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Abstract: Attenuated vaccine strains of lumpy skin disease virus (LSDV) have become increasingly
popular as recombinant vaccine vectors, to target both LSDV, as well as other pathogens, including
human infectious agents. Historically, these vaccine strains and recombinants were generated in
primary (lamb) testis (LT) cells, Madin–Darby bovine kidney (MDBK) cells or in eggs. Growth in eggs
is a laborious process, the use of primary cells has the potential to introduce pathogens and MDBK
cells are known to harbor bovine viral diarrhea virus (BVDV). In this study, data is presented to
show the growth of an attenuated LSDV strain in baby hamster kidney (BHK-21) cells. Subsequently,
a recombinant LSDV vaccine was generated in BHK-21 cells. Partial growth was also observed in
rabbit kidney cells (RK13), but only when the vaccinia virus host range gene K1L was expressed.
Despite the limited growth, the expression of K1L was enough to serve as a positive selection marker
for the generation of recombinant LSDV vaccines in RK13 cells. The simplification of generating
(recombinant) LSDV vaccines shown here should increase the interest for this platform for future
livestock vaccine development and, with BHK-21 cells approved for current good manufacturing
practice, this can be expanded to human vaccines as well.

Keywords: lumpy skin disease virus; vaccine vector; BHK-21 cells; RK13 cells; K1L host range

1. Introduction

Poxviruses have a long history of being used as vectors for recombinant vaccines [1,2].
Most of the registered recombinant poxvirus vaccines are for veterinary use and include the
canarypox virus (CNPV) based vector ALVAC for diseases such as rabies, feline leukaemia
virus and equine influenza [3–5]. Due to their safety profiles, the majority of poxviruses
being explored for human use do not complete their replication cycle in humans and include
canarypox virus, various vaccinia virus strains and lumpy skin disease virus (LSDV) [6–10].
Recently, the first human vaccine based on a recombinant poxvirus was approved by
regulatory bodies for Ebola [11]. This vaccine is based on modified vaccinia Ankara
(MVA), which does not complete its replication cycle in human cells. The vaccine encodes
glycoproteins of Ebola virus Zaire, Sudan virus and Marburg virus and the nucleoprotein
of the Thai Forest virus. It is given as a boost in a heterologous Ebola vaccination regimen
with an Adenovirus vectored priming vaccine.

Combinations of different poxvirus vectored vaccines can give different types of im-
mune response. In rhesus macaques, there were different systemic proinflammatory and
antiviral cytokine and chemokine levels following vaccination with the canarypox virus
vector, ALVAC, compared to the vaccinia virus (VACV)-derived vectors MVA and NY-
VAC [12]. Rhesus macaques, vaccinated in a heterologous prime boost regimen consisting
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of a recombinant modified vaccinia virus Ankara (rMVA) prime/recombinant fowlpox
virus (rFPV) boost or recombinant vaccinia virus prime/rFPV boost, developed comparable
cellular immune responses, which were greater in magnitude than those developed in ani-
mals that received homologous prime/boost with rMVA [13]. On testing candidate HIV-1
vaccines, heterologous prime boost with rMVA and rLSDV expressing HIV-1 antigens gave
a better T cell response than either viral vector alone [9].

