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Abstract: Apple tree canker induced by Valsa mali is a vital disease in apple production around the
world, and it highlyimpacts the development of apple industry. It is of great significance to study
the inhibition effect of common fungicides and develop new fungistats for comprehensive control of
apple tree canker. In this experiment, the inhibition activity of five fungicides, including mancozeb,
metalaxyl, iprodione, prochloraz, and difenoconazole along with biosynthesized nanosilver against
V. mali, were measured with the mycelium growth rate and agar well diffusion methods. The results
showed that iprodione exhibited the best inhibitory effect, the median inhibition concentration (IC50)
of iprodione and nanosilver was 0.62 µg.mL−1 and 45.50 µg.mL−1, the suppression rate achieved
67.93% at 200 µg.mL−1 of nanosilver. Moreover, a remarkable additive and synergistic antimicrobial
effect was verified when silver nanoparticles were conjugated with iprodione at 9:1, 8:2, 7:3, and 6:4
(v/v), and the toxicity ratio was 1.04, 1.13, 1.01, and 0.98, respectively. It is proven that biosynthesized
silver nanoparticles could effectively inhibit Valsa mali, and it is possible to develop and screen silver
nanoparticle-based nano pesticides to manage plant diseases synthetically.

Keywords: silver nanoparticles; synergetic antimicrobial effect; iprodione; Valsa mali

1. Introduction

The apple tree canker induced by Valsa mali is the most devastating disease of the
apple tree, and it is a great threat to the global apple industry [1,2]. Researchers have made
a huge effort to decrease its hazards, and chemical control was proved to be the most direct
and frequently used among these strategies. Chemical fungicides such as asomate [3],
benzamide derivatives [4], thiosemicarbazide derivatives [5], and coumarin derivatives [6]
were applied for a long time. However, there exist increasing concerns in consideration of
the adverse effects caused by chemical fungicides, such as resistance, residue, resurgence,
environment pollution, and so on [7]. In addition, the pathogen of V. mali can extensively
penetrate into the host’s phloem and xylem, and it is difficult for traditional chemical
agents to access [8], so more environmentally friendly and efficient novel approaches like
biocontrol and other ones need to be developed.

Biocontrol agents have been reported to resolve such problems induced by chemi-
cal fungicides. Tobacco cembranoids separated from tobacco flower extract can destroy
the endometrial structure of the fungus of V. mali, and it could be totally inhibited at
80 µg.mL−1, and the EC50 value was 13.18 µg.mL−1 [9]. Trichoderma longibrachiatum T6
exhibited significant antifungal effect against V. mali, the inhibitory rate achieved 95% after
5 days’ incubation, and the main mechanism should be the secondary metabolites with
effective bioactive substance [10]. Bacillus velezensis D4 showed high efficacy on V. mali, it
could suppress the mycelial growth, and cause hyphal damage [11]. Although biocontrol
agents exhibit lower toxicity and wider source compared with chemical fungicides, several
disadvantages such as poor stability, environmental sensitivity, and high cost have been
increasingly emerging. It is urgent to develop novel approaches to resolve such problems.
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Fortunately, versatile nanotechnology has emerged and infiltrated in multiple areas in-
cluding drug delivery, optics, chemistry, biology, etc. Extremely fine nanomaterials exhibit
unique and distinguished properties compared with their bulk counterparts [12–15]. There
are three main approaches from physics, chemistry, and biology to synthesize nanomate-
rials. Synthesis of metal nanomaterials such as Silver, CuO, etc., were reported by Yi [16]
and Khatami [17]. Application of some nonmetallic nanomaterials including polymeric,
lipid, etc., were summarized by Zazo [18] and Rajwade [19]. In addition, many other
single [20–24] and compound [25–27] nanomaterials were also synthesized and applied by
different researchers. Silver nanoparticles stand out from these nanomaterials owing to
their prominent inhibition activity against various pathogens. A large number of living
bodies such as microorganisms [28–31] and plant tissues [32–35] were used to biosynthesize
silver nanoparticles, and their antimicrobial effects against different pathogens were also
determined by researchers. Because of the adverse influences caused by chemical agents, it
is urgent to decrease their dosage without reducing inhibition efficiency. It was reported
that silver nanoparticles could be combined with antibiotics [36–38] and fungicides [39–41]
to achieve synergistic antibacterial and antifungal effect against general pathogens; more-
over, the conjugations could even show excellent synergistic activity against multi-drug
resistant strain [42,43].

