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Abstract: We developed an artificial intelligence (AI) model that evaluates the feasibility of AI-
assisted multiparameter flow cytometry (MFC) diagnosis of acute leukemia. Two hundred acute
leukemia patients and 94 patients with cytopenia(s) or hematocytosis were selected to study the AI
application in MFC diagnosis of acute leukemia. The kappa test analyzed the consistency of the
diagnostic results and the immunophenotype of acute leukemia. Bland–Altman and Pearson analyses
evaluated the consistency and correlation of the abnormal cell proportion between the AI and manual
methods. The AI analysis time for each case (83.72 ± 23.90 s, mean ± SD) was significantly shorter
than the average time for manual analysis (15.64 ± 7.16 min, mean ± SD). The total consistency of
diagnostic results was 0.976 (kappa (κ) = 0.963). The Bland–Altman evaluation of the abnormal cell
proportion between the AI analysis and manual analysis showed that the bias ± SD was 0.752 ± 6.646,
and the 95% limit of agreement was from −12.775 to 13.779 (p = 0.1225). The total consistency of the
AI immunophenotypic diagnosis and the manual results was 0.889 (kappa, 0.775). The consistency
and speedup of the AI-assisted workflow indicate its promising clinical application.

Keywords: artificial intelligence; acute leukemia; multiparameter flow cytometry

1. Introduction

Leukemia is a malignant clonal disease of hematopoietic stem cells. The diagnosis
of leukemia is made by a combination of clinical findings, morphologic examination of
peripheral blood (PB) and bone marrow (BM) specimens, and cytogenetic and molecular
data, as well as immunophenotypic analysis by multiparameter flow cytometry (MFC) [1–3].
In the last 30 years, MFC has become an essential tool in the diagnosis of leukemia [1,4].
Through the comprehensive assessment of the surface and intracellular antigens expressed
by leukemic blasts, MFC enables pathologists to detect the blast lineage assignment and
identify aberrant immunophenotypic features, allowing for the distinction of abnormal
blast populations from normal progenitors. As the data interpretation is sophisticated, only
skilled and highly trained pathologists are competent in it, which compromises the wide
application of MFC. This is particularly so in countries like China, where the number of
pathologists is insufficient, and the workload is large. More attempts have been made to
solve the flow cytometry data analysis problem, and general-purpose dimension reduction
and clustering algorithms including T-SNE and K-means have been used to address the
analysis of MFC data [5,6]. Many FCM-specific algorithms, such as SPADE, FlowSOM, and
PhenoGraph, have also been developed for MFC data processing [7,8]. However, clinical
MFC data analysis still heavily depends on the manual logic gate strategy with conventional
flow cytometry analysis software, and the detection efficiency is highly reliant on the
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examiners’ experience [9]. In addition, it is difficult to separate and set the gate for cells
with high-dimensional data because the manual logic gating is limited to two-dimensional
scattered plot combinations. Moreover, it is difficult to consistently measure the numerical
expression levels of various antigens in the multidimensional space of the target cell
group [10]. Therefore, there is a strong need for a flow cytometry analysis methodology
that is exempt from the human factor and can simultaneously analyze multiple cell groups
and their antigen expression levels in a multidimensional space so that leukemia cells can
be detected more consistently and objectively. With the fast evolution of AI technology and
its applications in medicine in recent years, this goal has become possible.

As reported, AI has been used in the prognosis of breast cancer and gastric cancer,
as well as the diagnosis of colorectal cancer and the differential diagnosis of malignant or
benign masses in the breast [11,12]. Moreover, the accuracy measure for the classification
task has improved, owing to the use of the automatic analysis of hematoxylin- and eosin-
stained histological images [13]. Therefore, AI-based clinical cancer research has resulted
in a paradigm shift in cancer treatment. It is logical to expect that such advances of AI
technology will help solve the challenges of cancer prognosis and diagnosis.

In this study, we evaluated an AI-assisted methodology for the diagnosis of leukemia,
including the diagnostic results, abnormal cell proportion, and cell phenotypic diagnosis, as
well as compared the method’s diagnostic accuracy with that of conventional manual analy-
sis. A clinic-orientated AI-assisted diagnosis workflow was validated to perform automatic
data analysis with not only the final diagnostic results, but also human-understandable
and editable intermediate steps.

