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Abstract

Myotonia congenita is a hereditary muscle disorder caused by mutations in the human voltage-gated chloride (Cl2) channel
CLC-1. Myotonia congenita can be inherited in an autosomal recessive (Becker type) or dominant (Thomsen type) fashion.
One hypothesis for myotonia congenita is that the inheritance pattern of the disease is determined by the functional
consequence of the mutation on the gating of CLC-1 channels. Several disease-related mutations, however, have been
shown to yield functional CLC-1 channels with no detectable gating defects. In this study, we have functionally and
biochemically characterized a myotonia mutant: A531V. Despite a gating property similar to that of wild-type (WT) channels,
the mutant CLC-1 channel displayed a diminished whole-cell current density and a reduction in the total protein expression
level. Our biochemical analyses further demonstrated that the reduced expression of A531V can be largely attributed to an
enhanced proteasomal degradation as well as a defect in protein trafficking to surface membranes. Moreover, the A531V
mutant protein also appeared to be associated with excessive endosomal-lysosomal degradation. Neither the reduced
protein expression nor the diminished current density was rescued by incubating A531V-expressing cells at 27uC. These
results demonstrate that the molecular pathophysiology of A531V does not involve anomalous channel gating, but rather
a disruption of the balance between the synthesis and degradation of the CLC-1 channel protein.
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Introduction

Myotonia congenita, a hereditary muscle disorder caused by

mutations in the human CLCN1 gene on chromosome 7 [1], is

characterized by muscle stiffness after voluntary contraction. The

gene CLCN1 encodes a voltage-gated chloride (Cl2) channel,

CLC-1, which is nearly exclusively expressed in skeletal muscles

[2]. It has been estimated that CLC-1 channels may contribute up

to 70%–80% of the resting membrane conductance of the skeletal

muscle [3,4,5] and therefore play a pivotal role in controlling the

excitability of sarcolemma membranes. The CLC-1 channel

contains two identical pores (also called protopores), suggested

first by the ‘‘double-barreled’’ opening of functional channels

[6,7,8], and later by the recent structural findings that two

identical Cl–transport pathways are present in one CLC protein

[9,10,11]. The opening and closing of the two pores in CLC-1

channels are controlled by two distinct gating mechanisms [12]:

the ‘‘common-gate’’ that controls the opening and closing of two

protopores simultaneously and the ‘‘fast-gate’’ that controls each

individual protopore and operates independently from the partner

fast-gate.

So far, more than 100 different mutations in the CLCN1 gene

have been identified in patients with myotonia congenita

[13,14,15]. These various myotonia mutations can be inherited

in an autosomal recessive (Becker type) or dominant (Thomsen

type) fashion [16]. The molecular basis for the inheritance

pattern of myotonia congenita has been explained by the

consequence of the mutation on the gating of CLC-1 channels:

those mutations that affect the common-gate lead to an

autosomal dominant inheritance, whereas those affecting in-

dividual fast-gates only result in a recessive pattern [6,17].

Indeed, a dominant negative effect on the common gating of

CLC-1 appeared to explain the dominant inheritance of

mutations that occurred at the dimer interface [18,19]. Several

recessive CLCN1 mutations, however, have been shown to yield

functional CLC-1 channels with gating properties either only

slightly different or virtually indistinguishable from those of

wild-type (WT) channels [14]. Similarly, some dominant CLCN1

mutations display no detectable gating defects upon forming

hetero-dimers with their WT counterparts [20]. These examples

suggest that the effects of myotonia-related mutations entail

mechanisms other than the disruption of CLC-19s gating

functions. Indeed, studies of the epitope-tagged CLC-1 proteins

expressed in Xenopus oocytes have revealed that a reduced

surface expression of CLC-1 channels may be the underlying

pathology of some myotonia mutations [21]. A reduced protein

expression in cell’s surface membranes has also been documen-

ted in other ion channels. For example, a majority of cystic
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fibrosis patients suffer from a defect in the maturation and

membrane trafficking of the cystic fibrosis transmembrane

regulator (CFTR) caused by a phenylalanine deletion mutation,

DF508 [22,23].

In this report, we examine a myotonia congenita-associated

CLC-1 mutation, A531V [24]. It has been suggested that A531V

displays impaired protein stability [25]; but the mutant channel

has not been functionally characterized, nor has the expression

level of this mutant in the cell membrane been examined. Our

electrophysiological analyses indicate that the A531V mutant

channel has gating properties similar to those of the WT channel

but yields dramatically diminished whole-cell currents. Biochem-

ical studies further reveal that the reduction in whole-cell currents

of the A531V mutant results from significantly enhanced protein

degradation. Our data imply that most of the mutant protein may

fail to pass the quality control system for the biosynthesis of CLC-1

proteins.

Results

A531V Produces Functional CLC-1 Channels with
Significantly Reduced Current Density
We began our study by performing excised inside-out patch-

clamp recordings to evaluate the functional properties as well as

the expression level of the channels in tsA201 cells. As shown in

Figure 1A, membrane patches from cells expressing the A531V

mutant exhibited a very small CLC-1-like current in comparison

with those from the cells expressing the WT CLC-1 channel.

