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Mammalian cells have evolved a unique strategy to protect themselves against oxidative damage induced by reactive oxygen species
(ROS). Especially, two transcription factors, nuclear factor erythroid 2p45-related factor 2 (Nrf2) and peroxisome proliferator-
activated receptor γ (PPARγ), have been shown to play key roles in establishing this cellular antioxidative defense system.
Recently, several researchers reported ameliorating effects of pharmacological activators for these Nrf2 and PPARγ pathways on
the progression of various metabolic disorders and drug-induced organ injuries by oxidative stress. In this review, general
features of Nrf2 and PPARγ pathways in the context of oxidative protection will be summarized first. Then, a number of
successful applications of natural and synthetic Nrf2 and PPARγ activators to the alleviation of pathological and drug-related
oxidative damage will be discussed later.

1. Reactive Oxygen Species and Human Diseases

Mammalian cells have evolved to utilize oxygen as a final
electron acceptor to support their energy metabolism in the
mitochondria. As a consequence, they need to deal with a
group of unwanted oxygenated byproducts, which are gener-
ated during this oxygen-dependent metabolic process. In
some cases, environmental stress such as UV or heat expo-
sure also has been attributed to their production. Due to their
detrimental nature, these oxygenated byproducts are collec-
tively referred to as highly reactive oxygen species (ROS).
Their typical examples include superoxide (O2

−), hydrogen
peroxide (H2O2), hydroxyl radical (OH

−), and singlet oxygen
[1]. A number of cellular metabolic enzymes, such as nicotin-
amide adenine dinucleotide phosphate (NADPH) oxidase,
xanthine oxidase, and nitric oxide synthase (NOS), have been
shown to be directly involved in ROS production [2].
Although a certain level of ROS is thought to be necessary
for efficient signaling in various cellular pathways [3, 4], most
of ROS are generally considered to be harmful due to their
damaging effects on essential building blocks of cellular
metabolism. For this reason, mammalian cells have devel-
oped multiple defense systems to work against this ROS-

mediated oxidative stress. One of these antioxidative defense
mechanisms is to create a highly reducing intracellular
environment to neutralize ROS reactivity before their attack
to cellular macromolecules [5].

A growing body of evidence strongly suggests an etiolog-
ical role of oxidative stress-associated inflammation and cell
death in the development of many human diseases [6–11].
Especially, oxidative damage has been intimately linked with
the pathogenesis of several chronic metabolic disorders such
diabetes, atherosclerosis, and hypercholesterolemia [12–14].
In addition, insufficient cellular protection against oxidative
stress also has been ascribed as another contributing factor
for developing various liver, kidney, brain, and skin diseases
[15–17]. On top of this, oxidative stress was even demon-
strated to play a major role in exhibiting many clinically
relevant side effects of various pharmacological agents.
Therefore, efficient reduction of oxidative stress through
activation of multiple antioxidative defense systems was
envisaged as a promising strategy to improve a wide range
of ROS-induced pathological conditions. Recently, several
research groups have published a series of encouraging data
suggesting effectiveness of combined use of pharmacological
activators for two critical antioxidative pathways. They
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involve two nuclear transcription factors, which are
nuclear factor erythroid 2p45-related factor 2 (Nrf2) and
peroxisome proliferator-activated receptor γ (PPARγ).
Stimulation of these two antioxidative pathways by various
pharmacological agents turned out to be extremely benefi-
cial for alleviating a variety of ROS-induced metabolic dis-
orders and drug-induced injuries. In this review, general
characteristics of Nrf2 and PPARγ pathways in the context
of oxidative protection will be summarized first. Then, a
number of successful applications of combined or separate
use of Nrf2 and PPARγ activators for amelioration of
pathological and drug-induced oxidative injuries will be
discussed later.

2. Nrf2 Pathway against Oxidative Stress

Nrf2 is by far the best characterized transcription factor with
an oxidant/electrophile-sensing capability [18]. It is a basic
leucine zipper protein with six conserved Nrf2-ECH homol-
ogy (Neh) domains [5]. Especially, ETGE and DLG motifs
located in the second Neh2 domain were shown to play a
critical role in its complex formation with another essential
component of this pathway, Kelch-like ECH-associated pro-
tein 1 (KEAP1) [19]. This Nrf2/KEAP1 complex formation
was demonstrated to be necessary for restraining the tran-
scriptional activity of Nrf2 [20]. In regard to its sensing
mechanism, KEAP1 acts as a main sensor molecule for oxi-
dative stress in this pathway. It is an adaptor protein for