2. Materials and Methods
2.1. Study Groups

The study group consisted of 200 acute leukemia patients who were referred to the
First Affiliated Hospital of Sun Yat-Sen University from March 2019 through June 2020.
The diagnosis of acute leukemia was made according to the current WHO classification
criteria by a combination of clinical findings, morphologic examination of PB and BM
specimens, and cytogenetic and molecular data [14]. Cases with equivocal findings or
insufficient data to establish disease, or that excluded diagnosis of acute leukemia, were
excluded from this group. All of the patients had at least one diagnostic BM aspirate sample
submitted for FCMat to the flow cytometry laboratory of the First Affiliated Hospital of
Sun Yat-Sen University. The non-leukemic group included 94 patients with cytopenia(s) or
hematocytosis attributable to a variety of non-neoplastic conditions. The clinicopathologic
information was obtained by reviewing the medical records. No additional patient consent
was obtained because it was a retrospective study. This study was approved by the Ethical
Committee of the First Affiliated Hospital of Sun Yat-Sen University.

2.2. MFC Immunophenotyping

BM aspirate samples were collected in EDTA anticoagulant and processed within 24
h of collection. After incubation with monoclonal antibodies for 20 min at room temper-
ature, erythrocytes were lysed with ammonium chloride (PharmLyse™, BD Biosciences,
San Diego, CA, USA) at room temperature for 10 min using a standard lysing/washing
technique. An eight-color FCM analysis was performed on a FACS Canto Plus flow cy-
tometer (BD Biosciences, San Jose, CA, USA), which was standardized daily using CS&T
beads, and data were analyzed. The panel of antibodies used was CD45 (for identifying
blasts, was added in all of the tubes), CD2, CD3, CD4, CD5, CD7, CD8, CD10, CD11b,
CD13, CD14, CD15, CD16, CD19, CD20, CD22, CD33, CD34, CD38, CD56, CD64, CD117,
HDL-DR, MPO, CD79a, and cCD3. Some cases of AML, such as AML M6, CD235a and
CD71, as well as AML M7, CD41, CD42b, and CD61, were also included in the panel. The
antibody panel is shown in Supplemental Table S1. Instrument alignments, sensitivities,
and spectral compensation were verified by standards, calibrators, procedural controls,
and normal peripheral blood samples prior to processing of patient samples.
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2.3. AI-Assisted Flow Cytometry Analysis Workflow

Deepflow is an AI-assisted flow cytometry analysis software that was developed by
DeepCyto LLC, WestLinn, OR, USA. DeepFlowVeriosn 1.0.1 was evaluated in this study on
both leukemia and non-leukemic cases. The AI-assisted workflow consists of five major
analysis phases: (1) data validation, (2) population classification, (3) immune-phenotype
classification, (4) AI-assisted diagnosis, and (5) report generation. These five phases are
discussed in detail in below.

The data validation incorporates multiple machine learning models to extract nucle-
ated single cells from the raw MFC data, such as flow time stability screening, doublets
filtering, and debris removal, as shown in Figure 1. In the flow stability screening, the
algorithm checks the moving average (also called the rolling average or running average)
of the forward scattering signal and raises a warning message if there is an inconsistent
change in data acquisition, which indicates a sudden change in the flow, voltage, or other
experimental conditions. To filter out the doublets, a linear regression model obtains the
coordinates of the linear separator for single cells versus doublets in FSC-A and FSC-H. As
in the manual gating practice, the debris is characterized as the cell cluster at the lower
side on FSC-A in the FSC-A/SSC-A plot, as shown in Figure 1. An unsupervised learning
algorithm is used to cluster the cells, and a supervised learning model is used to identify
the debris cluster based on its MFI on FSC-A and SSC-A. The machine learning models
involved in the automatic data preparation were trained from 500 cases and validated in
another 227 cases [15].

