in
popularity, the effectiveness of the practice has notable
limitations. For example, often the data has already been
collected and been available for research prior to a study’s
preregistration, making it hard to verify whether
preregistration actually preceded the reported analysis.

Recall the assumptions necessary in order to make a causal
claim. A key premise of an RCT is that the exposure assignment is
random; in particular, exposure assignment is independent of
factors that affect patient outcomes. To facilitate random
exposure assignment, the study inclusion/exclusion criteria in
an RCT must be designed to ensure that every trial participant
can reasonably be assigned to any exposure group. Random
exposure in an RCT is then accomplished by arbitrarily
assigning people to either of the exposed or unexposed groups
using a coin flip, or in the case of a stratified RCT, a coin flip that
depends only on observed pretreatment factors. Our inability to
achieve random exposure in an observational study means we
must make some assumptions to estimate treatment effects when
we do not observe all of the patients’ potential outcomes (e.g.,
both the exposed outcome and the unexposed outcome for each
patient when there are two exposure groups). Here we state one of
the acceptable sets of assumptions for conducting a retrospective
analysis. First, theoretical overlap ensures that for any possible set
of values of pretreatment traits (i.e., patient characteristics), there
is a non-zero probability of being in either group. Lack of overlap
might occur in practice if patients with certain characteristics are
either excluded from the exposure group or always assigned to the
exposure group (e.g., the exposed group only contains adults
while the unexposed group contains both children and adults).
Second, the property of unconfoundedness (also known as strong
ignorability) ensures that exposure assignment is independent of
the potential outcomes given the observed covariates. Of these
assumptions, overlap can be verified empirically, but there is no
test to prove we have satisfied the unconfoundedness assumption.

Finally, we assume (both in observational studies and RCTs)
that the specific exposure assigned to one individual does not
interfere with the exposure or potential outcomes of any other
individual in the study. For example, interference may occur
when one patient in an RCT receives the exposure and is cured,
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which may then free up hospital resources to the benefit of an
unexposed patient in an adjacent room. Furthermore, the
exposure must be the same for everyone in an exposure group
(e.g., identical drug regimen). Together, these two criteria
comprise the Stable Unit Treatment Value Assumption
(SUTVA) (Imbens and Rubin, 2015).

A gold-standard randomized controlled trial satisfies all
of these assumptions by construction; however, the lack of
randomized exposure assignments in an observational study
means there is significant work associated with emulating an
RCT as closely as possible. It is almost certain that meaningful
differences exist between the exposed and unexposed groups, and
that the factors that differ are also related to outcomes.
Confounding by indication is likely to occur in observational
data, and the primary concern in your observational study is the
identification and mitigation of potential confounders, which is
the basis of Rule 3.

Rule 3 Supplement: Realize That Rule 2 Is Impossible
and Proceed Carefully
Recall the different kinds of covariates in a causal analysis and
how each can impact causal estimates. The lack of randomized
exposure assignment in an observational study forces us to
address the pretreatment variables that we observe in our data.
Given that we are seeking to determine the causal effect of an
exposure on an outcome, there are three types of observed
variables that can exist in relation to this study. The first,
outcome determinants, affect the outcome but do not directly
affect the exposure. While you can include outcome determinants
in your analysis to improve the precision of your causal effect
estimate, a causal analysis can proceed without them. The second,
exposure determinants, affect the exposure but do not directly
affect the outcome. Exposure determinants will also not affect our
analysis because there will be zero covariance between the
outcome and the exposure conditional on these variables. A
note beyond the scope of this paper: econometric analysis can
reveal whether any of these exposure determinants is a strong
instrumental variable. In this case, a separate instrumental
variables analysis (Hernán and Robins, 2006) is preferable for
studying the effect of the exposure on the outcome by exploiting
the fact that the instrumental variable’s effect on the outcome
definitionally only exists via the exposure. The third type of
variable affects both the exposure and the outcome; these are
known as confounders and are the essential variables to identify
for your study.

Think hard (and then think harder) about confounders for
your study. As defined in the main text, confounders satisfy three
properties: they are associated with the outcome (i.e., risk factors),
they are associated with the exposure (i.e., they are unequally
distributed among the exposure groups), and they are not effects
of the exposure (Jager et al., 2008). Identifying important
confounders requires collaborating with specialists who can
make appropriate clinical recommendations; for example, one
might learn that there exists a comorbidity (an additional,
simultaneously occurring disease or condition) for which
patients would be taking the exposure drug. This comorbidity
would be considered the indication or reason for prescribing the

drug (as listed in the US prescribing information, though
clinicians may prescribe for other reasons). Perhaps this
comorbidity typically leads to worse outcomes given the worse
overall health of these patients. Such a comorbidity would be a
confounder; other common confounders include demographic
variables such as age and sex.

Make a plan to address non-overlap and confoundedness.
First, we must recognize that we only have data for observed
confounders (as opposed to unobserved confounders, for which
we have no data, and which in general lead to bias in estimates of
causal effects). To address non-overlap, we must ensure that for
any observed combination of confounder values, there are
patients with very similar observed combinations of
confounder values in each of the exposed and unexposed
groups, even if presence in one group is more likely than
another. If there are any combinations of confounder values
for which the probability of exposure is either zero or one, it is
impossible to estimate the treatment effect for patients with those
confounder values. As a practical matter, the associated
observations should be excluded to achieve overlap; the target
population for which we estimate the treatment effect is
correspondingly narrowed. To deal with confounders, we must
mitigate the non-random exposure assignment in our data by
ensuring similar distributions of confounder values between
exposed and unexposed groups. There are two main
approaches to doing so: outcome modeling and covariate
balancing; when combined, the approaches may be doubly
robust in that they are still valid if errors are made in either
modeling or balancing (but not both), as discussed in more
detail in Rule 8. Outcome modeling builds a model of the
relationship between covariates and outcomes, allowing the
analyst to adjust for the impact of differences in covariates
across groups on differences in outcomes. Covariate balancing
attempts to reweight or subsample from data such that the
exposed and unexposed groups are comparable in terms of
covariates, so that the covariates are no longer associated
with exposure in the new, reweighted data; this can be
accomplished, for example, through sample restriction with
inclusion/exclusion criteria, reweighting by inverse propensity
scores (probability of assignment), stratification, or matching
(Stuart, 2010) on confounders. Note that almost certainly there
exists unobserved confounding in any observational study, and
unobserved confounding distorts our view of the exposure-
outcome relationship. If we believe there is an important
unobserved confounder, it may be appropriate to abandon
the study or use a different approach (e.g., instrumental variables
analysis). We will address unobserved confounding in greater
detail in Rule 5 and how to account for it with sensitivity
analyses in Rule 9.