To further evaluate the channel expression level, we also used

whole-cell recordings to compare the WT channel versus the

A531V mutant. Figure 1B illustrates representative whole-cell

recordings of WT and A531V: the mutant channel indeed

displayed significant CLC-1 currents. In order to more closely

compare the functional expression level of WT and A531V

channels, we decided to perform whole-cell recordings at

various post-transfection time points. Figure 2A demonstrates

representative whole-cell CLC-1 current traces recorded from

WT channels 4–7 hours post-transfection. In contrast, no

significant whole-cell current was observed for A531V until 8–

11 hours post-transfection (Fig. 2B). The current amplitude of

A531V reached a steady-state level at about 24 hours post-

transfection (Fig. 2C–D), and the estimated whole-cell current

density of A531V was significantly smaller than that of WT

(Fig. 2D). Nonetheless, the steady-state I-V curve and the Po-V

curve of A531V were similar to those of the WT CLC-1

(Fig. 2D–E). These results for the first time demonstrate that the

A531V mutant appears to have similar functional properties as

the WT channel.

The difference in current densities can be explained at least in

part by the different levels of total channel protein expression. As

depicted in Figure 3A showing the HEK293T cells over-

expressing myc-tagged CLC-1 proteins, the immunoreactivity of

A531V was significantly less than that of WT. Quantification of

the total protein amount revealed that the protein expression level

of the A531V mutant was only ,60% of that of the WT channel

(Fig. 3B). Furthermore, flow cytometric analyses of HEK293T

cells transfected with the GFP-tagged WT or A531V channels

revealed no discernible difference in the percentage of cells

emitting GFP fluorescence (Fig. 3C), indicating that the remark-

able decrease in the A531V expression level was unlikely a result of

diminished DNA transfection efficiency. Together these data

strongly suggest that the low current amplitude of A531V is more

likely due to poor channel expression rather than abnormal

functional properties.

A531V is Subject to Enhanced Protein Degradation
Mediated by Proteasome
The net expression level of any channel protein depends in

theory on a balance between protein synthesis and protein

degradation. A decrease in protein synthesis, as well as an increase

in protein degradation, could contribute to the low expression of

A531V. We first explored the possibility that the A531V mutation

may accelerate the degradation of channel proteins because

a previous pulse-chase study in L6 myotube cells suggested that the

A531V mutant may suffer from decreased protein stability [25].

To more rigorously address the protein stability problem, we

compared the protein half-life of the WT and the mutant channel.

As shown in Figures 4A–B, at 2 hours after the treatment of

100 mg/ml cycloheximide, a protein synthesis inhibitor, A531V

protein was decreased by ,40%, in comparison to ,15%

diminution observed for its WT counterpart. Linear-regression

analyses of the time course of protein degradation with up to 6

hours of cylcoheximide treatment revealed that the protein half-

life for WT and A531V was about 7.6 and 3.7 hours, respectively,

a notable reduction for the mutant channel.

One important proteolysis mechanism during the early bio-

synthesis process of proteins is the clearance of misfolded proteins

by proteasomes. Peptide aldehydes such as MG132 are commonly

used to examine the involvement of this mechanism in mamma-

lian cells [26,27]. It has been shown that treating cells by up to

50 mM of MG132 for 10–24 hours exerts an effective proteasome

inhibition without significantly affecting cell viability

[27,28,29,30]. We thus employed 20 mM MG132 to assess the

role of the proteasomal degradation in the low expression of

A531V. As depicted in Figure 4C, 20 mM MG132 displayed

a significant time-dependent enhancement of the total protein

level for both WT and A531V. More importantly, the disparity in

total protein expression between WT and A531V became less

prominent as the duration of the MG132 treatment increased, and

no significant difference was observed after 12- to 24-hours of

treatment (Fig. 4D–E). Proteasomal degradation is known to be

preceded by protein ubiquitination [31,32]; in agreement with this

notion, we observed in HEK293T cells that both WT and A531V

proteins were significantly ubiquitinated (Fig. 4F). This bio-

synthetic anomaly was unlikely to be caused by HEK cell-specific

artifacts, since a similar reduction of protein expression and

recovery by MG132 were observed in COS-7 cells transfected

with the A531V construct (Fig. S1). Taken together, these results

suggest that the defective expression of A531V may result from

enhanced proteasomal degradation.

MG132-rescued A531V Protein Displays Reduced
Membrane Surface Expression
If MG132 treatment can rescue the defective total protein

expression, will the same treatment also restore the reduced

current density of A531V as assayed by electrophysiological

recordings? Figures 5A–B exemplify the effects of MG132

treatment on the functional expression of the WT channel and

the A531V mutant, respectively. The current amplitude of WT

CLC-1 channels averaged from 30–50 cell-attached patches

doubled after 24 hours of the MG132 treatment (Fig. 5A),

consistent with the aforementioned upsurge of CLC-1 protein

expression after proteasome inhibition. Surprisingly, despite an

increase of the total protein level of A531V by the MG132

treatment, no significant increase in Cl2 current was observed in

patches recorded from the A531V-transfected cells (Fig. 5B).