In this report, the sensitivity of V. mali to five general fungicides was determined, and
the most sensitive fungicide was identified: it will provide a reference for field disease
control. A traditional Chinese herbal medicine called Trachycarpus fortunei that has the
effect of astringency and hemostasis was applied to synthesize silver nanoparticles for
the first time. Green synthesis of nanoparticles based on plant tissues expresses several
advantages such as abundant raw materials, low synthetic cost, low energy, and no external
additives compared with traditional physical and chemical approaches. Moreover, it also
can reduce synthesis time compared with biosynthesis by microorganisms. As far as we
know, it is the first time to apply mycelium growth and agar well diffusion methods to
evaluate the antifungal activity of biosynthesized silver nanoparticles against V. mali, and
the synergistic antifungal effect of silver nanoparticles and iprodione were also conducted.
The results would provide a novel approach to integrative control of V. mali, and it also
has important significance for decreasing dosage of chemical pesticides and enhancing
inhibitory efficiency.

2. Materials and Methods
2.1. Fungicides and Isolate

T. fortune leaves (Fengyang, China), V. mali (Fengyang, China), and AgNO3 (Sinopharm
Chemical Reagent Co., Ltd., Shanghai, China) were preserved at plant protection laboratory,
Anhui Science and Technology University. The concentration of five fungicides is illustrated
in Table 1.

Table 1. Fungicides and their concentrations.

Fungicide Concentration Gradient (µg·mL−1) Manufacturer

mancozeb 96% TC 5.0, 10.0, 20.0, 50.0, 100.0 Limin Chemical Co. LTD, Xinyi, China
metalaxyl 97% TC 0.05, 0.2, 0.5, 2.0, 5.0 Yifan Biotechnology Group Co. LTD, Wenzhou, China
iprodione 96% TC 0.05, 0.2, 0.5, 2.0, 5.0 Jiangxi Heyi Chemical Co., LTD, Jiujiang, China
prochloraz 97% TC 0.05, 0.2, 0.5, 2.0, 5.0 Jiangsu Yunfan Chemical Co., LTD, Qidong, China

difenoconazole 95% TC 10.0, 20.0, 50.0, 100.0, 200.0 Limin Chemical Co. LTD, Xinyi, China

2.2. Determination of Fungicides Sensitivity against V. mali

The stock solution of five fungicides was 10 mg.mL−1, a concentration gradient that
containedPDA (Potato dextrose agar, Sinopharm Chemical Reagent Co., Ltd., Shanghai,
China) plate is shown in Table 1. Blocks of V. mali were drilled by a sterile hole puncher
(ϕ = 8 mm) from fungus cultured for seven days. A strain disk was transferred in the
middle of each fungicide contained PDA plate, the plates that contained sterile water were
set as control, then incubated at 28 ◦C for 5–7 d.
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2.3. Biosynthesis and Characterization of Nanoparticles

About 100 mL deionized water was combined with 10 g T. fortunei dry leaf powders,
which was heated at 100 ◦C for 20 min. The plant extract was filtrated by a millipore
filter (ϕ = 0.22 µm). For green synthesis of silver nanoparticles, 5 mL leaf filtrate and
1 mmol. L−1 AgNO3 were added to deionized water, the process of heating at 80 ◦C did not
stopped until the color changed. UV-vis spectroscopy, TEM, XRD, and AFM were adopted
to characterize synthesized nanoparticles.

2.4. Fungus Growth Influence

About 5 mL silver nanoparticles and sterile water were added to 45 mL PDA medium
to make the concentration of nanoparticles was 10, 25, 50, 100, and 200 µg.mL−1, respec-
tively. PDA medium with 5 mL sterile water was set as control. A strain block (ϕ = 8 mm)
was transferred to the center of each PDA medium, then incubated at 28 ◦C for 7 d. Inhibi-
tion rate was calculated by the following equation.

Inhibition rate (%) = [(ϕcontrol colony − ϕtreatment colony)/(ϕcontrol colony − ϕfungus block)] × 100%

2.5. Inhibition Zone Measurement

About 0.1 mL conidia suspension of V. mali was spread on PDA medium. Agar wells
were made and equally distributed on it. Afterwards, 30 µL different concentrations (2
and 5 µg.mL−1) of iprodione and silver nanoparticles (100 and 200 µg.mL−1) were dripped
into the wells, and sterile water (30 µL) was set as control. Inhibition zone diameter was
obtained after 48–72 h.

2.6. Leakage of DNA and Protein

The antifungal activity of silver nanoparticles against V. mali was also measured
in terms of leakage of DNA and protein referred to previous reports [20,44]. The spore
suspension was prepared as above and silver nanoparticles were mixed at the concentration
of 0, 10, 25, 50, 100, and 200 µg.mL−1. After incubating at 28 ◦C for 48 h, the leakage of
DNA and protein contents from V. mali were measured by assaying absorbance at 260 nm
(A260) and 280 nm (A280) through UV-vis spectrometer.