LSDV is a member of the Capripoxvirinae genus of the Poxviridae family [14] and has
a host range restricted to ruminants. LSDV causes serious disease in cattle and there are
effective attenuated and inactivated vaccines available [15,16]. Recombinant LSDV vaccines
that have been tested in cattle or sheep include dual vaccines against LSDV + rabies [17]
and LSDV + rift valley fever virus [18]. Pre-clinical studies of LSDV as an HIV vaccine have
also taken place [9,10]. The promising immune responses to LSDV in replication-restricted
hosts have supported the development of LSDV as a vaccine for humans [19,20]. However,
the present manufacture of vaccines takes place in cell lines or primary cultures [21,22],
which are not suitable for the manufacturing of human vaccines according to current
good manufacturing practice. Madin–Darby bovine kidney (MDBK) cells can be used for
culture in veterinary use, but this cell line is often contaminated with bovine viral diarrhea
virus (BVDV). Passaging through embryonated chicken eggs can be used to remove this
BVDV [23], but eggs are not considered a viable alternative for manufacture of vaccine.
Recently, it was reported that Capripoxviruses grow well in cultures of the embryonic skin
of sheep (ESH-L) and primary foetal heart cells, but to a lesser extent in Vero cells and an
ovine testis cell line [21]. One of the aims of our study was to determine if the manufacture
of LSDV could be done in a baby hamster kidney cell line (BHK-21), which is suitable for
vaccine manufacture for human vaccines. An investigation was made into the construction
of recombinant LSDV in BHK-21 cells. Based on the function of VACV C6 protein as a
multifunctional interferon (IFN) antagonist responsible for proteasomal degradation of
class II histone deacetylase 4 and 5 (HDAC4, HDAC5), with both HDACs inhibiting VACV
replication in vitro [24,25], it was hypothesized that the HDAC inhibitor, sodium butyrate,
could impact on the growth of LSDV in BHK-21 cells.

Host range genes have implications for both growing poxviruses in vitro and for
generating recombinant vaccines. The K1L gene, when recombined into MVA, enabled
the rMVA to grow in cell lines outside of its normal host range [26,27]. K1L has been
shown to inhibit Nuclear Factor kappa B (NF-kB) by preventing the degradation of IkBα, a
known inhibitor of NF-kB [28,29]. NF-kB is a small group of inducible transcription factors
that regulate DNA transcription, cytokine production, and cellular survival. Inhibition of
NF-kB thus results in impaired proinflammatory gene expression by the host [30]. The
inclusion of the K1L gene into transfer vectors has likewise facilitated the selection of
recombinant MVA, as recombinants expressing K1L grown in rabbit kidney (RK) 13 cells,
whilst the wild-type MVA does not [27]. Additionally, following transfection with K1L
and antibiotic selection to generate a stable cell line expressing K1L, RK13 cells were seen
to be permissive to MVA [31]. Similar to MVA, LSDV lacks the K1L gene [32] and is thus
incapable of replicating in RK13 cells. One of the aims of this research was to evaluate
the growth of LSDV in the presence of K1L in the RK13 cell line, which is not normally
permissive to LSDV.

The purpose of this study was to investigate ways to improve the growth and selection
of recombinants of LSDV for both human and veterinary applications. LSDV was shown
to grow in BHK-21 cells and K1L was shown to rescue growth of LSDV in RK13 cells.

2. Materials and Methods
2.1. Antibodies, Plasmids, Cell Lines and Reagents

Goat anti-HIV-1 gp160 (MRC ADP 72 408/5104), rabbit anti-HIV-1 p24 (Gag) (ARP
432), mouse mAb THE™ DYKDDDDK Tag Antibody for detection of the FLAG-tag (Gen-
Script, Piscataway, New Jersey, United States, A00187), donkey anti-goat IgG FITC, donkey
anti-rabbit IgG FITC or Cy3 and donkey anti-mouse IgG FITC or Cy3 (all Life Technologies,
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Carlsbad, California, USA) were used for immunofluorescence assays. Goat anti-HIV-
1 gp120 (BioRad, Hercules, California, United States 5000-0557), goat anti-HIV-1 p24
(Gag) (BioRad 4999-9007), THE™ DYKDDDDK Tag Antibody, mouse monoclonal anti-
goat/sheep IgG–AP GT34 (Sigma, St. Louis, Missouri, United States) and Goat Anti-Mouse
IgG Antibody (H&L) [Alkaline phosphatase] (GenScript, Piscataway, New Jersey, United
States, A10097) were used for western blotting. MDBK, RK13, HEK293T and BHK-21
cell lines were obtained from the American Type Culture Collection (ATCC, Manassas,
Virginia, United States). All cells were grown in Dulbecco’s Modified Eagle’s Medium
(DMEM) High Glucose + L-Glutamine + 10% Fetal Calf Serum (FCS) + 1x Pen/Strep (all
Gibco, Carlsbad, California, United States). For serum-free media, no FCS was added.
Recombinant LSDV was titrated in MDBK cells by counting fluorescent foci three days
post infection to determine fluorescent forming units/mL (FFU/mL).