Whole-cell recordings of the mutant channels in HEK293T cells

Pathophysiology of Myotonia-Related CLC-1 Channels
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Figure 1. Expression of the WT CLC-1 and the A531Vmutant. (A) Excised inside-out and (B) whole-cell patch-clamp recordings of the WT CLC-
1 channel and the A531V mutant in tsA201 cells. The voltage protocol is shown in the lower panel: the membrane potential was first stepped from
a holding potential of 0 mV to various test-voltages from +100 mV to 2140 mV in 220 mV steps for 300 ms, followed by a tail-voltage step to
2100 mV for 300 ms.
doi:10.1371/journal.pone.0055930.g001

Figure 2. Comparison of the current density as a function of time for the WT CLC-1 and the A531Vmutant. All data were obtained from
whole-cell patch-clamp recordings in tsA201 cells. (A) Recording of WT CLC-1 4–7 hrs after transfection. (B) Recordings of the A531V mutant at the
indicated time periods after transfection. (C) Averaged instantaneous current-voltage (I-V) curves of the A531V mutant during the four time periods
indicated in B. Current amplitude is shown in the form of current density (Id; whole cell current/cell capacitance). Colors of the symbol represent:
Black, 4–7 hrs (n = 14); Blue, 8–11 hrs (n = 7); Green, 24–27 hrs (n = 5); Red, 48–51 hrs (n = 4). (D) Current density of WT and A531V as a function of
time after transfection. The instantaneous current at Vm=2120 mV was used for the calculation. The dotted arrow for WT (black color) represents
the fact that the cells were un-clampable at 24 hrs after transfection. (E) Steady-state Po–V curves of the WT CLC-1 and the A531V mutant.
doi:10.1371/journal.pone.0055930.g002
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further confirmed that the treatment of MG132 failed to boost the

current density of the A531V-transfected cells (Fig. 5C).

One explanation for this seemingly paradoxical effect of

MG132 on A531V is that the mutant proteins rescued by the

proteasome inhibitor may be defective in the membrane

trafficking process. We therefore utilized the biotinylation tech-

nique to quantitatively compare the surface expression efficiency

of WT and A531V. Figure 6A shows that in the absence of

MG132, the surface expression ratio of A531V was comparable to

that of WT. In response to the MG132 treatment, however, the

surface expression efficiency of A531V severely deteriorated, only

about 30% of that for WT (Fig. 6B). In addition, we studied the

effect of the MG132 treatment on the subcellular localization

pattern of the mutant channel. In the absence of the proteasome

inhibitor, the majority of myc-tagged A531V displayed a ring-

shaped fluorescence signal along the cell perimeter, as exemplified

by the confocal microscopic image of permeabilized HEK293T

cells in Figure 6C. Immunofluorescence analyses of intact, non-

permeabilized HEK293T cells further confirmed that myc-tagged

A531V channels could be detected by the anti-myc antibody

applied extracellularly (Fig. 6C). In response to the MG132

treatment, however, we observed a significant cytoplasm-localiza-

tion pattern for the mutant channel (Fig. 6D). Altogether these

data imply that after the MG132 treatment, the majority of the

A531V protein spared from proteasomal degradation is still

rejected from the membrane trafficking pathway, thereby failing to

form functional channels in the plasma membrane.

A531V is Associated with Excessive Endosomal-lysosomal
Proteolysis
Recent studies indicate that in addition to proteasomal

degradation, several misfolded CFTR mutants are also subject

to an endosomal-lysosomal degradation [33,34]. We therefore

explored the potential contribution of the endosomal-lysosomal

pathway by utilizing NH4Cl, a weak base that elevates the pH of

the endosomal-lysosomal compartment, thereby inhibiting endo-

somal-lysosomal protein degradation [30,35]. Application of up to

50 mM NH4Cl for 24 hours, which failed to induce significant cell

damage [30,35], only slightly increased the protein level of WT

channels (Fig. 7A–B). By contrast, the same NH4Cl treatment led

to a notable enhancement in the total protein level of the A531V

mutant (Fig. 7A–B). Importantly, in the presence of 25 or 50 mM

NH4Cl, the difference between the protein expressions of A531V

and WT became statistically insignificant (Fig. 7B), suggesting that

a significant fraction of the A531V protein may be susceptible to

excessive endosomal-lysosomal proteolysis. Accordingly, immuno-

fluorescence analyses of permeabilized HEK293T cells revealed

a significant cytoplasmic punctuate staining pattern for the mutant

channel in response to the NH4Cl treatment (Fig. 7C). We also

examined the effect of 50 mM NH4Cl on the functional expression

of CLC-1 channels. Consistent with the foregoing biochemical

observation, the NH4Cl treatment did not notably affect the

current amplitude of WT CLC-1 channels under the cell-attached

configuration (Fig. 7D). Furthermore, despite an enhancement of

the total protein level of A531V in the presence of 50 mM NH4Cl,

we observed no significant difference in the whole-cell current

density (Fig. 7E). Therefore, similar to the effect of the MG132

treatment, inhibition of the endosomal-lysosomal pathway does

not facilitate the functional expression of the A531V mutant.