cullin-3-based E3 ubiquitin ligase complex. Redox-sensitive
twenty-five cysteine residues of KEAP1 in its linker region
function as essential determinants for regulating its ubiquitin
ligase activity [21]. Conjugation of a variety of ROS-inducing
agents with these cysteine residues leads to inhibition of
KEAP1-mediated ubiquitination [22], resulting in stabiliza-
tion and nuclear translocation of Nrf2. Once transported
inside the nucleus, Nrf2 associates with one of small Maf
proteins and other coactivators to form a trimetric protein
complex. Then, this complex binds to the antioxidant
response elements (AREs) in the upstream promoter
regions of many cytoprotective and detoxifying genes for
their transcriptional activation (Figure 1). Typical examples
of Nrf2-regulated genes include γ-glutamyl cysteine ligase
(γ-GCL), NAD(P)H quinone oxidoreductase-1 (NQO-1),
glutathione S-transferase (GST), heme oxygenase-1 (HO-1),
uridine diphosphate (UDP) glucuronosyl transferase, super-
oxide dismutase (SOD), catalase (CAT), and glutathione
peroxidase-1 (GPX-1) [5, 23–28]. In addition to this
KEAP1-dependent mechanism, Nrf2 has been reported to
be regulated via a number of KEAP1-independent mecha-
nisms. They include transcriptional activation of Nrf2 gene
through aryl hydrocarbon receptor (AHR) and its nuclear
translocator (ARNT) binding to xenobiotic response ele-
ment (XRE) [29], transcriptional activation of Nrf2 target
genes through association of NF-κB with ARE, post tran-
scriptional regulation of Nrf2 mRNA with host micro-
RNAs [30, 31], post translational modification of Nrf2
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protein by phosphorylation [32, 33], acetylation [34, 35],
and ubiquitination [36], and association of Nrf2 protein
with novel binding partners [37, 38]. This seemingly com-
plicated transcriptional, epigenetic, and posttranslational
control of Nrf2 seems to be designed to fine-tune its anti-
oxidative activity upon redox perturbation in order to
minimize damaging effects of oxidative stress on cellular
metabolism [39].

3. PPARγ Pathway against Oxidative Stress

PPARs are the members of a subfamily of the nuclear
receptors and transcription factors. In general, they are
involved in the regulation of a wide range of cellular pro-
cesses such as differentiation, development, metabolism,
and even oncogenesis [40–43]. Originally, peroxisome pro-
liferators were found as genotoxic rodent carcinogens due
to their proliferative effects on peroxisomes in rats [2, 44,
45]. Interestingly, their peroxisome proliferative activity
turned out to be due to their oxidative DNA damage,
which was caused by leakage of H2O2 from peroxisomes
[44]. PPAR family genes comprise of three isoforms
including PPARα, PPARβ/δ, and PPARγ [46]. All three
subtypes of this PPAR subfamily were found to be highly
expressed in mammalian tissues, which were necessary
for energy homeostasis [47]. In regard to their signaling
mechanisms, once ligand-bound PPARs enter the nucleus,
they form a heterodimer with the retinoid X receptor
(RXR). Then, they bind to specific PPAR response elements
(PPREs) within the promoter region of PPAR-regulated
genes [48–50]. Depending on isoforms of PPARs, this
PPAR/RXR heterodimer recruits a large protein complex of
coactivators to activate the transcription of different sets of
PPAR target genes, ultimately leading to a unique physiolog-
ical outcome (Figure 1) [45].

From the pharmacological point of view, PPARγ has
been most extensively characterized as an antidiabetic target
[45, 51]. For this reason, it is often called “a glitazone recep-
tor.” In general, PPARγmodulates fatty acid storage and glu-
cose metabolism through stimulation of lipid uptake and
adipogenesis by PPARγ-regulated gene expression in fat cells
[51]. This was supported by an observation of very limited
generation of adipose tissue in PPARγ knockout mice [52].
In addition, PPARγ also has been responsible for pathogene-
sis of several metabolic and vascular diseases including
obesity, diabetes, and atherosclerosis [53–55]. Thanks to
their regulatory roles in lipid and carbohydrate metabolism,
PPARγ agonists have been widely used in the treatment
of hyperlipidemia and hyperglycemia [56, 57]. Although
PPARγ was initially regarded as a master regulator of
transcription in adipogenesis [58], it was also shown to play
additional roles in other biologically relevant processes such
as infection and inflammation. In particular, many literatures
identified PPARγ as a negative regulator of oxidative stress-
induced inflammation under either infectious or pathological
conditions [51, 59]. Detailed mechanistic studies also
revealed that PPARγ was indeed able to suppress inflamma-
tion by transcriptional repression of many well-characterized
proinflammatory transcription factors and enzymes such as

nuclear factor kappa B (NF-κB), signal transducer and acti-
vator of trancription-6 (STAT-6), and activator protein 1
(AP-1), cyclooxygenase-2 (COX-2), and induced nitric oxide
synthase (iNOS) [2, 48, 60–62]. Antioxidative function of
PPARγ was also reported to be mediated by transcriptional
activation of a number of several antioxidant genes such as
HO-1, CAT, GPX-3, and manganese superoxide dismutase
(MnSOD) through its direct association with PPREs of
their promoter regions [48, 49, 63]. For this reason, PPARγ
has emerged as a new target for anti-inflammatory and
antioxidative pharmacotherapy in many diseases, which
are adversely affected by oxidative stress and subsequent
inflammation [48, 51, 59].