In the population classification phase, a multidimensional density–phenotype cou-
pling (MDPC) algorithm specially developed for MFC data is applied on all of the nucleated
cell data. The algorithm considers all of the channels’ distributions and phenotypes at the
same time and automatically adjusts a cluster’s span according to the overall distribution.
Two main criteria are used to differentiate the cell populations: the cell distribution density
across all of the markers, and the marker expression phenotype on all of the markers (i.e.,
the MFI and relative expression level, respectively). The pervasive expression levels of
each channel are classified into five levels: bright, positive, partial, dim, and negative. A
new cell population will be created whenever these two criteria are met. At the end of
this phase, all of the nucleated cells are clustered into cell groups, each of which is given a
unique population ID. Considering that acute leukemia usually reaches above 20% in terms
of the abnormal cell percentage, the MDPC algorithm is optimized for large cell groups (5%
and above).

All of the cell clusters from the previous phase are classified in the population classifi-
cation phase. In this phase, a random forest classifier with bootstrap aggregating is built
for each tube. According to each tube’s specific antibody combinations, the AI models
can not only characterize five common categories (i.e., lymphocytes, monocytes, granu-
locytes, blasts, and nucleated red blood cells (NRBCs)) in each tube, but they can also
distinguish some subcategories, such as T-cells and B-cells, and identify blasts’ lineages.
Supplementary Table S1 shows the cell categories for each tube’s AI model alongside its
antibody combination. A cell cluster’s raw cell attributes are encoded into a cluster-level
feature vector including statistical parameters such as the MFI, standard deviation, and
distributions of each channel. Thus far, the AI model is used for tube-wise classification;
however, there are scenarios where the AI model cannot clearly categorize some of the
cell clusters without the antibody expression information from other tubes. Therefore, a
cross-tube match algorithm is employed to improve the accuracy of cell classification. For
the target cell cluster in one tube, the algorithm searches all of the cell clusters in another
tube and uses all of the shared channels to get the anchor features to find the best matched
cell clusters. With cross-tube antibody expression patterns, the integrated AI model can
identify most cell clusters.
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Figure 1. Workflow of MFC results.
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In the AI-assisted diagnosis phase, a diagnosis AI model gathers all of the previously
obtained information, affirms acute leukemia subtypes and negative cases, and raises
diagnostic warnings. The AI model adopts a boosted random forest algorithm and takes
the input of all of the categorized cell clusters, which are parameterized based on its ratio,
category, and phenotypes. For the normal cell clusters, such as lymphocytes, monocytes,
and granulocytes, the AI model examines and reports any unusual expression. The AI
model also analyzes the abnormal cell clusters, combines clusters with similar expressions,
computes the cell percentages, and diagnoses the acute leukemia’s subtype.

The report generation is the last phase of the AI-assisted workflow. Along with
the diagnosis, 2D scatterplots that reveal the intermediate results (e.g., doublets/debris
removal, cell clustering, and abnormity recognition) are automatically integrated into a
FCM diagnosis report in one PDF file, as shown in Figure 1. The pathologist can easily
evaluate and review each stage in the AI-assisted diagnostic workflow, and then decide to
accept, adjust, or reject the AI results. In addition to the 2D scatterplots, more graphic plot
options are also supported for visualizations of the cell population phenotype, including
t-distributed stochastic neighbor embedding (t-SNE) and heat maps, as shown in Figure 1.
The automatically generated FCM diagnosis report also includes quality control measures,
inspired by real-world scenarios such as unexpected signal shifts, ratio abnormities, and
flow instability. Moreover, quality-control indicators are checked at critical stages to ensure
that the automatic workflow runs under normal conditions; otherwise, it raises an alert of
possible manual interference.

2.4. Comparison of AI Results with Manual Results

The consistency analysis of AI results and manual results was carried out by kappa
analysis and Bland–Altman analysis. SPSS software was used for kappa analysis, and
Graphpad Prism 5 was used for Bland–Altman analysis.

2.5. Statistical Analysis

Statistical analysis was carried out by SPSS Statistics version 25 and Graphpad Prism
5. A two-tailed p value of less than 0.05 was considered to be statistically significant.