The mammalian expression plasmid pTHpCapR [33] was used as a backbone for
mammalian expression plasmids and pUC57simple (GenScript) was used as a backbone for
pox transfer vectors. The recombinant nLSDVSODis-UCT and modified vaccinia Ankara
(MVA) that expresses HIV-1 CAP256 Env + subtype C mosaic Gag (MVAGC5) have been
previously described [34,35]. The construction of LSDVGC5 is described by Chapman et al.
(in the concurrent special issue of Vaccines). LSDVGC5 expresses HIV-1 CAP256 Env +
subtype C mosaic Gag [35].

All imaging was performed on a Zeiss Axio Microscope (Carl Zeiss AG, Oberkochen,
Germany) and analysed with Zeiss Zen software (https://www.zeiss.com/microscopy/
int/products/microscope-software/zen-lite.html (accessed on 4 October 2021)).

All graphs were plotted in GraphPad Prism 5.0 (GraphPad Software, San Diego, CA,
United States).

2.2. Promoter Activity in LSDV

Five promoters were tested for recognition by LSDV. These are shown in Table 1 and
include a synthetic early-late promoter of VACV (pSS) [36], a synthetic early-late optimised
promoter of VACV (pLEO)[37], a modified early fowlpox virus promoter (pmFP), which
had the late portion of the promoter removed [38,39], a promoter of the 7.5 kilo Dalton
(kDa) polypeptide gene of VACV (p7.5) [40] and a modified early-late promoter of the H5
gene of VACV (pmH5) [41]. Each promoter was cloned upstream of eGFP in pUC57simple
and tested for transient expression, after transfection of BHK-21 cells, which were infected
with nLSDVSODis-UCT. A 70% confluent layer of BHK-21 cells, in 12-well plates, were
infected with LSDV (MOI = 0.5) and 2 h later transfected with 2 µg of the respective VACV
promoter-eGFP plasmids using 1 µL of X-tremeGENE HP ( Roche, Basel, Switzerland). The
eGFP signal was imaged as a proxy for VACV promoter activity two days after transfection.

Table 1. Poxvirus promoter sequences.

Promoter Sequence Size Ref

pSS AAAATTGAAATTTTATTTTTTTTTTTTGGAATATAAATA 39 bp [36]

pLEO TTTTATTTTTTTTTTTTGGAATATAAATATCCGGTAAAATTGAAAAAATATACAC
TAATTAGCGTCTCGTTTCAGACGCTAG 82 bp [37]

pmFP AGAAAAATATCCTAAAATTGAATTGTAATTATCGATAATAA 41 bp [38,39]

p7.5 TCCAAACCCACCCGCTTTTTATAGTAAGTTTTTCACCCATAAATAATAAA
TACAATAATTAATTTCTCGTAAAAGTAGAAAATATA TTCTAATTTATTGCACGG 104 bp [40]

pmH5 AAAAATTGAAAATAAATACAAAGGTTCTTGAGGGTTGTGTTAAATT
GAAAGCGAGAAATAATCATAAATAA 71 bp [41]

2.3. Generation of Recombinant LSDVGC5 Virus in BHK-21 Cells

A recombinant nLSDVSODis-UCT virus (LSDV(SODis)BEFV-Gb) containing an eGFP
marker in the 49–50 locus (Douglass et al., concurrent special issue of Vaccines) was used

https://www.zeiss.com/microscopy/int/products/microscope-software/zen-lite.html
https://www.zeiss.com/microscopy/int/products/microscope-software/zen-lite.html
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to target the expression cassette of pmH5-Env, pLEO-mosaic Gag and pmFP-mCherry into
the 49–50 locus, with a positive integration event marked by replacing eGFP expression
with that of mCherry. A similar strategy was employed for the construction of LSDVGC5
described by Chapman et al. (in concurrent special issue of Vaccines).