4. Crosstalk between Nrf2 and PPARγ
Pathways against Oxidative Stress

Several studies have strongly suggested existence of recipro-
cal regulation of Nrf2 and PPARγ pathways to reinforce the
expression of one another [48, 61, 64]. In this sense, Nrf2
and PPARγ pathways seem to be connected by a positive
feedback loop, which maintains the expression of both tran-
scription factors and their target antioxidant genes in a
simultaneous manner. Then, what are known about molecu-
lar mechanisms for PPARγ regulation by Nrf2? Huang et al.
provided insight into this question by identifying PPARγ as a
direct target gene induced by Nrf2 transcriptional activation
[64]. In line with this finding, several other researchers also
reported direct binding of Nrf2 to newly identified AREs in
the regions of the PPARγ promoter by using gel shift and
coimmunoprecipitation assays (Figure 1) [48, 61, 64, 65]. In
their studies, ARE sequences located at −784/−764 and
−916 regions of the PPARγ promoter were found to be nec-
essary for Nrf2-regulated PPARγ expression. As supporting
evidence to this direct regulation of PPARγ by Nrf2 in vivo,
PPARγ expression was also found to be markedly lower in
Nrf2 knockout mice [64]. Other two studies also reported
severely compromised expression of PPARγ in Nrf2 null
mice and significantly reduced basal levels of PPARγ by
Nrf2 deletion [48, 61]. Then, what is the biological signifi-
cance of this positive regulation of PPARγ by Nrf2? It was
found that Nrf2-regulated PPARγ expression was required
for protection against acute lung injury in mice [65]. In this
report, PPARγ induction was found to be suppressed in
Nrf2-deficient mice in hyperoxia-susceptible manner [65].
This piece of evidence strongly suggests the requirement of
positive induction of PAPRγ by Nrf2 for the amelioration
of acute lung injury induced by hyperoxia. In addition,
RXR, another critical component of PPARγ pathway, also
turned out to be induced by activation of Nrf2 pathway by
using chromatin immunoprecipitation and sequencing
experiments [66]. These data further imply the presence of
another layer of positive regulation of PPARγ pathway by
Nrf2 (Figure 1).

Then, what is known about the opposite pattern of regu-
lation, which is the PPARγ action on Nrf2 pathway? So far,
several lines of evidence have raised the possibility of direct
involvement of PPARγ in the activation of Nrf2 pathway.
Chorley et al. found that PPARγ agonists were able to induce
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transcription of a set of antioxidative defense genes such as
GST, HO-1, and CD36 (Figure 1) [66]. Since these PPARγ-
regulated genes belong to a group of Nrf2-regulated genes,
this observation strongly suggests direct regulation of Nrf2
pathway by PPARγ. In support of this hypothesis, expression
of Nrf2 was also shown to be reduced by knockdown of
PPARγ in a mouse model [39]. Kvandova et al. even reported
the presence of putative PPREs in the promoter regions of
Nrf2 gene [2] (Figure 1). This finding further implies pos-
sibility of direct binding of PPARγ on Nrf2 promoter for
positive regulation of Nrf2 pathway. On the other hand,
collaborative action of both Nrf2 and PPARγ transcription
factors on a single target gene also seems to be plausible
since GST promoter was found to possess both ARE and
PPRE sequences to allow for simultaneous stimulation of its
transcription [2]. Therefore, concurrent activation of both
Nrf2 and PPARγ pathways by different combinations of
pharmacological agonists seems to be possible to achieve
the maximum levels of antioxidative state for full protection
against the harmful effects of ROS (Figure 1).

5. Pharmacological Targeting of Nrf2
and PPARγ Pathways

Many endeavors to pharmacologically manipulate Nrf2
and PPARγ pathways have been shown to be successful
in different kinds of in vitro as well as in vivo disease
models. In order to take full advantage of the collaborative
action of these two critical antioxidant pathways for allevia-
tion of ROS-induced damages in various metabolic diseases
and drug-induced injury, many researchers have tried to
apply several Nrf2 and PPARγ activators to various disease
models. So far, several metabolic diseases including athero-
sclerosis, diabetes mellitus, and hepatic and renal diseases
have been studied in order to test any beneficial effects of
these Nrf2 and PPARγ activators on their disease progres-
sion. From now on, therapeutic efficacies and toxicities of
various Nrf2 and PPARγ activators studied in these meta-
bolic disorders and some drug-induced organ injuries will
be summarized first (Table 1). In order to describe Nrf2
and PPARγ activators in a more systematic manner, they
were categorized as Nrf2 activator, PPARγ activators, and
dual Nrf2 and PPARγ activators based on their target
specificities. Additionally, PPARγ activators were further
classified as endogenous, synthetic, and natural PPARγ
activators based on their origins of synthesis.