Low Temperature Incubation Fails to Rescue the
Biosynthetic Anomaly of A531V
The trafficking defects of numerous disease-related mutant

channels can be partially corrected following incubation at

reduced temperature [22,36,37]. To address the potential

temperature sensitivity of the A531V mutant, we incubated

transfected HEK293T cells at 27uC for 48 hours prior to

biochemical or functional analyses. Figures 8A–B demonstrate

that reduced temperature had no discernible effect on the protein

expression level of the mutant. In support of this biochemical

assay, no significant Cl2 current was observed in patches recorded

from the A531V-transfected cells incubated at 27uC (Figure 8C).

Similarly, the whole-cell current density of A531V was not

significantly enhanced following reduced temperature incubation

Figure 3. Total protein expression of WT and A531V CLC-1 channels. Biochemical analyses of CLC-1 channels expressed in HEK293T cells. (A)
Immunoblotting analyses of myc-tagged WT CLC-1 and the A531V mutant. The position of molecular weight markers (in kilodaltons, kDa) are at the
left of the blots. Expressions of b-actin are displayed as controls for the loaded protein amounts. (B) Quantification of CLC-1 protein expression level.
Protein density was standardized as the ratio of the myc-CLC-1 signal to the cognate b-actin signal. Values from the A531 mutant were then
normalized to those for WT. Densitometric scans of immunoblots were obtained from 13 independent experiments. The mean normalized value of
A531V is 0.5760.02. Asterisks denote significant difference from WT (*, t-test: p,0.05). (C) Quantification of the percentage of transfected HEK293T
cells emitting GFP fluorescence (GFP+/live cells). Flow cytometry was employed to determine the ratio for each of the three listed cDNA constructs.
Data were pooled from 3 independent experiments.
doi:10.1371/journal.pone.0055930.g003

Pathophysiology of Myotonia-Related CLC-1 Channels

PLOS ONE | www.plosone.org 4 February 2013 | Volume 8 | Issue 2 | e55930



Pathophysiology of Myotonia-Related CLC-1 Channels

PLOS ONE | www.plosone.org 5 February 2013 | Volume 8 | Issue 2 | e55930



(Figure 8D). Together, these data suggest that the biosynthetic

anomaly of the A531V mutant is temperature-insensitive.

Discussion

A531V is a myotonia congenita-associated mutation located at

the helix O of the human CLC-1 channel. The A531V mutation is

found in significant prevalence in northern Finland as well as

northern Scandinavia [24,38]. Although A531V was previously

reported to display impaired protein stability in L6 myotubes [25],

it was unclear whether the observed instability represented

proteasomal and/or endosomal-lysosomal degradation of the

mutant protein. Moreover, given that virtually no heterologously

expressed WT CLC-1 protein was properly exported to the

membrane in L6 myotubes, the foregoing study was unable to

functionally characterize the mutant channel. The same research

group also investigated the subcellular localization of A531V

heterologously expressed in isolated rat myofibers, and observed

a significant endoplasmic reticulum (ER)-retention for the mutant

CLC-1 channel [25]. Nevertheless, the authors did not quantita-

tively analyze either the total protein production or the functional

expression of the A531V mutant in myofibers.

In the present report, we have functionally and biochemically

characterized the A531V mutation. This CLC-1 mutant displays

a dramatically diminished whole-cell current density, a striking

reduction in the total protein expression level, and a significantly

shorter protein half-life. The reduced protein expression of A531V

is largely rescued by the proteasome inhibitor MG132, consistent

with enhanced proteasomal protein degradation of the A531V

mutant. Importantly, even after the inhibition of proteasomal

degradation by the MG132 treatment, the majority of the A531V

protein is prohibited from reaching the cell membrane, implying

that most of the mutant protein fail to pass the ER quality control

system and consequently display defective membrane trafficking.

In addition, we have presented evidence suggesting that the

mutant is subject to significant endosomal-lysosomal degradation

as well. We thus propose that A531V is endowed with a folding

anomaly that makes the mutant channel undesirable for the

protein quality control system in ER (and perhaps plasma

membrane), thereby leading to a bias of the biosynthetic balance

tilted toward the degradation pathway.

Defective membrane trafficking is frequently found in disease-

associated mutant ion channels. However, in addition to the

membrane trafficking defect, the DF508 mutant of CFTR also

showed altered gating kinetics [39,40,41]. The function of the

A531V mutant of CLC-1 has never been studied before. Here we

employed various patch-clamp recording methods to examine the

function as well as the expression level of the A531V mutant. We

have demonstrated that the Po-V curve and the I-V relationship of

the A531V mutant are similar to those of the WT channel.

Therefore, the major defects of this myotonia mutation appear to

occur mainly in the biosynthesis of the channel protein.

It remains unclear how the A531V mutation renders most of the

mutant protein unacceptable for the ER quality control system.

One possibility is that the mutation A531V may disrupt the

structure of the CLC-1 protein (or an ER-export signal) in a subtle

manner without affecting its biophysical properties. Alternatively,

the mutation may result in the exposure of an ER-retention signal

as reported in many other ion channels. In either case, the

abnormal structure of the mutant protein may serve as a trigger for

the ER quality control system to redirect the biosynthesis process

toward protein degradation [42,43,44]. We have searched ER-

retention or ER-export signals found in potassium channels,

glutamate receptors, CFTR, or other membrane proteins

[45,46,47,48], including sequences such as RXR, KKXX and

VXXSL. Within residues 511–551 of CLC-1, we failed to identify

any hint suggesting that an introduction of valine at position 531

would disrupt/generate any of these signals. It should be

mentioned that all known ER-retention/export signals are located

in the cytoplasmic domain, whereas A531 is presumably in the

transmembrane helix region [9].