BHK-21 cells were plated and infected at the same time with 1 µL LSDV(SODis)BEFV-
Gb (1.8 × 107 TCID50/mL). Two hours later, infected cells were transfected with 1 µg
of the transfer vector pFLEx(49–50) CAP256 gp150-FL-IP GagM mCherry, using 1 µL of
X-tremeGENE HP. Cells were frozen three days post transfection for passage 0 (P0). Single
clones were generated in BHK-21 cells by either picking mCherry positive foci (P1) or by
limited dilution ranges of cell lysate after freeze thawing (>P1). By P4, wells containing
only mCherry positive recombinant LSDV were obtained, thus generating LSDVGC5 (BHK-
21). Single foci were bulked up in T75, T175 and Hyperflasks using BHK-21 cells. After
freeze-thawing, the virus was pelleted on a 36% sucrose cushion, reconstituted in PBS +
10% glycerol and stored at −80 ◦C. Correct integration into nLSDV(SODis)BEFV-Gb was
verified by PCR, and expression of Env and Gag from LSDVGC5 (BHK-21) was assessed
by western blotting and immunofluorescence.

2.4. Growth Curve of LSDVGC5 in BHK-21 Cells

BHK-21 cells were infected with LSDVGC5 at MOI = 0.05 in triplicate (n = 3) with
or without the pan-HDAC inhibitor 2 mM sodium butyrate (Sigma) in 12-well plates
(n = 10 plates). As a control LSDVGC5 was added to three wells without cells in each plate.
Cells were plated and infected on the same day. Wells were imaged daily and one plate
was frozen each day for downstream titration after two freeze-thaw cycles to determine
FFU/mL. This data was Log10 converted, plotted and analysed in GraphPad Prism 5.0.

2.5. Transgene Expression from MVAGC5 and LSDVGC5 in Non-Permissive Cells Stimulated
with the pan-HDAC Inhibitor Sodium Butyrate

HEK293T cells were infected with MVAGC5 or LSDVGC5 at MOI = 0.5 in triplicate
(n = 3) with or without the pan-HDAC inhibitor 2 mM sodium butyrate in 12-well plates
(n = 4 plates). Cells were plated and infected on the same day. After three days, media
was removed from one plate and cells were lysed with 500 µL Glo Lysis buffer (Promega,
Madison, Wisconsin, United States). Equal volumes of cell lysate were run on protein SDS
PAGE and expression of the MVAGC5 and LSDVGC5 transgene HIV-1 Env was confirmed
by western blot analysis, imaged on a BioRad GelDoc XR, with densitometry performed
with the accompanying ImageLab software (BioRad, Hercules, California, United States).

2.6. Generation of RK13 Cells with Stable Expression of VACV K1L

The VACV host-range gene K1L was PCR cloned into pTHpCapR to include a short
C-terminal linker (GGGGS) and FLAG-tag (DYKDDDDK) upstream of the STOP codon,
thereby generating the plasmid pMEx K1L-FLAG. The K1L gene was verified by DNA
sequencing. Subsequently, an IRES-Neomycin resistance cassette was introduced directly
downstream of K1L-FLAG to generate pMEx K1L-FLAG Ires Neo(r) (pMEx K1L-FLAG
IN), which was used to make cell lines stably expressing K1L-FLAG. Transient expression
in RK13 cells of K1L-FLAG from pMEx K1L-FLAG and pMEx K1L-FLAG-IN was verified
by western blot analysis and immunofluorescence using the FLAG-tag. RK13 cells with
stable expression of K1L-FLAG were generated by transfecting with pMEx K1L-FLAG-IN
and passaging cells for >10 passages in media + 0.5 mg/mL Geneticin (Gibco). For this
cell line, RK13 K1L, expression of K1L-FLAG was verified by western blot analysis and
immunofluorescence. A subsequent clonal cell line, with detectable expression of K1L in
all cells, as assessed by immunofluorescence, was identified by screening single clones
from limited dilution ranges of RK13 K1L, thus generating RK13-K1L(H10).
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2.7. LSDVGC5 Growth in RK13 Cells

LSDV titration experiments were performed in the RK13-K1L(H10) cell line. Cells
were infected with LSDVGC5 (MOI = 0.3) (n = 3) and, after three days, virus was harvested
by freeze-thawing and titrated in MDBK cells.