5.1. Nrf2 Activator

5.1.1. Bardoxolone Methyl. Bardoxolone methyl (BARD) is
an orally available semisynthetic triterpenoid [67]. Its chem-
ical structure is based on the scaffold of oleanolic acid, a
naturally occurring pentacyclic triterpenoid. According to
preclinical studies, BARD was shown to activate Nrf2 path-
way for its antioxidant effect. It was also reported to inhibit
NF-κB pathway for its anti-inflammatory effect [68]. Wu
et al. found that BARD was able to ameliorate ischemic acute
kidney injury (AKI) through increased expression of Nrf2,
PPARγ, and HO-1 in the mouse model [69]. In this study,

BARD was able to exert its positive effect on PPARγ pathway
by enhancing the amount of PPARγmRNA and protein [69].
In regard to its mechanism of action, they found that BARD
was able to transcriptionally activate HO-1 gene during
ischemic AKI via Nrf2-independent manner. This finding
suggests that direct upregulation of HO-1 by PPARγ could
be the main mechanism of action for the reduction of AKI
by BARD. In spite of its impressive antioxidant activity,
BARD failed to pass the third phase clinical trial for the
treatment of chronic kidney disease due to a higher rate
of heart-related adverse events, including heart failure,
hospitalizations, and deaths [70].

5.1.2. Curcumin. Curcumin is a bright yellow plant-derived
chemical used as a food additive and supplement. It is a
well-known natural Nrf2 activator [71]. Olagnier et al. dis-
covered that several Nrf2 activators were able to upregulate
one of scavenger receptors, CD36, leading to the stimulation
of phagocytosis of Plasmodium falciparum, a causative path-
ogen for malaria, on human monocyte-derived macrophages
in inflammatory conditions [72]. In accordance with this
finding, curcumin was also able to increase phagocytosis of
Plasmodium falciparum through upregulation of CD36 sur-
face expression on monocytes/macrophages [73]. In this
study, seven putative AREs were identified in the promoter
region of CD36 gene, which explained mode of the tran-
scriptional activation of CD36 gene by curcumin. Inhibition
of curcumin-induced Nrf2 protein expression by a general
antioxidant molecule, N-acetyl cysteine treatment, resulted
in the loss of upregulation of CD36 by curcumin. This further
suggested direct involvement of ROS in the activation of
Nrf2 pathway by curcumin [73]. Interestingly, curcumin
was also able to increase the expression of PPARγ at tran-
scriptional and translational level [73]. This implies that
simultaneous activation of both Nrf2 and PPARγ pathways
by curcumin may play a role in upregulation of CD36, which
can lead to increased phagocytosis of Plasmodium falciparum
by macrophages.

5.2. Endogenous PPARγ Activators

5.2.1. 15-Deoxy-Δ12, 14-Prostaglandin J2. 15-Deoxy-Δ12, 14-
prostaglandin J2 (15d-PGJ2) is an electrophilic cyclopentene
prostaglandin. It was shown to act as an endogenous ligand
for PPARγ [74, 75]. Its highly reactive α, β-unsaturated car-
bonyl groups were shown to readily interact and make a
covalent bonding with cysteine thiol groups in the ligand-
binding domain of PPARγ [74]. 15d-PGJ2 was also demon-
strated to be able to increase Nrf2 expression via a PPARγ-
dependent manner [48]. Interestingly, cysteines of the linker
region of KEAP1 were also shown to be engaged in direct
binding of 15d-PGJ2 to KEAP1 [74]. In regard to mechanism
for its antioxidative activity, 15d-PGJ2 was shown to protect
neurons from homocysteic acid-induced oxidative death via
Nrf2-dependent and PPARγ-independent mechanisms
[75]. In this study, Nrf2 knockdown in astrocytes abrogated
15d-PGJ2’s neuroprotective effect. Under this Nrf2 knock-
down condition, 15d-PGJ2 was not able to facilitate induc-
tion of Nrf2 target genes. In contrast, knockdown of the
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PPARγ did not alter the neuroprotective activity of 15d-
PGJ2 [75]. Among many Nrf2-regulated genes, HO-1
turned out to play the most critical role in mediating the
antioxidative effect of 15d-PGJ2 [75]. Gong et al. also
reported protective activity of 15d-PGJ2 against oxidative
stress in RAW264.7 mouse macrophages. In this study,
they showed that attenuation of cell death by 15d-PGJ2
was due to its positive induction of the mouse HO-1 gene
[76]. More specifically, they found that 15d-PGJ2-induced
stabilization of Nrf2 was able to mediate transcriptional
activation of the mouse HO-1 through Nrf2 binding on
its enhancer region. However, this induction of mouse
HO-1 expression by 15d-PGJ2 again turned out to be
independent of PPARγ pathway [76].