Preparation Phase: Establish the
Hypotheses and Acquire Resources to
Evaluate Them
Rule 4 Supplement: Formalize the Research Goal
Specify the exposure in terms of quantity, duration, frequency,
and recency. The study’s purpose is to evaluate the efficacy of this
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exposure, and this should dictate your first step in formalizing the
research goal. The proposed exposure in a pharmaceutical-based
hypothesis involves identifying a set of drugs for testing. At a
minimum, this requires labeling each patient in the study as
exposed or unexposed to one of the drugs in question; doing so
requires completing two tasks. The first task is for the clinician
team to specify the precise list of drugs and corresponding
dosages they wish to include as the exposure drug set based
on the pathophysiological mechanism they wish to target. The
second task is to determine the timing of the observed drug
exposure. For example, does it matter if the patient is a current,
recent, or historical user of the drug at the time of the patient’s
diagnosis (Pazzagli et al., 2018)? How long must a patient have
used the drug to be part of the exposed group? These questions
directly relate to the pathophysiological mechanism the proposed
treatment aims to target, and the answers to these questions may
have implications for the degree to which the study can truly
emulate an RCT. Note that every consideration above also applies
to analysis of a non-pharmaceutical exposure. Investigating the
effectiveness of a non-pharmaceutical therapy requires the same
attention be given to defining the precise list of qualifying
therapies as well as the quantity, duration, frequency, and
recency of any treatment a patient received.

Define the comparison groups of interest (e.g., define
unexposed). If you could do a randomized experiment, what
other exposure groups would you randomly assign people to for
comparison? In a pharmaceutical study, this could include taking
a placebo, taking an active comparator (an alternative treatment
known to be effective), or even taking the same drug according to
a different regimen. Defining a comparison condition requires the
same level of detail required for the exposure definitions. Most
likely the comparison condition represents the existing standard
of care, and the purpose of the study is to see if the hypothesized
exposure provides an improvement over the standard care. As
you define the exposure and comparison conditions, it may well
be the case that some individuals meet none of these group
definitions and must accordingly be excluded from the study. For
example, some patients may fall just short of qualifying as
exposed (e.g., too few days on the proposed drug treatment,
too small a dosage), but their classification as unexposed would be
inappropriate as well.

Define an outcome that is specific, measurable, and sufficient
to answer the research question. Defining an outcome includes
clearly stating exactly what will be measured, when it will be
measured, and how it will be measured for all patients in the
study. The outcome must be observable in a consistent manner
for all patients in your study. Thoughtful consideration should be
given to the followup time required to observe the outcome in
both exposed and unexposed patients. Additionally, for outcomes
other than mortality, competing risks may prevent observing the
outcome of interest (e.g., loss to follow-up in a lengthy study).

Formalize your hypotheses. At this point in the team’s
preparation for the study we have clearly defined the
exposure(s) and outcome(s) and are ready to articulate the
causal effect of interest. This involves clearly stating the
specific null and alternative hypotheses your analysis will test;
determine if a one-sided or two-sided test is more appropriate for

your medical hypothesis. Commit to the primary and secondary
exposure and outcome definitions, target population, and
outcome-focused results you believe will produce a credible
analysis. Note that the hypothesis is based on definitions that
reflect what you hope to observe, and they may not be what you
can actually find in an available data set (discussed further in
Rule 7).

Example Application of Rule 4 to the COVID-19 Study
This retrospective study estimates the causal effect of baseline use
of doxazosin (daily dose ≥4 mg with prescriptions covering the day
of COVID-19 diagnosis and at least 80% of the previous 3 months)
compared to nonuse (no prescriptions for any alpha blocker in
the previous year) on reducing all-cause mortality in adults over
45 years old who have been diagnosed with COVID-19. We state
the following hypotheses for the odds ratio (OR) associated with
the treatment effect on all-cause mortality:

H0 : OR≥1, HA : OR<1.

Rule 5 Supplement: Identify and Reason About
Potential Confounders
Confounders will be present; make every effort to observe these
confounders and adjust for them appropriately. Consider a study
wherein patients are prescribed a drug to treat a certain disease
with varying degrees of severity. A high dosage tends to be
prescribed for patients with a more severe case of the disease,
whereas a low dosage tends to be prescribed for patients with a
less severe case of the disease. It would be no surprise to find that
patients with severe cases have worse outcomes as a group - even
if the drug (and dosage) they are taking is the best option for their
individual situations. In observational data, dosage level is
inherently related to severity of illness. Hence, severity of
illness is a confounder because it affects the exposure-outcome
relationship; if left unobserved, severity of illness could
irreparably confound any study results. The circumstances
surrounding the administration of an exposure can also make
observing confounders challenging. For example, suppose we are
studying the efficacy of a drug for preventing death from an acute
condition, and the drug is typically given as a last resort to
patients who are nearing death from that condition. Then it may
be difficult or impossible to observe the factors that affect both
exposure and outcome, since not all factors that lead a physician
to believe that the patient is at high risk of death will be recorded.
During some time periods in the COVID-19 pandemic, different
drugs (such as hydroxychloroquine) were given off-label to the
sickest patients. In such circumstances, receiving the drug is an
indication that the patient was very ill. In contrast, if we study
exposure to a drug that was prescribed for a chronic condition
long before a patient developed COVID-19, then exposure will
not be determined by the patient’s severity of symptoms from
COVID-19. For example, some underlying factor such as
hypertension might be related to both drug exposure and risk
of poor outcomes from COVID-19, so it will still be important to
carefully adjust for all such factors.