3. Results
3.1. Clinical Characteristics and Visualization of Results

The leukemia-positive group included 200 acute leukemia patients: 95 men and 105
women. The non-leukemic group included 44 men and 50 women. The non-leukemic
group included five patients with aplastic anemia and 94 patients with cytopenia(s) or
hematocytosis attributable to a variety of non-neoplastic conditions, including infection
(n = 23), postchemotherapy bone marrow suppression (n = 26), autoimmune cytopenia(s)
(n = 16), chronic renal insufficiency (n = 9), iron deficiency anemia (n = 6), and drug-induced
cytopenia(s) (n = 9). The mean age of the leukemia-positive group and non-leukemic group
was 43.12 ± 11.05 and 39.59 ± 9.18 (years), respectively. The sex and age between the
leukemia patients and non-leukemic-patients had no statistically significant difference
(p > 0.05).

The AI-assisted workflow is illustrated in Figure 2. The representative scatter diagram,
heat map, and TSNE plot of leukemia patients and non-leukemic cases are shown in
Figures 3 and 4.
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Figure 2. Output and visualization of the results.
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Figure 3. The representative scatter diagram, heat map, and TSNE plot of the patient. (A) Scatter
diagram; (B) heat map; and (C) TSNE heat map.
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Figure 4. The representative scatter diagram, heat map, and TSNE plot of normal control. (A) Scatter
diagram; (B) heat map; and (C) TSNE heat map.

3.2. Comparison of Diagnostic Results

First, we compared the consistency of the diagnostic results by AI and manual results.
The consistencies of the non-leukemic, AML, B-ALL, and T-ALL cases were 1, 0.971, 0.981,
and 0.778, respectively. Moreover, the total consistency was 0.976 (Table 1). The kappa (K)
value was 0.963, which indicates that the diagnostic results of AI had good consistency with
that of the manual results. Further, the AI analysis time (83.72 ± 23.90 s, mean ± SD) was
distinctly shorter than the mean time in the manual results (15.64 ± 7.16 min, mean ± SD).
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Table 1. Comparison of diagnostic results.

Manual
AI

AML B-ALL Normal T-ALL Abnormal Total Consistency

AML 134 0 0 0 4 138 0.971

B-ALL 0 52 0 0 1 53 0.981

T-ALL 0 0 0 7 2 9 0.778

Normal 0 0 94 0 0 94 1.000

Total 134 52 94 7 7 294 0.976

abnor-1_manual abnor-1_AI

abnor-
1_manual 1 0.913 **

abnor-1_AI 0.913 ** 1

**: p < 0.01.

3.3. Comparison of Abnormal Cell Proportion

The abnormal cell proportions of the AI and manual results were 64.487 ± 23.36 and
62.973 ± 22.693, respectively. As shown in Table 1, the Pearson correlation coefficient was
0.913 (p < 0.04), which indicates that the abnormal cell proportion of AI and manual results
had significant correlation. As shown in Figure 5, Bland-Altman was used to evaluate the
abnormal cell proportion between the AI analysis and manual analysis results. The bias
± SD was 0.752 ± 6.646, and the 95% limit of agreement was from −12.775 to 13.779. The
paired t test showed that the abnormal cell proportion between AI analysis and manual
analysis was not significantly different (p = 0.1225).

Bland-Altman of Data 1:Difference vs average

50 10
0

15
0

-40

-20

0

20

40

60

Average

D
iff

er
en

ce

Figure 5. The evaluation of the abnormal cell proportion. The bias ± SD was 0.752 ± 6.646, and the
95% limit of agreement was from −12.775 to 13.779.

3.4. Comparison of AI Immunophenotypic Diagnosis and Manual Results

As shown in Table 2, the antigenic feature of the neoplastic cells and the expression
levels were used in this comparison. The total consistency of the AI cell phenotypic
diagnosis and manual results was 0.889 (kappa, 0.775), which indicates that the AI cell
immunophenotypic diagnosis and manual results had good consistency.
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Table 2. Comparison of AI cell phenotypic diagnosis and artificial results.