5.2.2. Nitroalkene Fatty Acids. Nitroalkene fatty acids (NAs)
are naturally occurring electrophilic derivatives of unsatu-
rated fatty acids. NAs are formed via nitric oxide-
dependent oxidative reactions [77]. Bates et al. found that
NAs were able to form direct adduct with KEAP1, leading
to the activation of Nrf2 pathway. In this report, they
reported that NAs were able to display differential transacti-
vation activities toward Nrf2 and PPARγ pathways in a dose-
dependent manner [78]. Briefly, activation of PPARγ path-
way occurred at nanomolar concentrations of NAs in
MCF7 breast cancer cells. However, activation of Nrf2 path-
way occurred at much higher concentrations of NAs (≥3 μM)
[78]. Based on these results, they concluded that direct acti-
vation of PPARγ transcription by NAs would dominate over
their electrophilic activation of Nrf2 during antioxidant/pro-
tective responses [78]. Of note, both phosphatide 3-kinase
(PI3K) and protein kinase C (PKC) activations were also
shown to be required for transcriptional activation of Nrf2
and PPARγ pathways by NAs in this study [78].

5.2.3. Nitrated Fatty Acids. Endogenous nitrated fatty acids
(NFAs) are produced by nonenzymatic reaction of nitric
oxide or its inorganic reaction products with naturally pres-
ent unsaturated fatty acids [79]. NFAs can act as activating
ligands for all three PPARs, particularly with the greatest
potency as PPARγ agonists [80]. Reddy et al. found that a
nitro-oleic acid, one of the most potent NFAs, was able to
diminish severity of lipopolysaccharide- (LPS-) induced
acute lung injury in mice [80]. In regard to its mechanism
of action, they found that its protective effect against LPS-
induced inflammation was mediated by increased transcrip-
tional activity of PPARγ. They also showed that this upregu-
lation of PPARγ by a nitro-oleic acid led to subsequent
induction of Nrf2 and decreased transcription of the proin-
flammatory gene, NF-κB [80].

5.3. Synthetic PPARγ Activators. Thiazolidinedione (TZDs)
drugs are cognate ligands for PPARγ. They are frequently
used for the treatment of type 2 diabetes [45, 49]. TZDs drugs
are known to facilitate insulin-mediated adipocyte differenti-
ation by counteracting the negative effects of inflammatory
cytokines [81]. In general, TZDs drug treatment was shown
to decrease ROS production in vascular smooth muscle cells
[2]. Effects of three kinds of synthetic PPARγ activators on

oxidative stress-induced disease models have been examined
so far [50, 82–84]. They include rosiglitazone (RSG), troglita-
zone (TG) in combination with cyanidin, and arylidene-
thiazolidinedione. Here, their activities against oxidative
stress and mechanisms of action for these antioxidative activ-
ities will be discussed briefly.

5.3.1. Rosiglitazone. RSG is a member of the TDZs family and
a ligand for the PPARγ. Wang et al. found that RSG was able
to protect hepatocytes from high glucose-induced toxicity via
both PPARγ-dependent and PPARγ-independent manners
[50]. In this study, they found that RSG increased the expres-
sion of Nrf2 and HO-1 in a PPARγ-dependent manner, lead-
ing to the elimination of excessive ROS [50]. In addition, they
also found that the inhibitory effect of RSG on ROS genera-
tion was related with PKC inactivation. In line with this pos-
itive role of RSG in reduction of oxidative stress, Liu et al. also
reported that RSG was able to inhibit paraquat- (PQ-)
induced acute lung injury in rats [83]. In this study, they
found that protection of rats against PQ-induced acute lung
injury by RSG was mediated by activating both Nrf2 and
PPARγ pathways. They also showed that inhibition of NF-
κB activation by RSG was required for the alleviation of
PQ-induced acute lung injury [83].

5.3.2. Troglitazone with Cyanidin. Cyanidin is a natural
organic pigment found in many red berries. Shih et al.
reported that cyanidin in combination with TG was able to
prevent H2O2-induced cytotoxicity in human hepatoblas-
toma HepG2 and rat normal hepatocyte cells [84]. In this
study, they found that antioxidative activities of cyaniding
and TG were mediated through activation of mitogen-
activated protein kinase (MAPK) and Nrf2 pathways [84].
They also reported that cotreatment of cyanidin and TG
was able to transcriptionally upregulate expression of antiox-
idant and detoxifying genes through activation of ARE-
mediated Nrf2 pathway [84]. Based on these results, they
suggested simultaneous administration of cyanidin and
PPARγ agonists to reverse the metabolic dysfunction-
related oxidative damage [84].