2.8. Generation of LSDV-K1L-eGFP in RK13 Cells

A recombinant LSDV, LSDV(SODis)BEFV-Ga, containing a mCherry marker in the
49–50 locus (Douglass et al., concurrent special issue of vaccines) was used to target
a construct containing the VACV host-range gene K1L under its native promoter and
pSS-eGFP into the 49–50 locus, with a positive integration event marked by replacing
mCherry expression with eGFP. In this case, one day after plating, primary LT cells were
infected with LSDV(SODis)BEFV-Ga and two hours later transfected with the transfer
vector pLSDV-K1L-eGFP (5 µg, linearised with XhoI and BamHI, followed by heat in-
activation) using 3 µL X-tremeGENE HP. Cells were frozen two days post transfection
for P0. Viral lysates were generated by freeze-thawing and used for passaging in RK13
cells. From P2 onwards, mCherry and eGFP positive foci in RK13 cells were counted.
By P4, wells containing only eGFP positive recombinant LSDV were observed. Correct
integration into LSDV(SODis)BEFV-Ga to produce LSDV-K1L-eGFP was verified by PCR.
Clonal LSDV-K1L-eGFP generated in RK13 cells was further bulked-up in BHK-21 cells.

3. Results
3.1. Expression of Foreign Genes by LSDV from Different Promoters

Poxviruses use specific promoters for expression, with VACV promoters being the
best characterised [42]. The activity of previously characterized poxvirus promoters, placed
upstream of a GFP reporter gene, were tested in transient expression assays in LSDV-
infected cells to determine if they would be recognized by LSDV. All five promoters, namely
pSS, pLEO, pmFP, p7.5 and pmH5, were active in combination with LSDV (Figure 1). In
the absence of LSDV infection, no eGFP expression was seen from cells transfected with
the reporter plasmids.
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Figure 1. Expression of eGFP from different promoters in LSDV-infected BHK-21 cells. BHK-21
cells were infected with nLSDVSODis-UCT at an MOI of 0.5 and transfected with 2 ug plasmid,
encoding the eGFP gene driven by poxvirus promoters pSS, pLEO, pmFP, p7.5 or pmH5. Images were
taken two days post infection using green fluorescence (GFP) and phase contrast merged with green
fluorescence (+TL). pSS = synthetic vaccinia virus promoter, pLEO = synthetic late-early promoter,
pmFP = fowlpox virus promoter modified to remove late promoter element, p7.5 = vaccinia virus
7.5 kDa promoter, pmH5 = modified vaccinia virus H5 promoter. Scale bar = 100 µm.
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3.2. Construction of Recombinant LSDVGC5 in BHK-21 Cells

Recombinant LSDV, expressing HIV-1 env and gag genes, together with mCherry as a
fluorescent marker, was constructed (Figure 2). Single LSDVGC5 clones were generated in
BHK-21 cells by picking mCherry positive foci (passage (P) 1) followed by limited dilution
ranges of virus supernatant after freeze thawing (>P1). By P4, wells containing only
mCherry positive recombinant LSDV were obtained, thus generating LSDVGC5 (BHK-21).
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3.3. Evaluation of the Growth of LSDV and Expression of Foreign Genes from LSDV, in BHK Cells,
in the Presence and Absence of Sodium Butyrate

Growth of LSDVGC5 in BHK-21 cells was demonstrated, and this was enhanced by
the addition of the pan-HDAC inhibitor sodium butyrate from days 3 to 6 post infection
(Figures 3 and 4). However, by day 7 the titre was the same, whether the cells were treated
with sodium butyrate or not (Figure 4). It was noted that, by this time, many of the cells
treated with sodium butyrate had died.

Expression of HIV Env from recombinant poxviruses LSDVGC5 and MVAGC5 was
evaluated after the addition of the pan-HDAC inhibitor sodium butyrate. This resulted in
increased Env expression as observed by western blot analysis (Figure 5).
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Figure 5. Expression of HIV-1 Env from nonpermissive HEK292T cells infected with LSDVGC5 or MVAGC5 in the presence
and absence of 2 mM sodium butyrate. Cell lysates were prepared in triplicate 72 h post infection with LSDVGC5 (a) or
MVAGC5 (b) and subjected to western blot analysis. Densitometry readings were plotted using GraphPad Prism 5 (c).