Include standard demographic variables. Common demographic
covariates such as sex and age (including nonlinear transformations

Frontiers in Pharmacology | www.frontiersin.org July 2021 | Volume 12 | Article 70077611

Powell et al. Retrospective Pharmacoepidemiological Analyses

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


like age-squared) are standard confounders to consider, appearing in
nearly all epidemiologicalmodels. Another variable to consider is the
time or location of the sample-defining diagnosis (e.g., a positive
lab test or clinician diagnosis). Diseases like influenza often
change from year to year in terms of which strains are more
prevalent, and the geography of outbreaks may not be uniform.
Depending on how fast a disease mutates or the standard of care
changes, capturing the year, month, or even week of diagnosis,
and/or hospital or patient location, may be important covariates
when examining observed outcomes.

Include relevant comorbidities. A confounding comorbidity is
one that impacts both exposure assignment and outcomes. Other
comorbidities may be unrelated to the proposed exposure but
could still be helpful as proxies for confounders by identifying
which patients are already at higher risk for severe outcomes
based on components of their health beyond basic demographics
(e.g., cancer or heart failure). Still other comorbidities might serve
as proxies for the proposed treatment; running an analysis that
includes these comorbidities may lead to “post-treatment bias”
because the comorbidities would appear as concurrent
treatments, hence reducing the estimated treatment effect of
the actual treatment. Post-treatment bias can also result from
considering post-treatment traits. For example, controlling for
emphysema when examining the causal effect of smoking on lung
cancer would likely transfer some of the treatment effect from
smoking to emphysema, which we might assume to have resulted
from smoking. Choosing to consider a confounder that was
observed post-treatment requires a deliberate assessment of
the potential causal relationship between the exposure and the
observed trait. For example, if an observed comorbidity is of a
chronic nature, it may be unlikely that a recent exposure caused
the comorbidity; most likely the unrelated condition prompting
the exposure led to the healthcare encounter where the
comorbidity was first diagnosed. Another class of variable to
avoid is known as a collider. A collider is a variable that can be
considered an effect of both the exposure and the outcome;
controlling for such a variable introduces bias in the effect
estimate.

Include a comorbidity index and/or other indicators of overall
health. The Elixhauser comorbidity score (Elixhauser et al., 1998)
and Charlson comorbidity index (D’Hoore et al., 1993) are two
established measures combining various observed medical
conditions in order to serve as more general indicators of
overall health than an individual, disease-indicating covariate.
The potential for unobserved, general health problems can also be
addressed by looking at a patient’s recent health care encounters
and prescription data. Encounter-related covariates may include
the number of inpatient or outpatient visits occurring in the year
preceding the relevant diagnosis, the duration of inpatient stays
(i.e., the number of days the patient had been in the hospital in the
previous year), and indicators for whether the comorbidities
listed above were observed closer in time to the relevant
diagnosis (e.g., within two months prior rather than within
one year prior). Considering the recency of documented
health concerns is useful for establishing whether a declining
health trend exists both at the individual level and at the level of
comparing different exposure groups. You may also want to

consider certain procedures in addition to diagnoses (e.g.,
colonoscopies, flu shots (Jackson et al., 2006)), which can also
serve as indicators of overall health and/or access to health care.
As with all of our confounders, remember to ensure that any
indicators of overall health only capture pretreatment health
conditions.

Know that no matter what you do, you will likely still have
unobserved confounding. Failing to include unobserved
confounders in an analysis leads to omitted variable bias,
which violates the unconfoundedness assumption. As indicated
above, the missing confounders we are most concerned with
relate to unobserved indications of poor or declining health;
however, these may not always be available. If you determine
a set of critical confounding variables and find that some are
unobservable (either directly or via a proxy variable), we can
investigate the potential magnitude of this unconfoundedness
violation (in some cases, your proposed study may be too flawed
to justify pursuing it). There is certainly a bit of tension here as we
perform analysis under the assumption of unconfoundedness
while simultaneously acknowledging the likelihood of
unobserved confounding. We address this tension with
sensitivity analyses described in Rule 9.

Example Application of Rule 5 to the COVID-19 Study
This retrospective study considers the following confounders: sex,
age, diabetes mellitus, hypertension, cardiovascular disease (acute
myocardial infarction, ischemic heart disease, heart failure),
chronic obstructive pulmonary disease, patient location,
Elixhauser comorbidity score, inpatient stays in the prior year,
inpatient stays in the prior 2 months, inpatient days in the prior
year, and inpatient days in the prior 2 months.

Rule 6 Supplement: Operationalize the Target
Population
Select the target population for your observational study to reflect
the intended RCT population. Patient selection is a key task in
RCTs, and an observational study emulating an RCT should
implement the same inclusion and exclusion criteria as the RCT.
Given that an RCT likely excludes individuals with certain
comorbidities, one benefit of an observational study is the
opportunity to conduct a subanalysis of individuals that the
RCT would exclude.

Refine the potential study population by expanding the
inclusion and exclusion criteria to minimize confounding. In
Rule 5 we described many types of potential confounders; in Rule
6 our objective is to find a subset of the population who may
receive the exposure of interest for reasons that have minimal
expected impact on the outcome of interest (i.e., minimal
confounding); importantly, these individuals should also
include candidates to remain unexposed. There is no rule of
thumb for this, but rather it is through the creative efforts of your
team that you can specify a target population refinement that can
still potentially answer the research question while significantly
reducing confounding. Note that changing the sample inherently
changes the estimand, and there is often a tradeoff between
studying the population that is of greatest interest and
studying the population where estimates are most credible.
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Consider the impact of refining the target population on
internal and external validity. Minimizing confounding is
desirable as it increases the internal validity of the study, but
excluding certain groups from the study may limit the external
validity of the results to only the refined population under study
(Imai et al., 2008; Rudolph et al., 2014). Consider again a scenario
where a drug is administered in some cases for conditions with
serious health risks and in other cases as more of a lifestyle drug. If
we exclude from our study any patients with the more serious
condition, we can likely achieve more similar exposed and
unexposed groups, which is important for attributing any
difference in expected outcome to the exposure under
investigation. The cost is not knowing how those with the
more serious condition fare with the exposure versus without
the exposure. Additionally, there is an important emerging
literature on demographic fairness with regard to clinical
studies (Holdcroft, 2007). Be careful in your efforts to
minimize confounding so that you do not unintentionally or
unnecessarily exclude a portion of the population that also
requires study.