ER quality control mechanisms work in a stringent way to

selectively remove misfolded proteins, a process known as ER-

associated degradation (ERAD) [31,32], thereby ensuring that the

majority of proteins synthesized are structurally correct and

functionally normal. It is believed that at least ,30% of all newly-

synthesized proteins from various cell types are degraded by

proteasomes [49]. For instance, as much as 75% of the WT CFTR

may fail to exit ER in heterologous expression systems [50].

Moreover, it has been estimated that 80% –90% of the protein

degradation occurs by the proteasome pathway in most cultured

mammalian cells [27]. We speculate that at least in the

heterologous expression system newly synthesized CLC-1 proteins

may be intrinsically inefficient in forming a correct structure that

can pass the scrutiny of ER quality control mechanisms. It is

therefore conceivable that a minor point mutation–such as

A531V–may dramatically aggravate this intrinsic problem of

CLC-1 proteins, thus rendering a substantial portion of A531V

proteins unsuitable for entering the membrane trafficking path-

way. Our demonstration of enhanced proteasomal degradation in

the mutant strongly suggests that the majority of the newly

synthesized A531V proteins are directed toward the ERAD

pathway.

Under in vitro conditions, lowering of the incubation tempera-

ture to 26uC or 27uC partially corrected the trafficking defects of

numerous disease-related mutant channels [22,36,37], giving rise

to detectable ionic currents and mature proteins in electrophys-

iological and immunoblotting analyses, respectively. The mecha-

nism of low temperature effects is not well understood and may

involve improved protein folding, inhibition of proteasomal

degradation, or increased surface trafficking. For a subset of

mutant channels, however, their faulty protein maturation,

trafficking defect, or proteasomal degradation are temperature-

insensitive [37,51]. In accordance with this precedence, the lack of

effect of 27uC-incubation on the biosynthetic anomaly of A531V

Figure 4. Rescue of A531V protein expression with a proteasomal degradation blocker. Characterization of CLC-1 protein turn-over in
HEK293T cells. (A) Kinetics of protein degradation for WT CLC-1 and A531V in the presence of cycloheximide (100 mg/ml). (B) Quantification of CLC-1
protein expression levels in response to different cycloheximide treatment durations. Protein densities were standardized as the ratio of the myc-CLC-
1 signal to the cognate b-actin signals, followed by normalization to those of the control at 0 hr. Data were averaged from 8 independent
experiments. (C) The effect of treatment with 20 mM MG132. (D) Quantification of CLC-1 protein expression levels in response to different MG132
treatment durations. The scanned intensities of protein densities were normalized to those of WT with no drug treatment. (E) The relative expression
ratio of A531V with respect to WT (as calculated from D) was plotted against the duration of the MG132 treatment. (F) Ubiquitination of CLC-1
proteins. Transfected cells were incubated at 37uC for 24 hrs in the presence of MG132. Cell lysates were immunoprecipitated (IP) with the anti-myc
antibody, followed by immunoblotting (WB) with the anti-myc or anti-ubiquitin (Ub) antibody. Corresponding expression levels of CLC-1 constructs in
the lysates are shown in the Input lane, which represents 5% of the total protein used for immunoprecipitation. Ub-CLC-1: ubiquitinated CLC-1.
doi:10.1371/journal.pone.0055930.g004
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suggests that reduced temperature fails to correct the folding defect

of the CLC-1 channel and thus cannot prevent the mutant protein

from entering the ERAD pathway.

Both our functional and immunofluorescence data clearly

demonstrate that a considerable portion of A531V protein

manages to escape the ER quality control system and reach the

Figure 5. MG132 treatment fails to rescue the functional expression of A531V. (A & B) Effects of the MG132 treatment (20-mM, 24 hrs) on
the functional expression of WT and A531V in HEK293T cells. Left and middle panels are cell-attached patch recordings from cells with and without the
MG132 treatment, respectively. The averaged current amplitudes were compared in the right panels with the number of patches shown on top of
each column. The asterisk denotes a significant difference from the control (no MG132 treatment) condition (*, t-test: p,0.05). (C) Effects of the
MG132 treatment on the current density of A531V channels. Data were derived from whole-cell recordings. The instantaneous currents at Vm= -
140 mV were used for the calculation.
doi:10.1371/journal.pone.0055930.g005