3.4. The Use of VACV K1L to Improve Growth of LSDV and Select for Recombinant LSDV

RK13 cells are non-permissive for the growth of LSDV. A stable RK13 cell line, which
expressed VACV K1L (RK13-K1L(H10)) was generated (Figure 6a). Comparison of LSDV
growth in RK13 (wtRK13) and RK13-K1L(H10) cells showed a five-fold increase in the
growth of LSDV in the RK13-K1L(H10) cell line (Figure 6b), confirming that K1L enabled
growth of LSDV in RK13 cells.
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Figure 6. Generation of RK13 cells with stable expression of VACV K1L to rescue growth of LSDV. (a) Immunofluorescence
showing expression of K1L by the clonal cell lineRK13-K1L(H10); K1L expression was detected by probing for the C-terminal
Flag-tag present in the transgene. Scale bar = 100 µm. (b) Growth of LSDVGC5 in the RK13-K1L(H10) cell line as compared
to wildtype RK13 three days post infection. *** p < 0.001.

To determine whether K1L could be used as a means of selection in the construction of
recombinant LSDV, a recombinant LSDV expressing eGFP and K1L was isolated by passage
in RK13 cells. Cell lysate was used from LT cells infected with LSDV(SODis)BEFV-Ga and
transfected with a transfer vector containing K1L and eGFP between flanking sequences
of LSDV ORFs 49 and 50. Figure 7 shows the enrichment of green foci over red foci
with passage in RK13 cells. The parent virus, which expressed mCherry, was completely
replaced by recombinant LSDV-K1L-eGFP by P5. The recombinant was confirmed to be
correct by PCR (Figure 7d) and Sanger sequencing of the gene cassette inserted between
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LSDV ORFs 49 and 50. This shows that K1L can be used as a means of selection for
generating recombinant LSDV.
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Figure 7. Generation of LSDV- K1L-eGFP in RK13 cells. (a) Schematic diagram of the parent virus,
LSDV(SODis)BEFV-Ga, LSDV-K1L-eGFP and nLSDVSODis-UCT. (b) Fluorescing foci were counted
as RK13 cell lysates were passaged (P2 to P5). Red and green bars indicate red and green foci
counts respectively. (c) Images of passage 2 and 5 of potential LSDV-K1L-eGFP recombinant. Phase
contrast with mCherry and eGFP, scale bar = 100 µm. (d) PCR confirmation of LSDV-K1L-eGFP.
DNA was extracted from infected BHK-21 cells and subjected to PCR using forward and reverse
primers (small grey arrows) as indicated in A. M—GeneRuler 1 kb DNA Ladder, lane 1—water
control, 2—uninfected cells, 3—nLSDVSODis-UCT, 4—LSDV-K1L-eGFP.

There was no growth advantage seen in BHK-21 cells when LSDV-K1L-eGFP was
compared to the parent virus (data not shown).

4. Discussion

Host-restricted poxviruses are important as vaccine vectors because they have nu-
merous advantages compared to other vaccine vectors. They are heat stable and can be
stored at room temperature. Poxviruses have capacity for insertion and expression of up to
25 kbp of foreign DNA compared to adenovirus vectors where package size is limited to
7.5 kbps. They can infect a wide range of cells and express foreign proteins at levels that
induce good immune responses. The fact that they replicate in the cytoplasm is another
consideration as there is less likelihood of integration into the host genome [2,43–46]. LSDV
has the potential to be added to the list of other poxviruses that have been successfully
used in commercial human and veterinary vaccine development [20].