Manual-
AI

Pos-
Pos

Pos-
Neg

Pos-
Partial

Partial-
Pos

Partial-
Partial

Partial
-Neg

Neg-
Pos

Neg-
Partial

Neg-
Neg Total Consistency Kappa

(K)

HLD-DR 115 9 0 11 21 1 0 4 39 200 0.875 0.768
CD117 61 7 0 22 35 3 0 6 66 200 0.81 0.713
CD34 90 3 0 10 40 2 0 5 50 200 0.9 0.842
CD38 135 35 0 7 18 2 0 1 2 200 0.775 0.375
CD16 0 0 0 0 3 1 0 1 195 200 0.99 0.745

CD11b 2 1 0 2 10 17 0 3 165 200 0.885 0.489
CD13 63 3 0 25 51 2 0 20 36 200 0.75 0.612
CD33 84 4 0 22 40 6 0 7 37 200 0.805 0.692
CD15 5 4 0 2 20 25 0 3 141 200 0.83 0.539
CD64 15 3 0 12 26 9 0 12 123 200 0.82 0.636
CD14 0 0 0 1 0 5 0 0 194 200 0.97 0.139
CD5 3 2 0 0 1 4 0 2 188 200 0.96 0.54

CD10 43 0 0 3 4 0 0 3 147 200 0.97 0.925
CD22 31 6 0 2 14 2 0 8 137 200 0.91 0.801
CD20 10 3 0 3 13 6 0 5 160 200 0.915 0.716
CD19 49 1 0 1 10 0 0 20 119 200 0.89 0.787
CD7 17 11 0 3 18 4 0 3 144 200 0.895 0.751
CD2 4 2 0 0 2 6 0 1 185 200 0.955 0.592

CD56 6 1 0 3 16 8 0 1 165 200 0.935 0.758
CD3 0 1 0 0 2 2 0 0 195 200 0.985 0.619
CD4 6 1 0 4 13 23 0 12 141 200 0.8 0.42
CD8 3 0 0 0 7 3 0 2 185 200 0.975 0.789
MPO 46 2 0 17 28 7 0 12 88 200 0.81 0.7

CD79a 28 9 0 3 13 1 0 19 127 200 0.84 0.671
cCD3 3 3 0 0 2 1 0 1 190 200 0.975 0.713
Total 819 111 0 153 407 140 0 151 3219 5000 0.889 0.775

4. Discussion

MFC plays a crucial role in the diagnosis of acute leukemia. In the past decade, many
machine learning attempts have made been to solve the flow cytometry data analysis
problem. Most machine learning applications in MFC data focus on the biomedical re-
search field, but an AI solution for clinical flow cytometry application is still lacking for
several reasons.

First, the motivation of the research flow cytometry is to be innovative, which pushes
the continuous trial of different panel designs with constant changes in reagents in a small
batch of samples [16,17]. In contrast, in the clinical practice of flow cytometry, the priority
is safety and efficacy [18,19], so many clinical flow cytometry labs perform MFC tests with
a focus on stable panels with proven records and a fast turnaround time. Additionally,
research-driven flow cytometry is funded by research grants, so time and cost factors are
not as critical as those in the clinical world, where turnaround time and economics are the
lab manager’s highest priorities. Many clustering algorithms like T-SNE have flourished in
research, but are seldom used in clinical scenarios owing to the slow performance caused by
the iterative nature of the t-SNE algorithm [20,21]. It takes hours or even days to do T-SNE
with million-event MRD MFC data, which is usually unacceptable in clinical practice [22].

Second, most published AI attempts in the flow cytometry field have been based on
an end-to-end black-box approach, which lack the human understandable intermediate
diagnosis results, and clinical practitioners have found them to be difficult to review and
validate [23,24]. Therefore, there is still a strong need for an AI flow cytometry solution
with human-explainable results and intermediate steps.

In our study, we established an AI model to analyze the data of MFC, which can
assist examiners in making a diagnosis of leukemia. Our results show that the AI model
could quickly detect abnormal cell proportion and cell phenotype to obtain the diagnostic
results. Comparably, the consistency of diagnostic results between AI analysis and manual
analysis was high. Seven cases were manually diagnosed as leukemia (four AML and two
T-ALL, including one early T-cell precursor leukemia and one B-ALL). In contrast, AI only
found abnormal blasts and raised a prompt for manual review. These cases were not easily
diagnosable cases. All four AML cases were MPO negative and cross-expressed lymphoid
antigens such as CD7 or/and CD56. Moreover, in the three ALL cases, the expression
of the lymphoid-lineage-specific marker such as cCD3 or CD79a was dim, and myeloid
antigens such as CD13 or/and CD33 were cross-expressed. Actually, the correct diagnosis
of such cases is challenging for tyro. In this situation, AI did give abnormal-diagnosis hints,
indicating that further manual review was needed. Of course, in the future, with a larger
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training set containing more atypical phenotypes, AI can be used to make a more definitive
diagnosis, even for less common cases. Moreover, the detection of abnormal cell percentage
and MFI results were also in close numerical range.