2.7. Synergistic Inhibition Effect of Silver Nanoparticles and Iprodione

The IC50 of nanoparticles and iprodione was determined by colony growth inhibition
method. The proportion of the two was 0:10, 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1, and 10:0
(v/v), respectively. The synergistic effect assessment (toxicity ratio) of silver nanoparticles
and iprodione was counted by the reference [41].

3. Results
3.1. Sensitivity of Fungicides against V. mali

The toxicity of five fungicides against V. mali showed a significant difference (Table 2),
the IC50 was in the range of 0.62–54.71 µg.mL−1, and the 95% confidence limit was between
0.39 and 85.83 µg.mL−1. Iprodione, peochloraz, and difenoconazole were identified as
highly sensitive fungicides; however, mancozeb and metalaxyl were identified as insensitive
ones. The result will provide guidance for choosing efficient fungicide to inhibit V. mali.
Therefore, the most sensitive fungicide of iprodione was chosen to conjugate with silver
nanoparticles to determine their synergistic activity.
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Table 2. Sensitivity of five fungicides against V.mali.

Fungicide Toxicity Regression IC50 (µg·mL−1) 95% Confidence Limit (µg·mL−1) R2

mancozeb y = 1.26880x + 2.10396 45.52 34.09–66.62 0.708
iprodione y = 0.75206 − 0.15605 0.62 0.39–0.99 0.856
prochloraz y = 0.92575x − 0.00364 0.99 0.69–1.50 0.937
metalaxyl y = 0.67065x + 1.16562 54.71 34.56–85.83 0.984

difenoconazole y = 0.66464x − 0.18641 1.90 1.13–4.09 0.775

3.2. Biosynthesis of Silver Nanoparticles

The solution contained T. fortune leaf filtrate and AgNO3 changed into dark brown
after heating at 80 ◦C for 15 min (Figure 1b), while it kept light yellow as there was no
AgNO3 in the leaf extract (Figure 1a). A strong signal appeared at 462 nm scanned by UV-
vis spectroscope, indicating the characteristic absorption peak of silver nanoparticles [45,46]
that is different from leaf extract or AgNO3 alone (Figure 1c).
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Figure 1. Green synthesis of silver nanoparticles by T. fortunei leaf extract. (a) leaf filtrate without
AgNO3; (b) leaf filtrate with AgNO3; (c) UV-vis absorption spectrum.

3.3. Characterization
3.3.1. TEM Analysis

May kinds of plants were used to biosynthesize silver nanoparticles, and the mor-
phology of synthesized nanoparticles varied, the most common one was spherical or near
spherical. As shown in Figure 2a, nanoparticles that synthesized by T. fortunei leaf extract
were polygonal or irregular in shape, the reasons that caused this variance could be differ-
ent plant species, varied synthesis parameters, etc. The particle diameter was between 27
and 223 nm, and the average diameter was about 88 nm (Figure 2b).

Materials 2022, 15, x FOR PEER REVIEW 5 of 11 
 

 

 

Figure 2. TEM image (a) and size distribution (b) of silver nanoparticles. 

3.3.2. XRD Measurement 

Figure 3 showed the XRD pattern of synthesized silver nanoparticles, it indicates the 

existence of silver with a monoclinic crystalline system. The 2θ values of 22.24°, 27.56°, 

28.06°, 29.96°, 42.28°, 46.36°, and 49.30° on it might be classified as the silver faces of (111), 

(200), and (220) [47], the 2θ value of 73.08° might belonged to (420) plane [48]. 

 

Figure 3. XRD pattern of silver nanoparticles. 

3.3.3. AFM Analysis 

The specific morphological characteristic of the biosynthesized silver nanoparticles 

was detected by AFM. The particles deposited on the substrate dispersed well (Figure 

4a), and the 3D topographic image was also presented as Figure 4b. 

 

Figure 2. TEM image (a) and size distribution (b) of silver nanoparticles.



Materials 2022, 15, 5147 5 of 10

3.3.2. XRD Measurement

Figure 3 showed the XRD pattern of synthesized silver nanoparticles, it indicates the
existence of silver with a monoclinic crystalline system. The 2θ values of 22.24◦, 27.56◦,
28.06◦, 29.96◦, 42.28◦, 46.36◦, and 49.30◦ on it might be classified as the silver faces of (111),
(200), and (220) [47], the 2θ value of 73.08◦ might belonged to (420) plane [48].
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3.3.3. AFM Analysis

The specific morphological characteristic of the biosynthesized silver nanoparticles
was detected by AFM. The particles deposited on the substrate dispersed well (Figure 4a),
and the 3D topographic image was also presented as Figure 4b.
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image (b) of silver nanoparticles.