Example Applications of Rule 6 to the COVID-19 Study
1) This retrospective study focuses on adults over 45 years old to
maintain internal validity for all older adults. 2) This retrospective
study focuses on adult men over 45 years old to minimize
confounding by focusing on a large group of people that use
doxazosin for a condition unlikely to affect COVID-19
outcomes (BPH).

Rule 7 Supplement: Get the Best Data for the Study
Invest time in getting access to the best possible data for your
study. Above all else, this means the target patient population is
sufficiently represented in the dataset. Recognize that data access
and sharing may be challenging; any health care data you use will
often have data access restrictions due to legal and/or privacy
concerns, proprietary interests, or other competitive barriers
(Byrd et al., 2020). Typically, IRB approval, an IRB waiver for
de-identified data, or business associate agreements enable data
access and permit its use for your specific research objective.

Know what your data source contains, where it originated, and
how it was assembled. Having someone on the team who knows
the data source well helps the team avoid the early stumbles that
inevitably happen while working with new data. The best data
sources will capture data on the population, exposure, outcomes,
and covariates relevant for a study. Once you acquire access to
potential datasets, consider the reliability of the data collection
(e.g., provenance, missingness, measurement error, trends over
time, and sampling or representativeness of the target
population). While we recommend defining your ideal
exposure(s), outcome(s), and target population first, you may
have to revise some of these definitions to be compatible with the
existing dataset or combination of data sources (e.g., claims data,
labs, or electronic health records from multiple participating
hospitals).

Know the biases and limitations of candidate datasets. It is
likely the case that no single data source is sufficient to represent
the broader population. The ideal data source would have

extensive electronic health records with thorough patient
histories documenting inpatient and outpatient encounters,
diagnosed conditions, and drug prescription and fill data.
Outside of national healthcare systems or other integrated
systems such as the US Veterans Health Administration
(VHA) and Kaiser Permanente, obtaining all relevant
information about a specific patient from a single source is
rare. Often, hospital data will not have extensive pre-
hospitalization data (if any), and claims databases will lack the
rich details of hospital records (e.g., clinicians’ notes and lab
results). Further, observed outcomes in patient groups from
different data sources may not always be indicative of what is
expected in the broader population. Certain types of hospitals
(e.g., tertiary care centers) may handle more advanced cases of a
disease and have higher rates of certain outcomes in their
electronic health records data. Some insurance claims
databases may only represent the portion of the population
that is employed, has healthcare insurance, and has
demonstrated access to healthcare services. Each data source
may also be idiosyncratic according to varying standards of
care and coding practices for the time, location, and patient
groups it represents. The information that appears in health data
can also reflect payment systems and incentives; for example,
minor hospital procedures may not appear in claims databases
because insurers may not pay for them directly. It is important to
know and understand these issues before trying to run your
models across different datasets, only to be confused by the
inconsistent results. The best approach is to evaluate your
hypothesis using as many appropriate data sources as possible
and look for consistently observed effects across data sets.

Obtain a sample of the target population using carefully
selected, standardized codes. The typical way of identifying
patients for a cohort study involves selecting patients with a
documented record of a particular disease or medical procedure,
most often by means of an International Classification of Diseases
(ICD) code (e.g., ICD-10-CM Clinical Modification). Many
diseases and procedures have a large number of codes
delineating the various subtypes of the disease (e.g.,
pneumonia) or procedure (e.g., mechanical ventilation), so a
careful inspection of the potential list of qualifying condition
codes is necessary to properly define the intended sample. If
possible, attempt to validate the cohort by also checking for
confirmatory lab tests and/or prescribed medications, which may
or may not be available in your data.

Identify chronic comorbidities using standard condition code
sets and sufficient patient histories. The data you will need for a
cohort study must contain some mechanism for observing the
confounders you identified in Rule 5. Diagnoses for
comorbidities, much like the diagnoses used to define our
target patient population, can include a broad range of ICD
codes for each disease or condition. Identify comorbidities by
using a standard set of ICD codes that medical researchers
generally agree encompass the common comorbid conditions,
such as the Chronic Conditions Data Warehouse (CCW)
(Chronic Conditions Data Warehouse, 2020) produced by the
Centers for Medicare & Medicaid Services (CMS). You will need
reasonably long-duration patient histories (e.g., 12+ months of
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inpatient and outpatient records preceding the diagnosis meriting
inclusion in your study’s cohort) to ensure adequate opportunity
to observe relevant comorbidities in patient records. As a general
rule for most chronic conditions, we recommend considering a
patient to be positive for a given chronic condition if any of the
listed condition codes in a standard code set is referenced as a
diagnosis on any inpatient or outpatient record in the 12 months
preceding the qualifying diagnosis. In turn, researchers should
exclude any patient that cannot be tracked in the data for that
entire lookback period (e.g., in insurance claims data, if the
patient was not continuously enrolled during that time). The
clinicians and data source experts on the team should determine
whether any alternate criteria should be considered (e.g., multiple
codes, multiple occurrences, different lookback period, lab values,
and procedure codes).

Make your study definitions realizable in your data. It should
be expected in database-facilitated research that not all desired
quantities may be available. For example, rarely can we know
what medication a person actually consumed; instead, we observe
what was prescribed and filled. An insurance claims database does
not generally record indicators of a patient’s lifestyle such as body
mass index (BMI), alcohol use, and smoking status (though they
could be very useful); they may not record certain demographic
and socioeconomic data (also relevant for many diseases and
hypotheses). Instead, an insurance company needs to know
which diagnoses were given and which procedures were
administered for claims reimbursement purposes. As you look
for data that allow you to operationalize your study definitions for
exposure, outcome, confounders, and target population, you may
be forced to adjust those definitions to reflect what is in the data.
You must carefully assess whether what you do observe is close
enough to what you wish you could observe to be sufficient for the
research question.