5.3.3. Arylidene-Thiazolidinedione. Fair amount of efforts has
been devoted to the modification of chemical structures of
TZDs in order to reduce their endogenous side effects such
as water retention, weight gain, and eyesight problems. Faine
et al. found that one of their chemically modified TZDs, the
arylidene-thiazolidinedione 5-(4-methanesulfonyl-benzyli-
dene)-3-(4-nitrobenzyl)-thiazolidine-2,4-dione (SF23), pos-
sessed a weaker affinity for PPARγ [82]. However, SF23
turned out to have impressive anti-inflammatory and antiox-
idant properties, which were evidenced by efficient blockage
of LPS-induced inflammation and oxidative stress in RAW
267.4 macrophages [82]. SF23 was also able to enhance the
mRNA expression of CD36 and suppress the mRNA expres-
sion of both iNOS and COX-2. They also reported that SF23
was able to display better antioxidant effects on the LPS-
stimulated macrophages than RSG. Interestingly, this antiox-
idant activity of SF23 was shown to be exerted via an Nrf2-
independent manner [82].
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5.4. Natural PPARγ Activators

5.4.1. Carotenoids. Carotenoids are organic plant pigments
with a tetraterpenoid structure. Zhang et al. found that
carotenoids were able to inhibit proliferation of K562 cancer
cells through induction of cell apoptosis and blockage of
cycle progression [85]. Especially, this carotenoid-induced
cell cycle arrest was shown to be mediated by increased
expression of a cell cycle blocker, p21, and decreased
expression of cyclin D1. This antiproliferative effect of
carotenoids was shown to be dependent on upregulation
of both Nrf2 and PPARγ expression [85]. Based on these
results, they concluded that Nrf2 and PPARγ pathways
could be activated in order to induce the growth inhibitory
effects on cancer cells [85].

5.4.2. Monascin. Monascin is a natural compound obtained
fromMonascus-fermented products. Beisswenger found that
monascin was able to attenuate the hyperglycemic toxicity
induced by methylglyoxal (MG). MG is a major precursor
of advanced glycation end products, which were well known
for their diabetes-inducing activities through impairment of
an insulin transcription factor, pancreatic and duodenal
homeobox-1 (PDX-1) [86]. The protective activity of monas-
cin against MG-induced diabetes was shown to be mediated
through positive modulation of both Nrf2 and PPARγ
pathways [87]. In this report, Hsu et al. identified monas-
cin as novel natural Nrf2 and PPARγ agonists by using
Nrf2 and PPARγ promoter reporter assays in HepG2 cells.
Activation of Nrf2 pathway by monascin also resulted in
downregulation of hyperinsulinemia in an oral glucose toler-
ance test [87]. In their related studies, they also reported that
cotreatment of monascin with another Nrf2 activator, allyl
isothiocyanate, was able to attenuate MG-Induced PPARγ
phosphorylation and degradation through inhibition of the
oxidative stress via a PKC-dependent manner [88].

5.4.3. Ankaflavin. Ankaflavin (AK) is a natural pigment iso-
lated from Monascus-fermented products. It was found to
possess the PPARγ agonist activity [89]. Lee et al. reported
that AK was able to upregulate Nrf2 pathway to attenuate
MG-induced diabetes in vivo [90]. Although AK failed to
alter hepatic Nrf2 mRNA or protein expression, it signifi-
cantly increased Nrf2 phosphorylation at serine 40. This led
to increased transcriptional activation of HO-1 gene. They
also found that protective effects of AK against diabetes were
mediated by the upregulation of Nrf2 pathway, resulting in
induction of glyoxalase and HO-1 [89, 90]. In addition, AK
also was able to increase Maf-A and PDX-1 expression
through activation of PPARγ pathway. They suggested that
this could be one potential mechanism for elevating pancre-
atic insulin synthesis and improving hyperglycemia by AK
in MG-treated rats [89].

5.5. Dual Nrf2 and PPARγ Activators

5.5.1. Genistein. Genistein is a primary isoflavone from soy-
beans [91]. Zhang et al. found that genistein was able to
induce activation of both Nrf2 and PPARγ pathways and that
this led to attenuation of H2O2-induced cell injury in

transformed human umbilical vein endothelial cells [92]. In
this report, dual activation of Nrf2 and PPARγ pathways by
genistein was demonstrated by enhanced promoter activity
of both Nrf2 and PPARγ reporters by genistein [92]. In
regard to its mechanism of action, induction of HO-1 by
genistein seemed to mediate its protective effect against oxi-
dative stress [92].