3.4. Antifungal Activity of Silver Nanoparticles
3.4.1. Colony Growth Inhibition

Various concentrations of silver nanoparticles displayed obvious inhibition effects
against V. mali and they were positively correlated with the concentration. As shown
in Figure 5, the diameter of control was 9.0 cm, the IC50 of silver nanoparticles was
45.5 µg.mL−1, the 95% confidence limit was in the range of 12.47–140.75 µg.mL−1, when
the concentration of silver nanoparticles enhanced to 200 µg.mL−1, it achieved its minimum
value of 3.43 cm, and the inhibition rate was 67.93%.
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3.4.2. Inhibition Zone Diameter

The inhibition zone diameter was determined by the agar well diffusion approach.
Table 3 showed that inhibition zone diameter varied with different fungisats and concentra-
tions. For the control, no inhibition zone appeared near the agar well, while for iprodione
and silver nanoparticles, an obvious inhibition zone was created near the agar wells. When
the concentration of iprodione enhanced from 2 to 5 µg.mL−1, the diameter enlarged from
18.50 ± 1.81 to 22.30 ± 2.02 mm. When the concentration of silver nanoparticles increased
from 100 to 200 µg.mL−1, it enlarged from 10.80 ± 1.13 to 12.50 ± 1.22 mm.

Table 3. Inhibition zone diameter of iprodione and silver nanoparticles.

Fungistat Concentration (µg·mL−1) Inhibition Zone Diameter (mm)

sterile water / 0.00 ± 0.00
iprodione 2 18.50 ± 1.81
iprodione 5 22.30 ± 2.02

silvernanoparticles 100 10.80 ± 1.13
silvernanoparticles 200 12.50 ± 1.22

3.4.3. Determination of the Leakage of DNA and Protein

DNA and protein are two important materials in any living body. Exogenous biotic
or abiotic stresses, such as pathogens, insects, drought, salt, and so forth, can affect these
materials. Figure 6 shows that the leakage of both DNA and protein increased dramatically
with the increasing concentration of silver nanoparticles. For the leakage of DNA, the initial
absorption at 260 nm (OD260) of the control was 0.47. When the concentration of silver
nanoparticles increased from 10 to 200 µg.mL−1, the absorption was in the range of 0.79 and
1.49; the maximum was 3.17 times more than that of the control. For the leakage of protein,
the initial absorption at 280 nm (OD280) of the control was 1.04. It reached 3.07 when the
concentration of silver nanoparticles was 200 µg.mL−1, which was 2.95 times more than
that of the control. It showed that the cell membrane of V. mali was interrupted by different
concentrations of silver nanoparticles, and the degree of leakage had a positive correlation
with the concentration of these nanoparticles. The results were similar to previous reports
in which silver nanoparticles were applied to treat Fusarium graminearum [20], and CS-Mg
nanocomposite was applied to treat Acidovorax oryzae and Rhizoctonia solani [44].
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3.4.4. Synergistic Antimicrobial Effect of Silver Nanoparticles Conjugated with Iprodione

The synergistic effect of biosynthesized silver nanoparticles conjugated with iprodione
is shown in Table 4. The obvious synergistic antifungal activity appeared at 9:1 and 8:2,
and the toxicity ratio achieved 1.04 and 1.13, respectively. The additive activity appeared at
7:3 and 6:4, and the toxicity ratio was 1.01 and 0.98. However, at other volume ratios, an
antagonistic effect occurred.

Table 4. Toxicity ratio of nanosilver and iprodione against V. mali.

Volume
Ratio

Actual Inhibition
Rate (%)

Theoretical
Inhibition
Rate (%)

Toxicity
Ratio

10:0 50.83 50.83 1.00
9:1 53.33 51.25 1.04
8:2 58.33 51.67 1.13
7:3 52.67 52.08 1.01
6:4 51.67 52.50 0.98
5:5 50.00 52.92 0.94
4:6 46.67 53.33 0.88
3:7 43.83 53.75 0.82
2:8 40.50 54.17 0.75
1:9 50.00 54.58 0.92
0:1 55.00 55.00 1.00