Pathophysiology of Myotonia-Related CLC-1 Channels
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Figure 6. Surface expression efficiency of WT and A531V channels. Surface biotinylation experiments on HEK293T cells expressing myc-
tagged CLC-1 channels in the absence (A) or presence (B) of 24-hr treatment with 20 mM MG132. (Total) Cell lysates were directly employed for
immunoblotting analyses. (Surface) Cell lysates were from biotinylated intact cells, after pulling down with streptavidin beads. To quantify the surface
expression efficiency (lower panels), the total protein density was standardized as the ratio of input signal to b-actin signal. The efficiency of surface
presentation was expressed as surface protein density divided by the corresponding standardized total protein density. The mean surface expression
ratio of the A531V mutant was normalized to that of WT. Densitometric scans of immunoblots were obtained from six to seven independent
experiments. (C,D) Confocal microscopic images of HEK293T cells expressing myc-tagged CLC-1 channels in the absence (C) or presence (D) of the
MG132 treatment. Fixed cells were stained with the anti-myc antibody (left panels) as well as the nuclear counterstain DAPI (middle panels) under the
permeabilized or non-permeabilized configuration. Scale bar = 10 mm.
doi:10.1371/journal.pone.0055930.g006

Pathophysiology of Myotonia-Related CLC-1 Channels
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Figure 7. Effects of blocking the endosomal-lysosomal degradation pathway. (A) Immunoblotting analyses of cell lysates from CLC-1-
expressing HEK293T cells subject to treatment with increasing concentrations of NH4Cl for 24 hrs. (B) Quantification of CLC-1 protein expression
levels in response to 24-hr treatment with different NH4Cl concentrations. Protein densities were normalized with respect to those for WT with no
drug treatment by following the same procedure as described in Figure 4B. (C) Immunofluorescence images of HEK293T cells expressing myc-tagged
A531V channels in the presence of 50 mM NH4Cl for 24 hrs. Cells were fixed under the permeabilized configuration. Scale bar = 10 mm. (D) Averaged
instantaneous I-V curves of WT CLC-1 recorded under the cell-attached configuration. HEK293T cells were incubated in the absence (black circles;
n = 15) or presence (red squares; n = 17) of 50 mM NH4Cl for 24 hrs. (E) Whole-cell current density (at 2140 mV) of the A531V mutant recorded from
HEK293T cells with or without the NH4Cl treatment.
doi:10.1371/journal.pone.0055930.g007
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plasma membrane. Misfolded membrane-bound proteins, howev-

er, are also susceptible to substantial degradation by the

endosomal-lysosomal pathway, a mechanism known as the

‘‘peripheral quality control’’. For example, proteolysis of CFTR

mutants exported to the membrane has been shown to involve an

ubiquitin-dependent targeting for the endosome-lysosome system

[33,34,52]. That the NH4Cl treatment significantly increases the

total protein level of the A531V mutant raises an intriguing

possibility that a substantial portion of surface A531V protein may

also fail the peripheral quality control and hence go through an

enhanced ubiquitin-dependent endocytosis, eventually destined for

endosomal-lysosomal degradation. In contrast, the slight increase

in WT proteins in response to the NH4Cl treatment is consistent

with the notion that the endosomal-lysosomal proteolysis may only

contribute to the basal turn-over of WT CLC-1 channels in the

plasma membrane. The A531V mutant may therefore serve as

a useful tool in the future for deciphering the detailed mechanisms

underlying the quality control of surface proteins.

An important issue that requires scrutiny is whether the

foregoing working model on the molecular pathophysiology of

A531V is only observed in the non-muscle heterologous expression

system, or whether it can be applied to muscle cells. One piece of

evidence supporting the latter came from the previous pulse-chase

labeling experiment showing that when heterologously expressed

in L6 myotubes, A531V displayed a defect in protein stability [25],

consistent with our biochemical observations in the heterologous

expression system. Furthermore, the same study observed a signif-

icant ER-retention for the mutant CLC-1 channel in isolated rat

myofibers, implying that the A531V mutant is also unacceptable

for the ER quality control system in myofibers. Therefore, we

propose that enhanced protein degradation may indeed contribute

to the pathogenesis of the A531V mutation in muscle cells. It will

be interesting in the future to determine whether a similar scenario

in biosynthetic anomaly may also apply to other myotonia

mutations, especially for those CLC-1 mutants showing reduced

functional and/or protein expression [20,21].

Emerging evidence supports the notion that many inherited

diseases are caused by a disruption of protein homeostasis

instigated by disease-associated mutations [53,54]. Unbalances in

the coordination of the activity of ER folding, quality control, and

Figure 8. The biosynthetic anomaly of A531V is temperature-insensitive. (A) Immunoblotting analyses of myc-tagged WT and A531V CLC-1
proteins from HEK293T cells incubated at 27uC for 48 hrs. (B) Quantification of total protein expression level by following the same procedure as
described in Figure 4B. Data were obtained from 7 independent experiments. The mean normalized value of A531V is 0.7060.09. Asterisks denote
significant difference from WT (*, t-test: p,0.05). (C) Averaged instantaneous I-V curves of the WT (black circles; n = 36) and the A531V mutant (red
squares; n = 26) recorded under the cell-attached configuration. CLC-1 channel-expressing HEK293T cells were incubated at 27uC for 48 hrs. (D)
Whole-cell current density (at 2140 mV) of the A531V mutant recorded from HEK293T cells incubated at 37uC or 27uC.
doi:10.1371/journal.pone.0055930.g008
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degradation machineries can result in many human diseases

related to defective protein maturation [55,56,57]. It is therefore of

high therapeutic significance to decipher the signaling mechanisms

as well as the protein machineries essential for maintaining normal

protein homeostasis. Our demonstration that CLC-1 protein is

subject to stringent conformation surveillance systems in the

process of protein synthesis warrants future identification of the

signals mediating the degradation of CLC-1 in various cellular

compartments. Elucidation of these surveillance mechanisms in

CLC-19s biosynthetic pathway may shed light on novel therapeu-

tic strategies for myotonia congenita.