Example Application of Rule 7 to the COVID-19 Study
This retrospective study uses Veterans Health Administration
data with patients identified according to the National COVID
Cohort Collaborative’s COVID-broad criteria. Pretreatment
comorbidities are identified by searching each patient’s
inpatient and outpatient records (electronic health records or
insurance claims) for the presence of a qualifying ICD code for
each of several comorbid conditions according to the
comorbidity-specific ICD code sets provided by the Chronic
Conditions Data Warehouse.

Analysis Planning Phase: Develop and
Refine the Analysis Plan
Rule 8 Supplement: Explore andModel Your DataWith
Surrogate Outcomes
Use permuted outcomes or synthetic data as you build and test
your analysis code. In an RCT, blinding prevents patients and
clinicians from knowing exposure group assignments, which
might affect their respective actions. In observational studies,
the concept of blinding relates to only seeing what you have to see
to accomplish a certain task. Research team members can be
blinded to the exposure, the outcome, and potentially even the

hypothesis (Berman and Parker, 2016). We start this rule by
blinding ourselves to the outcome because all code goes through a
debugging phase, and there is a risk that, at least subconsciously,
you might be influenced by frequently seeing a range of results
from different methods, confounder/covariate sets, etc. As you
proceed with your analysis, you may discover that certain
covariates are either sufficiently sparse or so highly correlated
with other covariates that issues of numerical stability arise with
certain modeling approaches. As you encounter these issues and
fine-tune your list of covariates, it is best that these modifications
be made without subjective bias arising from prematurely
observing any effect estimates. Remember, the purpose here is
to specify the details of the analysis plan and to implement
working code, not to produce a final causal effect estimate just
yet. If a step can be performed with surrogate outcome data for
the purpose of testing, it should be.

Examine the univariate and pairwise distributions of the
variables (or covariates) that will be used in the analysis. This
serves to assess any issues with missingness, data entry errors, and
the accuracy of any constructed variables. Also important is the
opportunity to assess these distributions for their adherence to
known or believed attributes of the population under study.

Examine all covariate distributions after stratification by
exposure group and/or time period. A key claim in any
retrospective analysis, as mentioned in Rule 3, is that the
exposed and unexposed groups either have similar covariate
distributions or that the authors have done something to
address the fact that the distributions are meaningfully
different. The difference in the exposed and unexposed
groups’ covariate distributions is typically referred to as
“covariate balance,” which should be calculated and visualized
before and after employing certain types of models (Austin,
2009).

Achieve better empirical overlap using propensity trimming.
Propensity scores quantify each patient’s likelihood of receiving
the exposure conditional on the observed covariates. There may
exist observations in your data that possess combinations of
covariate values that are only ever observed in either the
exposed group or the unexposed group, but not in both
(leading to uncommonly high or low propensity scores). This
violates the overlap assumption we required in Rule 2 (while this
statement applies as written to categorical variables, a relaxed
version still applies to continuous variables where exact matches
are unlikely). A standard technique to maintain overlap is to
remove such observations from the data by trimming on the basis
of propensity scores (i.e., restricting the sample to areas with
propensity score overlap). There are many common approaches
to calculating propensity scores; the R packages grf, twang, and
MatchIt calculate propensity scores using honest forests,
generalized boosted models, and logistic regression,
respectively (Ho et al., 2011; Athey et al., 2019; Ridgeway
et al., 2020) (note that some machine learning models are
characterized by bias or inconsistency in estimates of
propensity scores, and so properties such as honesty as
implemented in grf may be important if machine learning
methods are used in propensity score estimation). The
distributions of propensity scores in the exposed and
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unexposed groups are then used to identify and trim (remove)
observations that are in the extremes of these distributions and
have few or no counterparts in the other exposure group with a
similar propensity score. This process ensures that in every region
of the preserved covariate distribution, there exist observations in
both the exposed and unexposed groups. Thus, overlap ensures
we are estimating a causal effect over regions of the covariate
distribution supported by data rather than through extrapolation.
Achieving this overlap is how we most closely emulate the RCT
reality in which every patient has some positive probability of
assignment to each exposure group. Note that the groups as a
whole could still look quite different (e.g., in terms of comorbidity
prevalence).

Use an unadjusted modeling approach to establish a baseline
treatment effect estimate. Assuming two exposure groups and
two potential outcomes, start with anymethod operating on 2-by-
2 contingency tables; you could use Fisher’s exact test, the chi-
square test for association, or a basic logistic regression model to
evaluate the exposure-outcome association with no adjustment
for any confounders. Importantly, you want to obtain point
estimates and confidence intervals (CI) from these methods as
we are concerned with the magnitude and precision of the
treatment effect estimate. Despite our repeated emphasis on
identifying and accounting for confounders, having an
unadjusted model result that is compatible with the adjusted
model results (described next) demonstrates that you have not
reached your final treatment effect estimate simply by selecting a
favorable set of covariates. When unadjusted and adjusted results
disagree, one explanation could be dissimilarities in the covariate
distributions of the exposed and unexposed groups. For example,
if certain ages or comorbidities are not approximately equally
represented in all exposure groups, controlling for such covariates
could potentially change the sign of the estimated treatment
effect. This could be evidence that your inclusion/exclusion
criteria do not by themselves go far enough to yield similar
exposed and unexposed groups.

Adjust for confounders, favoring methods that both adjust for
outcomes and seek covariate balance. Methods that adjust for
outcomes build a model mapping covariates to expected
outcomes and then adjust for these differences when
estimating treatment effects. Ordinary least squares or logistic
regression are common methods for outcome adjustment;
machine learning methods can also be used, but caution must
be exercised, as there is a danger that regularization might omit or
insufficiently adjust for confounders, creating bias (Belloni et al.,
2014). Covariate balance goes beyond ensuring overlap: now the
exposed and unexposed groups must resemble each other in their
covariate distributions. More simply, observed values in the
exposed group should occur with similar frequency in the
unexposed group (either by weighting or excluding
observations). Methods that accomplish this include inverse
propensity-weighted (IPW) average of outcomes and matching
(Rubin, 2001; Stuart, 2010; Jackson et al., 2017).