4. Discussion

V. mali is a vital pathogen that causes enormous loss to apple industry. Although
conventional chemical management inhibits it effectively, environmental pollution and
agricultural product safety are particularly worrying [3,5,7]. With the strengthening of en-
vironmental safety awareness, more and more researchers turn their attention to biological
control, multiple plant extract, biocontrol bacterium, biocontrol fungi were screened [9,11].
There is no doubt that biocontrol agents have advantages such as being eco-friendly and
widely-sourced compared with chemical pesticides; however, several drawbacks such as
low inhibition efficiency, high cost, and instability have come into being. As a result, more
novel, higher efficient, more stable fungistats urgently need to be explored

Nanomaterials that possess unique chemical, physical, biological, and electronical
characteristics could resolve such problems [13,17]. In recent years, many kinds of living
bodies were used to synthesize nanoparticles through the biological approach, such as
Conyza Canadensis [16], Stachys lavandulifolia [17], Fusarium chlamydosporum and Penicil-
lium chrysogenum [20], Klebsiella pneumonia [31], etc. The morphology of these synthesized
nanoparticles was near round or spherical, which are similar to our result. Such synthe-
sized nanoparticles were also applied in the fields of cell cytotoxic or pathogen inhibition.
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Sarani et al., confirmed that biosynthesized α-Bi2O3 NPs, Mn-doped and Zn-doped Bi2O3
NPs showed potent cytotoxic effect against breast cancer (MCF-7) and human umbilical
vein endothelial (HUVEC) cells [27]. Silver nanoparticles synthesized by a green approach
expressed 50% higher antibacterial effect against foodborne pathogens compared with
untreated sample [32]. Dhara et al. compared the antimicrobial activity of biosynthesized
and chemically synthesized silver nanoparticles; the results showed that biosynthesized
ones possess better antibacterial effects than the chemical ones against both Gram-positive
and the Gram-negative bacteria [34]. For our experiment, the antimicrobial activity of
silver nanoparticles synthesized by T. fortunei leaf extract was not quite the same compared
with previous reports. It is concluded that antimicrobial effect of the same nanoparticles
synthesized through the same approach or not varied against different pathogens, or dif-
ferent nanoparticles exhibited diverse antimicrobial activity against the same pathogen.
The biosynthesis process of silver nanoparticles by T. fortunei leaf spent less time, and such
synthesized nanoparticles exhibited multidimensional antifungal activity against V. mali,
which showed more advantages compared with traditional inhibition approaches.

Under the new situation, increasing numbers of scholars appealed for a reduction in
the dosage of chemical pesticides to improve environment quality and agricultural product
safety. Hwang et al. confirmed the synergistic antibacterial effect of silver nanopartiles
and three antibiotics such as ampicilin, chloramphenicol, and kanamycin against differ-
ent pathogenic bacteria [36]. The conjugation of biosynthesized silver nanoparticles and
Imipenem showed higher antibacterial effect against Serratia fonticola and Pantoea sp. com-
pared with chemical synthesized nanoparticles [37]. The synergistic antibacterial effect
was proved when silver nanoparticles were combined with streptomycin sulfate against
Gram-negative and Gram-positive bacteria [38]. McShan et al. evaluated the synergistic
antibacterial effect of silver nanoparticles and tetracycline, neomycin, and penicillin against
multi-drug resistant bacterium Salmonella typhimurium DT104; the results showed that the
antimicrobial effect could be assisted by tetracycline, neomycin, while not by penicillin [42].
There were also some fungicides and antibiotics that combined with silver nanoparticles
to evaluate their synergistic activity, such as polyene antifungals against Candida parap-
silosis [39], echinocandin and azole fungicides against Candida albicans [40], epoxiconazole
against Setosphaeria turcica [41], fluconazole against Candida albicans [43]. The antifungal
activity of silver nanoparticles and iprodione were classified as three types at different
volume ratios, i.e., synergistic, additive, and antagonistic. The reason for that might be
different species of silver nanoparticles and fungicides, varied evaluation methods, and
so on.

5. Conclusions

In this research, iprodione was screened as the highest efficient chemical fungicides
to inhibit V. mali; it will provide a reference for control Apple tree canker. T. fortunei leaf
extract that has the effect of astringency and hemostasis can be used to biosynthesize silver
nanoparticles, and the antifungal effect of silver nanoparticles and synergistic antifungal
activity of silver nanoparticles and iprodione was determined for the first time. The results
showed that silver nanoparticles biosynthesized by T. fortunei can be used to suppress
this pathogen effectively. In addition, distinct synergistic activity exhibited when silver
nanoparticles conjugated with iprodione at certain volume ratios, which can be a candidate
to assist chemical fungicides to play their roles.
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