Materials and Methods

CLC-1 Constructs
Human CLC-1 cDNA in the pcDNA3 vector (Invitrogen) was

used to create the myotonia-associated A531V mutant by

employing the QuickChange site-directed mutagenesis kit (Stra-

tagene), followed by DNA sequence verification. To create myc-

tagged CLC-1 constructs, the overlap PCR mutagenesis method

was used to insert the myc-epitope sequence (EQKLISEEDL)

between the residues G438 and D439, which are located in the

extracellular linker between L and M helices. For N-terminal

green fluorescent protein (GFP)-tagged constructs, CLC-1 cDNA

was subcloned into the pEGFP-C1 (Clontech) vector.

Cell Culture and DNA Transfection
Three types of cell lines were employed in this study: tsA201,

human embryonic kidney (HEK) 293T, and COS-7 cells. tsA201

and HEK293T cells are derived from the same line of HEK293

cells (293tsA1609neo) stably transfected with the gene for SV40

large T-antigen [58,59]. Cells were grown in Dulbecco’s modified

Eagle’s medium (DMEM) supplemented with 2 mM glutamine,

10% heat-inactivated fetal bovine serum (Hyclone), 100 units/ml

penicillin, and 50 mg/ml streptomycin, and were maintained at

37uC in a humidified incubator with 95% air and 5% CO2.

Transient transfection was performed by using the Lipofectamine

2000 (LF2000) reagent (Invitrogen). Briefly, cells were plated onto

6-well plates (for biochemical experiments) or poly-D-lysine-coated

coverslips in 24-well plates (for confocal imaging and electrophys-

iological recording) 24 hrs before transfection. Various expression

constructs were incubated with LF2000 reagent for 20 min at

room temperature, and DNA-lipofectamine diluted in Opti-MEM

(Invitrogen) was added to culture wells containing the plated cells

(1.05 mg total cDNA/12 mm coverslip). After 6-hr incubation at

37uC, the medium was changed and the culture cells were

maintained in a 27uC or 37uC incubator for 24–48 hrs before

being used for confocal imaging or for electrophysiological or

biochemical experiments. Where indicated, drugs (MG132,

cycloheximide, or NH4Cl) (Sigma) were applied to the culture

medium.

Electrophysiological Recordings
Conventional cell-attached, inside-out, or whole-cell patch-

clamp techniques were employed to record CLC-1 Cl2 currents.

Cells co-transfected with the cDNA for CLC-1 and pEGFP (molar

ratio 3:1) were identified with an inverted fluorescence microscope

(Leica-DM IRB). Recording electrodes were pulled by a PP-830

puller (Narashige), and displayed a resistance of 1–2 MV when

filled with the pipette solution. Both pipette and bath solutions

contained (in mM): 130 NaCl, 5 MgCl2, 1 EGTA, 10 HEPES,

pH 7.4. Data were acquired with an Axopatch 200B amplifier and

digitized with the Digidata 1322A digitization board controlled by

the pCLAMP 9.0 software (Molecular Devices). For whole-cell

recordings, cell capacitances were measured using the built-in

functions of the pCLAMP 9.0 software and were compensated

electronically with the Axopatch 200B amplifier. The holding

potential was set at 0 mV. Data were sampled at 2 kHz and

filtered at 1 kHz. All recordings were performed at room

temperature (20–22uC).
Electrophysiological experiments were conducted to obtain the

voltage-dependence of the open probability (Po–V curve) and the

instantaneous current-voltage (I-V) relationship. The voltage

protocol has been described previously [60]. To estimate the Po
of the channel, the value of the initial tail-current, determined by

fitting the tail-current to a double-exponential function, was

normalized to the maximal initial tail-current obtained following

the most positive test-voltage. Data points in the Po-V curve were

fitted with a Boltzmann equation: Po =Pmin+(12Pmin)/

{1+exp[zF(V2V1/2)/RT]}, where V1/2 is the half-activating

voltage for the Po-V curve. To obtain the instantaneous I-V

relationship, the relaxation process of the current elicited by the

test-voltage was fitted to a double exponential function, and the

initial current was determined by extrapolating the fitted

exponential function to the beginning of the test-voltage. The

measured instantaneous current was normalized to that measured

at +80 mV, and the values from different patches were averaged to

obtain the averaged I-V relationship.