There are many choices of regression methods that adjust for
confounders; among these are a set of methods known as doubly
robust methods. A doubly robust estimator is one that employs
both a propensity score model and an outcome regression model

in such a way that if either model is correctly specified, the
resulting causal effect estimator is statistically consistent (Bang
and Robins, 2005). An example of a doubly robust method is
inverse propensity-weighted (IPW) regression. Inverse
propensity score weighting seeks covariate balance by
weighting unexposed observations in the regression according
to the inverse of their propensity scores (Austin and Stuart, 2015).
Thus, observations that do not resemble exposed observations
contribute less to the treatment effect estimate, and unexposed
observations resembling exposed observations count more. This
type of weighting has the effect of attempting to achieve covariate
balance by weighting observations rather than excluding
observations. Other examples of doubly robust methods
include augmented inverse propensity weighting or AIPW
regression and causal forests (Bang and Robins, 2005; Athey
et al., 2019). We note that if machine learning techniques are used
to estimate outcome models and propensity scores in AIPW
methods, it is important to use cross-fitting, where the outcome
adjustment and propensity score model for a given observation is
estimated excluding that observation. When out-of-bag estimates
are used with random forest methods, this will happen
automatically, but with other methods, the analyst must
estimate multiple versions of these models on different folds
of the data.

As an alternative to the above doubly robust methods, one can
employ matching methods to stratify the sample into one group
per exposed observation. Groups or “matched pairs” are sized
such that each exposed observation has a corresponding number
of unexposed observations according to a specified match ratio.
Importantly, the matching process should only retain the exposed
observations for which an acceptable number of unexposed
observations serve as good matches. This is the nearest you
can get to seeing how a person’s potential outcomes might be
different on the basis of exposure. Matching can be accomplished
many ways, including on the basis of propensity score or
Mahalanobis distance (Stuart, 2010). To estimate the causal
effect of the exposure on the outcome in the matched pairs,
one might use the Cochran-Mantel-Haenszel test (Mantel and
Haenszel, 1959) to evaluate the collective evidence presented by a
series of 2 × 2 contingency tables documenting the exposure-
outcome counts in each matched pair. The process of matching
could produce a potentially much smaller data set that attempts
to achieve covariate balance by excluding observations.

For methods that rely on covariate balance as part of the
approach to adjust for confounders, it is critical to conduct
appropriate diagnostics to see if these approaches achieved
acceptable covariate balance. If you are unable to achieve
reasonable covariate balance between exposed and unexposed
individuals, you have likely discovered fundamental differences in
the two groups that no modeling approach can reliably overcome
(Glynn, 2017).

Example Application of Rule 8 to the COVID-19 Study
We first create a permuted copy of the outcome variable
representing in-hospital death. We use the R package grf to
estimate propensity scores (i.e., real exposure assignments as a
function of the pretreatment traits identified in Rule 5). We then
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trim the sample to retain the overlapping region of the exposed
and unexposed propensity score distributions by keeping scores
above the maximum of the two distributions’ first percentiles and
below the minimum of the two distributions’ 99th percentiles.
With the remaining sample, we perform an unadjusted analysis of
the exposure-outcome relationship with Fisher’s exact test (OR,
CI, and p-value obtained with base R Fisher exact test). We
conduct an adjusted analysis using the same pretreatment traits in
an inverse propensity-weighted (IPW) logistic regression (OR,
CI, and p-value obtained with the R package survey). We use the R
package MatchIt to execute 5:1 Mahalanobis distance-based
matching (identify five unique, unexposed matches for each
exposed patient) on the same pretreatment traits (OR, CI, and
p-value obtained with base R Cochran-Mantel-Haenszel test).
Finally, we assess the covariate balance achieved by IPW and
matching by calculating and visualizing standardized differences
of means for included covariates. Executing all of these steps with
permuted outcomes helps us debug code, identify potential
incompatibilities with our data and selected methods, and
conduct meaningful diagnostics for covariate balancing
methods — all with zero awareness of the impact on our
treatment effect estimates.

Rule 9 Supplement: Augment the Main Analysis With
Extensive Sensitivity Analyses
Plan a thorough assessment of the robustness of your results to
the various choices you made on the way to calculating an
estimated treatment effect. Maybe you left something out that
could explain everything (i.e., an unobserved confounder). Do
alternative design and analysis approaches yield similar results? A
secondary set of analyses could include adjusting for covariates
with nonlinearities or time lags; you could also try different
regression or propensity estimation methods. There could be
many reasonable specifications for your model; to avoid tying
your results to a set of arbitrary decisions, one way to evaluate a
collection of reasonable models is to observe the distribution of
resulting effect estimates using specification curve analysis
(Simonsohn et al., 2019). Exploring different exposure or
outcome definitions, covariates, designs, and analysis
techniques also helps measure the sensitivity of your results to
the specific choices youmade along the way. Assessing robustness
is by itself a comprehensive analysis.

Quantify the extent of unobserved confounding required to
change your conclusions. If you are using observational health
data to perform your study, you should expect that unobserved
confounding exists; the difficulty lies in estimating how serious it
is. There is no test for unobserved confounding (neither its
existence nor its impact, given that it is unobserved), yet it
likely exists in nearly all observational studies. This reality is
what makes having domain experts carefully reason through
confounder specification so critical. Starting with (Rosenbaum
and Rubin, 1983), numerous approaches have been proposed that
generally aim to estimate how strongly correlated an unobserved
confounder would have to be to either the exposure, the outcome,
or both, to move the estimated treatment effect to the null
(Rosenbaum, 2010). Then you can reason about how likely it
is that such a confounder might exist and is either unknown or

unmeasurable. One such method for assessing unobserved
confounding is the E-value (VanderWeele and Ding, 2017).

Assess the robustness of your results to choices regarding
specific modeling techniques, hyperparameters, etc. One way to
accomplish this involves trying a range of estimation approaches.
Compare the treatment effect estimates from a range of doubly
robust methods, for example. Use a variety of machine learning
methods to estimate propensity scores and outcome models in
doubly robust methods such as AIPW, or use approaches such
as residual balancing (Athey et al., 2018) that do not rely on
having an easy-to-estimate propensity model. The reason to
augment your analysis by testing multiple approaches is to see
if the obtained results were sensitive to the specific methods you
chose to employ.While themethods introduced so far are designed
to estimate average treatment effects for a population or some
subset of the population, knowing whether the treatment effect is
generally constant across the considered group can be very
important. To explore this, one can construct causal trees to
estimate heterogeneous treatment effects or HTE (Athey and
Imbens, 2016).