It is important to note that poxviruses differ in the distinct types of immune responses
induced when used as vaccine vectors. Analysis of the spleen transcriptome to assess the
innate immune response in mice to six host restricted poxviruses (lumpy skin disease virus
(LSDV), MVA and four Avipoxviruses) demonstrated quantitatively distinct host responses.
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LSDV, followed by MVA, induced the greatest interferon (IFN) response, while CNPV and
fowlpoxvirus induced the up regulation of two immunoglobulin genes (Ighg and Ighg3
(IgG3)) with CNPV inducing a third, Ighm (IgM) [47]. HIV-1-specific IgG3 antibodies have
been reported to correlate with decreased risk of HIV-1 infection in the RV144 trial, which
included a CNPV-based vector [48]. MVA- and LSDV- vectored HIV-1 vaccines have been
shown to give superior T cell responses in heterologous (vs homologous) prime-boost
experiments [10] and recombinant LSDV was able to significantly boost recombinant MVA
primed responses in rhesus macaques [9]. Although there is evidence that MVA can be used
repeatedly as a vaccine vector in the same host [49] it is expected that eventually anti-vector
immunity will play a role in suppressing immune responses to boosts based on the same
vector. The distinct characteristics of the various poxvirus vectors and improvements in
immune responses with heterologous prime boost vaccinations justify further development
of more poxvirus vectors, including LSDV.

The demonstration that LSDV can grow to relatively high titres in BHK-21 cells, and
the fact that this cell line is suitable for the generation of recombinant LSDV opens the
possibility of improved manufacturing processes for both human and veterinary vaccines.
Confirmation of a range of VACV promoter activity increases the number of poxvirus
promoters that can be used to generate recombinants. While many researchers want
increased promoter activity, high-strength promoters can result in an excess of foreign
protein leading to instability and selection of unstable recombinants [50]. In poxvirus
vaccine design, early promoters that enhance antigen expression also improve the antigen-
specific CD8 T-cell responses [51]. Our study showed that LSDV replication can be further
enhanced by the addition of the pan-HDAC inhibitor sodium butyrate. Although sodium
butyrate improved expression of the recombinant genes in MVA and LSDV, it is not
certain whether this is due to increased poxvirus growth alone or an increase in protein
expression too. An additional lever on improving foreign gene expression could be of
particular interest for recombinants expressing foreign genes which may cause instability
during manufacture.

Selection of poxvirus recombinants by homologous recombination is a long and
laborious process and so alternatives are needed. Recent improvements have included
the synthesis of horsepox virus from chemically synthesized DNA, which could be used
to make recombinants [52], and the use of CRISPR/Cas9 technology to target the parent
poxvirus genome [53]. Both these approaches are relatively expensive. In our study, we
demonstrate that partial LSDV growth was observed in RK13 cells, but only when the
VACV host gene K1L was expressed. Despite the limited growth, the expression of K1L
was enough to serve as a positive selection marker for the generation of recombinant LSDV
vaccines in RK13 cells. The passage of virus in RK13 cells is considerably less laborious
than the standard method of picking foci. The simplification of generating (recombinant)
LSDV vaccines shown here should increase the interest in this platform for future livestock
vaccine development and, with BHK-21 cells approved for current good manufacturing
practice, this can be expanded to human vaccines. The inclusion of K1L in LSDV did not
result in improved replication in BHK-21 cells but the impact on pathogenicity in vivo,
whether in non-permissive or permissive hosts, is not known and remains to be determined.
Alternatively, K1L could be removed from the final recombinant, as is often done with
MVA, by flanking the K1L gene with repetitive DNA sequences [27]. In MVA, the use of
K1L did not enhance replication in human or monkey cell lines [54] or result in replication
in rabbits [35]. LSDV is regarded as a very safe vaccine vector for non-permissive hosts as
there is no evidence that the virus can replicate in non-ruminant hosts. Therefore, the risk
of rescue of a replicating virulent LSDV under these circumstances is negligible. This is not
the case for MVA, which, in very rare circumstances, could theoretically recombine with
naturally circulating Orthopoxviruses during co-infection [44].

In conclusion, we have demonstrated that BHK-21 cells can be used to grow LSDV and
to create recombinant viruses. A number of promoters used for foreign gene expression in
vaccinia virus have been shown to work for LSDV too. We have also shown that K1L can
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be used for selection of recombinant LSDV in RK13 cells. These are significant advances in
the quest to develop LSDV as a vaccine vector, both for animal and human use.
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