5.5.2. Vitamin E. Vitamin E is a group of compounds
including both tocopherols and tocotrienols. Their antioxi-
dant activities have been extensively characterized by many
researchers [93]. Bozaykut et al. reported that vitamin E
was able to afford protection against hypercholesterolemia-
induced atherosclerosis in the rabbit aorta model. In this
study, they found that vitamin E was able to show this
protective effect through decreased expression of matrix
metalloproteinase-1 (MMP-1) and increased expression of
PPARγ, GST-α, and ATP-binding cassette transporter 1
(ABCA1) in the aortae of cholesterol-fed rabbits [94]. Protein
expression of Nrf2 was also increased in both the cholesterol-
fed and the vitamin E-supplemented groups. Vitamin E
appeared to afford this protection through activation of both
Nrf2 and PPARγ pathways, resulting in induction of several
antioxidant genes [94].

5.5.3. Olmesartan.Daunorubicin is a chemotherapeutic med-
ication used to treat various kinds of cancer. Oxidative injury
has been suspected to play a major role for daunorubicin in
inducing chronic nephrotoxicity [95]. Gounder et al. found
that olmesartan, an angiotensin II receptor antagonist, which
was used for the treatment of high blood pressure, was able to
protect against this daunorubicin-induced nephrotoxicity in
rats [96]. In this study, they found that olmesartan treatment
downregulated phosphorylation of several key signaling mol-
ecules such as mitogen-activated protein kinase-activated
protein kinase (MAPKAPK), caspase-12, p47, and p67.
Olmesartan was also able to upregulate renal expression of
PPARγ, B-cell lymphoma-extra large (Bcl-xL), GPX, and
Nrf2 [96]. Based on these results, they concluded that posi-
tive regulation of both Nrf2 and PPARγ pathways seemed
to mediate protective effects of olmesartan against
daunorubicin-induced nephrotoxicity.

5.5.4. α-Methylene-γ-Lactones. Protolichesterinic acid is a
lichen paraconic acid with an α, β-unsaturated lactone
moiety. Le Lamer et al. found that protolichesterinic acid
derivatives, α-methylene-γ-lactones, were able to induce
expression of Nrf2 target genes such as NQO-1 and HO-1
and PPARγ target genes such as Dectin-1 and CD36 in
macrophages. Based on these results, they concluded that
α-methylene-γ-lactones were potent dual activators of both
Nrf2 and PPARγ pathways [97]. In regard to more detailed
mechanism of action for activation of PPARγ pathway
by α-methylene-γ-lactones, they suggested that α-methy-
lene-γ-lactones may act as covalent ligands through a
Michael addition with a cysteine residue in the PPARγ
ligand-binding domain [97].

5.5.5. 18β-Glycyrrhetinic Acid. Methotrexate (MTX) is a
dihydrofolate reductase inhibitor used for several human

8 Oxidative Medicine and Cellular Longevity



malignancies and autoimmune disorders. Due to its prooxi-
dant and nonspecific action, MTX has been reported to
induce a variety of adverse effects [98, 99]. 18β-Glycyrrheti-
nic acid (18β-GA) is one of the active ingredients of Glycyr-
rhiza glabra (Liquorice). Abd El-Twab et al. reported that
18b-GA supplementation was able to significantly upregulate
the mRNA abundance of both Nrf2 and HO-1 in the kidney
of MTX-treated rats [100]. 18b-GA administration was also
able to downregulate levels of circulating kidney function
markers, tumor necrosis factor-α (TNF-α), kidney lipid per-
oxidation, and nitric oxide. This protective activity of 18b-
GA against MTX-induced kidney injury appeared to depend
solely on activation of Nrf2 with no participation of PPARγ
pathway [100].

Cyclophosphamide (CP) is a chemotherapeutic agent
used to suppress the immune system and cancer. CP-
induced ROS generation and oxidative stress have been
implicated in its hepatotoxic effects [101]. Mahmoud and
Al Dera found that 18β-GA acid was able to exert protective
effects against CP-induced hepatotoxicity. They also showed
that this hepatoprotective activity of 18β-GA was mediated
through activation of both Nrf2 and PPARγ pathways and
suppression of NF-κB pathway [102]. More specifically,
18β-GA decreased expression levels of malondialdehyde
(MDA), NF-κB, and iNOS and increased expression levels
of GSH, GPX, SOD, and CAT [102].

5.5.6. (−)-Epigallocatechin-3-Gallate. (−)-Epigallocatechin-3-
gallate (EGCG) is a well-known green tea polyphenolic com-
pound with an antioxidant activity. Ye et al. found that
EGCG was able to ameliorate crescentic glomerulonephritis
through activation of Nrf2 pathway [103]. In this study, they
induced crescentic glomerulonephritis by administration of a
rabbit anti-mouse glomerular basement membrane antibody.
Under this condition, EGCG-treated mice showed significant
reduction in phosphorylation levels of several signaling
molecules such as AKT, c-Jun N-terminal kinase (JNK),
extracellular signal-regulated kinase (ERK), and p38. EGCG
administration also induced a marked increase in the levels
of Nrf2, GCL, GPX-1, NQO-1, PPARγ, and silent informa-
tion regulator 2 (Sir2) protein 1 (SIRT1) in the kidney tissue
[103]. All these transcriptional changes induced by activation
of both Nrf2 and PPARγ pathways seemed to contribute to
amelioration of crescentic glomerulonephritis induced by a
glomerular basement membrane antibody.