Assess the robustness of your results to modifications in the
study definitions and study design. You canmake small changes to
the definitions of the exposed and unexposed groups as well as the
outcomes and confounders. For example, to identify a patient as a
user of a particular drug, adjust the aforementioned medication
possession ratio or look-back period in the exposure definition
(i.e., ensuring a medication supply of more than 50, 70, or 90% of
days within a look-back period of 90, 180, or 365 days). You can
consider different recency requirements such as whether the most
recent prescription spanned the inpatient admission date of
interest. For an outcome like all-cause mortality, you could
explore all-cause mortality in the hospital or within 7, 14, 30,
or 60 days of diagnosis. Comorbidity identification could employ
different code sets and/or a different look-back period. You may
also consider adjusting for additional (or only a subset of)
potential confounders within your models, to observe the
extent to which confounder choice matters. The objective here
is to see whether or not any observed treatment effect is simply a
chance result stemming from a very specific set of definitions.
Some of these changes are sufficient to change the study design.
For example, defining the unexposed group to only include users
of a different, comparable drug is known as the active comparator
design, which can be an effective approach for minimizing
confounding as the exposed and unexposed groups will be
more similar (Yoshida et al., 2015). If we define the exposed
group to only include new users of a drug, thus ensuring observed
comorbidities existed before exposure and eliminating concerns
over prevalent user bias, we are implementing a new user or
incident user design. There aremany study designs to choose from
(e.g., prevalent user, incident user, active comparator, etc.), and
each design deserves thoughtful consideration regarding the
implications it has for the study in question and physiological
mechanism under investigation. While investigating robustness to
changes in study design can provide more evidence for the
hypothesis, it can also help identify potential sources of
unobserved confounding when different designs lead to
different conclusions.
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Explore additional sets of covariates, including different
comorbidities and indicators of temporal health trends.
Covariate sufficiency is the notion that no other covariate can
meaningfully supplement what we have learned from the already
identified covariates (Stone, 1993; VanderWeele and Shpitser,
2013). We can explore the sufficiency of our identified
confounders by observing how results are impacted by the
inclusion of other comorbidities. We can also explore the
impact of differing time trends in the health of the exposed
and unexposed populations. If one exposure group was observed
to be getting sicker faster in the months before the target inpatient
admission, that could warrant different expectations for
outcomes in the exposed and unexposed groups. Your
confounder definitions may have difficulty addressing not only
the presence of a condition, but also its recency and its severity.
Many comorbidities have their own severity indices (e.g.,
Diabetes Complications Severity Index), but viewing all the
data required to compute these scores may not always be
possible in certain data sets (e.g., claims data lacks lab results).
Observing health decline is thus challenging; consider examining
recent inpatient stays and other medical encounters as signs of
declining health that may not otherwise be captured in existing
confounder definitions.

Conduct negative outcome experiments and treatment control
experiments. In a negative outcome experiment (Lipsitch et al.,
2010), your goal is to assess whether the hypothesized exposure
has an apparent benefit that extends to an outcome it could not
reasonably impact (i.e., no medical theory connecting the
exposure to the outcome). A negative outcome experiment is
run to study the effect of the proposed treatment on an outcome
not associated with that treatment. Here, we should expect to find
no favorable treatment effect; otherwise, there is likely
unobserved confounding contributing to better outcomes for
the exposed group. A treatment control experiment is run to
study a different treatment with no known connection to the
outcome of interest; you should observe no protective effect of
this different treatment on your original outcome. Again, if you
see a benefit where there should be no benefit, the logical
conclusion is the presence of unobserved confounding.

Refine, lock in, and preregister your formal analysis plan
before examining any real model outputs using the true
outcome data. Preregistration for observational studies
involves uploading a detailed analysis plan to a study registry
like the ones supported by the US National Library of Medicine
(clinicaltrials.gov) and the Center for Open Science (cos.io/
initiatives/prereg). While we encourage preregistration, in some
cases it may not be possible to preregister an analysis plan before
ever seeing the data; your understanding of the data prior to
working with it may be too limited to make preregistration
worthwhile. Preregistering your analysis plan is an attempt at
transparency regarding what is exploratory and what is
confirmatory in your final analysis. You may discover some
things while exploring your data and testing your proposed
statistical methods that require you to refine prior decisions.
Maybe your set of confounders and outcome determinants is
incompatible with a method you’ve chosen because one variable
is too rarely observed or is too highly correlated with another

variable. This is fine; you can make the necessary changes to your
analysis plan with no fear of p-hacking because you were not
using real outcomes (due to outcome permutation or synthetic
data generation per Rule 8) and have not seen an effect estimate
yet. Your preregistered analysis plan may include a range of
exposures, outcomes, and modeling approaches you intend to
evaluate, but you must clearly articulate from among these which
combination you commit to reporting as your primary result.
Define your primary result with a clear statement of the
hypothesis, details of the modeling approach, and definitions
for the cohort, treatment, outcome, and confounders.

Example Application of Rule 9 to the COVID-19 Study
We assess robustness to unobserved confounding with the
E-value. We estimate the treatment effect with different
exposure definitions, specifically combining 50, 70, and 90%
MPR with 90-, 180-, and 365-days exposure windows. We
estimate the treatment effect using AIPW and heterogeneous
treatment effect with causal trees as supplementary methods. We
consider mortality within 30 days of diagnosis as an alternative to
in-hospital mortality. We perform a negative treatment control
experiment with triptans as the exposure. We perform negative
outcome control experiments using accidental injuries and non-
prostate cancer as alternate outcomes.