The average time of the manual analysis of each sample FCM assay test was about 15 min
by experienced examiners; the analysis speed of the AI model (83.72 ± 23.90 s, mean ± SD)
was 10 times faster than that of traditional manual analysis. In addition, AI analysis signifi-
cantly reduced the error of entry and calculation introduced by manual analysis.

As shown in Supplementary Table S2, the difference of the abnormal cell proportion
between AI analysis and manual analysis beyond 20% was 12 patients, including nine more
manual analysis patients and three more AI analysis patients. The cause of the higher AI
proportion may be that AI misdiagnosed some granulocytes/monocytes as abnormal cells.
On the contrary, the cause of a higher manual analysis proportion may be that AI was too
sensitive to some unclassified cells that needed to be analyzed manually. However, the
Pearson correlation coefficient of cell proportion was 0.913 (p < 0.04), which indicates a
good correlation of the AI model and manual analysis.

As shown in Table 2, the immunophenotypic diagnostic consistency between AI
and manual analysis ranged from 0.75–0.99 (Kappa (K) range: 0.139–0.925). The total
consistency of AI cell phenotypic diagnosis and manual results was 0.889 (kappa, 0.775),
which indicates that AI cell phenotypic diagnosis and manual results had good consistency.
Moreover, the final diagnostic results between the AI model and manual analysis had good
consistency (total consistency: 0.976; kappa (K): 0.963).

We investigated the potential for using the AI-assisted methodology to help patholo-
gists identify abnormal cell populations faster and more objectively. This study focused on
acute leukemia cases. More flow cytometry panels (including B-ALL MRD, AML MRD,
and B-Cell Lymphoma) will be included in future research to test the generalization ability
of the AI methodology for flow cytometry. Further validation will be made by testing
the AI methodology on the variant FCM panels from different laboratories. As flow cy-
tometry is highly customized in panel design, AI can help standardize the hematology
diagnosis in flow cytometry. The AI model established in this study is mainly based on
clustering, classification, and dimension-reduction algorithms. In the future, we will try
to use the method of a convolutional neural network [25] to more effectively detect acute
leukemia cells, reduce false positives, and improve the accuracy of AI-assisted diagnosis of
acute leukemia.

In summary, a clinic-orientated AI-assisted diagnosis workflow was validated to
perform automatic data analysis with not only the final diagnostic results, but also human-
understandable and editable intermediate steps. Specifically, the AI-assisted diagnostic
system adopts customized machine learning algorithms for all of the clinical MFC anal-
ysis stages, and each step produces intermediate human-readable results that follow the
same diagnosis logic in the manual analysis workflow. Therefore, a pathologist can easily
understand and evaluate the AI-generated results. Moreover, the AI-assisted workflow
supports interactive editing in each step, where the pathologist can decide to accept or
adjust the results. This provides extra flexibility so that AI can adaptively learn each pathol-
ogist’s personal preferences in the gating and diagnosis process. AI-assisted automated
MFC analysis is promising in leukemia diagnosis, and it is more rapid and effective. In
addition, it can be integrated with other test findings, such as morphological, cytogenetic,
and molecular abnormalities, to diagnose and stratify the prognosis of acute leukemia.
Although its clinical application still needs to be further validated, this scalable system can
be used as the basis for a clinical decision-making support system.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics12040827/s1, Table S1: Cell Category vs. Tube Antigen;
Table S2: Abnormal cell proportion of AI and manual (difference > 20%).

https://www.mdpi.com/article/10.3390/diagnostics12040827/s1
https://www.mdpi.com/article/10.3390/diagnostics12040827/s1
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