5.5.7. Mangiferin. Mangiferin is a naturally occurring gluco-
sylxanthone xanthonoid from Mangifera indica. Mahmoud-
Awny et al. found that mangiferin was able to mitigate gastric
ulcer in ischemia/reperfused rats. They also found that man-
giferin was able to exert its gastroprotective effect via induc-
ing the expression of Nrf2, HO-1, and PPARγ along with
downregulating that of NF-κB [104]. The effect of mangi-
ferin, especially at the high dose, exceeded that was mediated
by omeprazole, a proton pump inhibitor [104].

5.5.8. 3-O-Laurylglyceryl Ascorbate. Ascorbic acid is a
water-soluble vitamin with an antioxidant activity. A newly
synthesized amphipathic derivative of ascorbic acid, 3-O-

laurylglyceryl ascorbate, was shown to activate both
Nrf2 and PPAR-γ pathways [105]. Specifically, 3-O-
laurylglyceryl ascorbate was shown to be able to upregulate
the expression of mRNAs encoding PPAR-γ and Nrf2 and
their target genes including γ-GCS, HO-1, and NQO-1
[105]. Downregulation of Nrf2 mRNA level in siPPARγ-
treated cells further supported the reciprocal positive modu-
lation of Nrf2 and PPARγ pathways. In addition, the effects
of 3-O-laurylglyceryl ascorbate on PPARγ and Nrf2 mRNA
levels were reduced by PPARγ knock down in normal human
epidermal keratinocytes [105]. This suggested that PPARγ
played a major role for 3-O-laurylglyceryl ascorbate in induc-
ing transcription of antioxidant genes.

5.5.9. Umbelliferone. Umbelliferone is a natural product of
the coumarin family used in sunscreens. Mahmoud et al.
reported that umbelliferone was able to confer a protective
effect against hepatotoxicity induced by cyclophosphamide
(CP), which is an anticancer and immunosuppressive drug
[106]. This hepatoprotective activity of umbelliferone was
shown to be mediated by upregulation of Nrf2 and PPARγ
pathways. In this report, CP-treated rats showed significant
downregulation of Nrf2, HO-1, and PPARγ. However, this
effect was markedly reversed by umbelliferone treatment
[106]. Activation of PPARγ also appeared to inhibit the
fibrogenic response to hepatic injury and protect against
CP-induced inflammation [106].

5.5.10. Graptopetalum paraguayense and Resveratrol. As pre-
viously mentioned, advanced glycation end products were
generated by nonenzymatic reactions between carbohydrates
and proteins and found to cause pancreatic damage and oxi-
dative stress in hyperglycemic patients [107, 108]. Lee et al.
used carboxymethyllysine (CML) to induce pancreas dys-
function and hyperglycemia through formation of advanced
glycation end products. Using this model, they found that
cotreatment of Graptopetalum paraguayense (GP) and res-
veratrol was able to ameliorate CML-induced pancreas dam-
age and hyperglycemia. Especially, resveratrol and ethanol
extracts of GP increased insulin synthesis via upregulation
of pancreatic PPARγ and PDX-1. Resveratrol and ethanol
extracts of GP also strongly activated Nrf2 pathway including
GSH and γ-GCL to attenuate oxidative stress and improve
insulin sensitivity [109].

5.5.11. Cyanidin-3-Glucose and Resveratrol. Cyanidin-3-glu-
cose (C3G) is a natural plant pigment with an anthocyanin
structure. Serra et al. found that cotreatment of C3G and res-
veratrol was able to induce Nrf2 activation leading to
increased HO-1 and γ-GCL mRNA expression in human
colon cancer cells [110]. Resveratrol was also able to increase
nuclear levels of PPARγ in cytokine-stimulated cells. Based
on these results, they suggested the use of polyphenols as
nutraceuticals to lessen intestinal inflammation in patients
with inflammatory bowel disease [110].

6. Concluding Remarks

In this paper, we have reviewed roles of oxidative stress in the
development of human diseases, two major antioxidant
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signaling cascades such as Nrf2 and PPARγ pathways, their
potential crosstalk against oxidative stress, and pharmacolog-
ical targeting of these two pathways by various Nrf2 and
PPARγ activators. Since a growing body of evidence strongly
suggests existence of the intimate relationship between oxi-
dative stress and the development of various metabolic disor-
ders and drug-induced organ injuries, discovery of the best
combination of Nrf2 and PPARγ activators to achieve the
maximal protection against this oxidative stress will be
greatly beneficial for alleviating burden of numerous patients
suffering from many oxidative stress-induced diseases and
side effects of anticancer drugs.
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