Execution Phase: Execute the Analysis Plan
and Report the Results
Rule 10 Supplement: Execute, Summarize, and Share
(With Caveats)
Execute your analysis plan with the true outcome data once you
are satisfied with the quality of your data set and have sufficiently
tested your code. A significant responsibility of your team at this
point is to stick to the proposed analysis plan. Other outcomes
and exposures may appear to have a stronger effect than what is
observed for the primary outcome and exposure, but there was
significant thought and clinical expertise applied to these
decisions in the planning phase of the study. There is danger
in evaluating a host of different outcomes and only reporting the
most favorable outcome(s); this greatly increases the potential for
a Type I error, meaning that you could be reporting a treatment
effect that does not actually exist.

If necessary, make the smallest possible refinements to your
analysis plan and execute again. Even with all your planning,
there is a chance that your analysis plan cannot be executed as-is.
For example, you may discover that a rarely observed confounder
in your data is perfectly predictive of the outcome in one of your
exposure groups. This perfect separation of the data could cause
your preferred method to fail, leaving you no choice but to change
one of your selectedmethods or your selected confounders or both.
If this happens, all is not lost. Simply make the minimal possible
change necessary to conduct your analysis, and then note in your
publication how you had to amend your analysis plan and what
potential impacts your change may have had on your results.

Give your reader something that looks like what they are used
to seeing. If your retrospective analysis has the stated purpose of
motivating a clinical trial, write your results like a clinical trial
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paper. Include a CONSORT flow diagram to help the reader
visualize important properties of your sample. Understand how
the intended audience expects to see results reported for the
selected outcomes. The clinician audience you are writing for is
accustomed to seeing odds ratios with corresponding confidence
intervals to describe treatment effects. Presenting results in a
conventional way eliminates one potential obstacle your audience
may face when evaluating your work. While much attention is
given to your primary result, your results in total are more than
just an OR and a confidence interval; report the results of your
sensitivity analyses as well to convey the robustness of your
finding.

Explicitly include in your reporting the limitations of your
study. You have not just completed an RCT; instead, you
performed an observational study modeled after an RCT, but
with many limitations and assumptions. Your biggest enemy is
unobserved confounding, and it might be the case that it has
seriously affected your results; however, if done well, your
retrospective analysis may be just what is needed to generate
the momentum and funding required to evaluate your idea in a
clinical trial (Vandenbroucke, 2004). Alternatively, your analysis
may actually provide evidence against the hypothesized exposure.
Reporting negative results is just as important; your work can help
ensure limited resources are spent on more promising treatments.

Provide all the necessary details to facilitate replication. You
took great care in constructing and executing a comprehensive
analysis plan; as you prepare to disseminate your findings,
sharing those details matters. More than just your results,
some readers will want to know everything necessary to
reproduce your analysis. This means you should expect to
provide details about the data used, including source and
provenance as well as the codes (e.g., ICD) used to define the
target patient population, inclusion/exclusion criteria, the
exposure(s), the outcome(s), and any confounders. It can’t be
assumed that a reader will be able to guess your definitions
without having them explicitly written out. Other researchers
could sensibly reach many different definitions of what they
believe you meant by the various outcomes, exposures, and
confounders listed in your retrospective analysis. Providing
text definitions, formulas, and ICD-code lookup tables ensures
that any other attempts to implement your definitions are able to
accurately do so. Providing all of this information in the standard
organization of a clinical trial paper will help your clinical
audience find the key pieces of information they need to be
able to envision the trial you are emulating.

Facilitate replication by providing analysis code. You may also
want to create an open-source software package (e.g., R/Python)
for dynamic exploration of a data set and/or to facilitate
replication of your analysis on other data sets. It is likely the
case that other entities (e.g., a hospital, an insurance company, or
a country) cannot legally share their data set with you; you likely
have the same restrictions preventing sharing your data outside
your own institution. To get around these restrictions and make
replication as easy as possible, you can share instructions and
code for building the data set and running your desired analysis.
Whether you provide a well-documented collection of scripts in
an online Git repository or a more formal software package, if you

want to see replication of your results (e.g., to support an RCT you
aim to start), you have an incentive to provide a reusable codebase
that can facilitate rapid replication of results in other data sets as
well as provide a means of quickly exploring alternate hypotheses.

Future Directions
These 10 rules are intended as introductory guidelines to one
small piece of the complicated world of observational studies;
there is much more to learn and consider than is offered here.
Perhaps most importantly, we acknowledge this paper’s role
in summarizing a framework for retrospective
pharmacoepidemiological analyses, not as a template for all
types of retrospective studies (e.g., investigating lockdowns and
facemask policy effectiveness against the spread of COVID-19).
Several other ideas came up in the course of establishing these 10
rules that fell just short of earning their own rules. Some are not
yet standard practice but are growing in popularity, and others
are even more aspirational. Among these are notions of sample
splitting (Fafchamps and Labonne, 2017) and model pooling.
Sample splitting in the world of machine learning is standard
practice, but typically the machine learning problem is one of
prediction where there exists validation data, making it possible
to know how correct a model’s predictions are and therefore tune
the model. The causal inference framework differs on both those
counts: prediction is not the goal, and there exists no validation
data to help us see if we have missed any unobserved
confounders. While sample splitting may not always be
necessary, when doubly robust techniques are used and
machine learning methods are used to estimate outcome
models or propensity scores, cross-fitting is needed to apply
existing theory (Chernozhukov et al., 2018; Athey et al., 2019);
we recommend that approach as discussed in Rule 8. There is still
interest, however, in using synthetic data generation techniques
such as generative adversarial networks (Beaulieu-Jones Brett
et al., 2019; Athey et al., 2021) and standard training/test splits for
routine tasks like evaluating a constructed feature definition and
validating code. Employing these or related techniques aims to
facilitate completion of necessary tasks without being influenced
by real-world results. Another growing area of interest is in the
pooling of data and models from observational studies
(Bareinboim and Pearl, 2016). Privacy concerns often restrict
the pooling of data, but these concerns do not apply to the pooling
of models. Pooling different linear models is nothing new, but
combining nonlinear models shows promise for providing doubly
robust causal estimates with lower variance, even when the source
models have different covariates as inputs. As more research on
these and other areas continues, it is likely we will see the
associated advances make their way into some of the key ideas
we have captured here.
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