Immunoblotting
Two days after transfection, HEK293T cells were washed twice

with ice-cold PBS and resuspended in a hypotonic buffer (10 mM

Tris, pH 8.0) containing protease inhibitor cocktail (Roche

Applied Science) and 2 mM EDTA. After adding Laemmli

sample buffer to the lysates, samples were sonicated on ice (three

times for five seconds each) and heated at 70uC for 5 min. Samples

were then separated by 6% or 7.5% SDS-PAGE, electrophoret-

ically transferred to nitrocellulose membranes, and detected using

mouse anti-myc (clone 9E10) or mouse anti-b-actin (1:5000;

Sigma) antibodies. Blots were then exposed to horseradish

peroxidase-conjugated anti-mouse IgG (1:5000; Thermo Scientif-

ic), and revealed by an enhanced chemiluminescence detection

system (Thermo Scientific). Data from multiple independent

experiments were pooled together for quantification analyses by

using the ImageJ software (National Institutes of Health). The

apparent molecular weights of protein bands were calculated from

the standard curves based on the mobility of molecular mass

standards.

Flow Cytometric Analyses
HEK293T cells transfected with cDNA for different GFP

constructs (pEGFP, GFP-CLC-1 WT, or GFP-CLC-1 A531V)

were harvested with trypsin/EDTA, washed twice with ice-cold

PBS, and resuspended in PBS to the final concentration of 56105

cells/ml. Cells (10,000/sample) were then analyzed by the

FACSCalibur flow cytometer system (BD Biosciences). The

percentage of cells showing GFP fluorescence was quantitatively

determined and was taken as an estimate of the cDNA transfection

rate of each construct.

Protein Ubiquitination Analyses
Transfected HEK293T cells were incubated at 37uC in the

absence or presence of MG132 for 24 hrs. Cells were solubilized in

ice-cold immunoprecipitation (IP) buffer [(in mM) 100 NaCl,

4 KCl, 2.5 EDTA, 20 NaHCO3, 20 Tris-HCl, pH 7.5, 1 phe-

nylmethylsulfonyl fluoride, 1% Triton X-100] containing protease

inhibitor cocktail (Roche Applied Science). Insolubilized materials

were removed by centrifugation. Solubilized lysates were in-
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cubated for 16 hrs at 4uC with protein A-Sepharose beads (Pierce)

previously coated with the anti-myc antibody. Beads were washed

three times in IP buffer and twice with IP buffer with Triton X-

100. The immune complexes were subject to immunoblotting with

the anti-myc or anti-ubiqutin (FK2; Enzo Life Sciences) antibody.

Biotinylation of Cell Surface Proteins
Transfected cells were washed extensively with PBS supple-

mented with 0.5 mM CaCl2, 2 mM MgCl2 (CM-PBS), followed

by incubation in 1 mg/ml sulfo-NHS-LC-biotin (Thermo Scien-

tific) in CM-PBS at 4uC for 30 min with gentle rocking.

Biotinylation was terminated by removing the biotin reagents

and rinsing three times each with CM-PBS and the Tris buffer

saline (TBS)[(in mM) 20 Tris-HCl, 150 NaCl, pH 7.4]. Cells were

solubilized in the lysis buffer [(in mM) 150 NaCl, 50 Tris-HCl, 1%

Triton X-100, 5 EDTA, 1 phenylmethylsulfonyl fluoride, pH 7.6]

supplemented with a protease inhibitor cocktail. Insolubilized

materials were removed by centrifugation. Solubilized cell lysates

were incubated overnight at 4uC with streptavidin-agarose beads

(Thermo Scientific). Beads were washed three times in the lysis

buffer and twice with TBS. The biotin-streptavidin complexes

were eluted from the beads by heating at 70uC for 5 min in the

Laemmli sample buffer, followed by SDS-PAGE and immuno-

blotting.

Immunofluorescence
Transfected cells were rinsed in the phosphate buffer saline

(PBS) [(in mM) 136 NaCl, 2.5 KCl, 1.5 KH2PO4, 6.5 Na2HPO4,

pH 7.4] and then fixed with 4% paraformaldehyde in PBS at 4uC
for 20 min. Cells were washed three times with PBS and then

blocked for 1 hr in PBS containing 0.1% (v/v) Triton X-100 and

5% normal goat serum. Cells were then incubated overnight at

4uC with the anti-myc antibody diluted in the blocking buffer.

After three washes with PBS, the coverslips were incubated with

goat-anti-rabbit/mouse antibodies conjugated to Alexa488 (Invi-

trogen) for 1 hr at room temperature. Nuclei were labeled with

DAPI. Finally, the coverslips were rinsed once in blocking buffer,

twice in PBS, and twice in 0.1 M carbonate buffer, pH 9.2, before

they were mounted on glass slides in a mounting medium (4% n-

propyl gallate, 90% glycerol, 0.1 M carbonate, pH 9.2). The

fluorescence images of the fixed cultures were viewed and acquired

with a Leica TCS SP5 laser-scanning confocal microscope.

Statistical Analyses
All values were presented as mean 6 SEM. The significance of

the difference between two means was tested using the Student’s t

test, whereas means from multiple groups were compared using

the one-way ANOVA analysis. All statistical analyses were

performed with the Origin 7.0 software (Microcal Software).

Supporting Information

Figure S1 Effects of the MG132 treatment on the A531V
expression in COS-7 cells. (A) Immunoblotting analyses of

cell lysates from transfected COS-7 cells in the absence (left) or

presence (right) of 20 mM MG132 for 24 hrs. (B) Quantification of

CLC-1 protein expression levels. Protein densities were normal-

ized to those of WT with no drug treatment.

(TIF)
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