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Purpose: The aim of this study was to investigate the value of radiomics analysis

of iodine-based material decomposition (MD) images with dual-energy computed

tomography (DECT) imaging for preoperatively predicting microsatellite instability (MSI)

status in colorectal cancer (CRC).

Methods: This study included 102 CRC patients proved by postoperative pathology,

and their MSI status was confirmed by immunohistochemistry staining. All patients

underwent preoperative DECT imaging scanned on either a Revolution CT or Discovery

CT 750HD scanner, and the iodine-based MD images in the venous phase were

reconstructed. The clinical, CT-reported, and radiomics features were obtained and

analyzed. Data from the Revolution CT scanner were used to establish a radiomics model

to predict MSI status (70% samples were randomly selected as the training set, and

the remaining samples were used to validate); and data from the Discovery CT 750HD

scanner were used to test the radiomics model. The stable radiomics features with

both inter-user and intra-user stability were selected for the next analysis. The feature

dimension reduction was performed by using Student’s t-test or Mann–Whitney U-test,

Spearman’s rank correlation test, min–max standardization, one-hot encoding, and least

absolute shrinkage and selection operator selection method. The multiparameter logistic

regression model was established to predict MSI status. The model performances

were evaluated: The discrimination performance was accessed by receiver operating

characteristic (ROC) curve analysis; the calibration performance was tested by calibration

curve accompanied by Hosmer–Lemeshow test; the clinical utility was assessed by

decision curve analysis.

Results: Nine top-ranked features were finally selected to construct the radiomics

model. In the training set, the area under the ROC curve (AUC) was 0.961 (accuracy:

0.875; sensitivity: 1.000; specificity: 0.812); in the validation set, the AUC was 0.918

(accuracy: 0.875; sensitivity: 0.875; specificity: 0.857). In the testing set, the diagnostic
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performance was slightly lower with AUC of 0.875 (accuracy: 0.788; sensitivity: 0.909;

specificity: 0.727). A nomogram based on clinical factors and radiomics score was

generated via the proposed logistic regression model. Good calibration and clinical utility

were observed using the calibration and decision curve analyses, respectively.

Conclusion: Radiomics analysis of iodine-based MD images with DECT imaging holds

great potential to predict MSI status in CRC patients.

Keywords: microsatellite instability, colorectal neoplasms, iodine-based material decomposition image,

radiomics, dual-energy computed tomography

INTRODUCTION

Colorectal cancer (CRC) is the third most common cancer and
the second leading cause of cancer-related death worldwide
(1). The occurrence and development of CRC are accompanied
by a series of genetic abnormalities, of which microsatellite
instability (MSI) is an important pathway in carcinogenesis
(2). According to previous reports, even though MSI occurs in
only approximately 15% of CRCs, it has gained considerable
attention by clinicians owing to its significant value for CRC
prognosis and treatment (2, 3). Microsatellite stability (MSS)
status is maintained by the mismatch repair (MMR) genes,
which are applied to repair genetic sequences that have been
erroneous during replication in normal tissues. When MMR
system is impaired, the error microsatellite sequences will
accumulate, resulting in MSI and early onset of CRC (2).
Obtaining MSI status is necessary because the MSI CRC tissues
possess special biological behaviors, they are more likely to
have a better prognosis and benefit from immunotherapy,
and they may be resistant to fluorouracil chemotherapy (4).
However, the methods for assessing MSI status including
immunohistochemistry (IHC) and polymerase chain reaction
(PCR) are all based on pathological tissues obtained by invasive
methods. And these advanced biological tests have not been
widely generalized owing to the limitation of advanced medical
equipment in local institutions (5). Thus, development of non-
invasive and cost-effective method for predicting MSI status
could be meaningful for clinicians to obtain more diagnostic
clues and guide further treatment strategies.

Given the growing number of applications in clinical
diagnosis, dual-energy computed tomography (DECT) has
been considered as a milestone in CT imaging because
it can provide quantitative measurements to characterize
the lesions (6). DECT can generate accurate iodine-based
material decomposition (MD) images, which can reflect the
vascularization of various tissues via measuring the contrast
material (iodine) concentration (IC) (7–9). And the correlation

Abbreviations: AUC, area under the ROC curve; CRC, colorectal cancer;

DECT, dual-energy computed tomography; DICOM, digital imaging

data and communications in medicine; GLCM, gray level co-occurrence

matrix; GLZSM, grey-level zone size matrix; IC, iodine concentration; IHC,

immunohistochemistry; LASSO, least absolute shrinkage and selection operator;

MD, material decomposition; MMR, mismatch repair; MSI, microsatellite

instability; MSS, microsatellite stability; PCR, polymerase chain reaction; ROC,

receiver operating characteristic; ROI, region of interest.

between IC values and MSI status has been reported in previous
studies (10, 11). However, from the iodine-based MD images,
we can only routinely obtain the mean value of IC in lesions,
and more imaging characteristics such as heterogeneity remain
untapped. Radiomics analysis achieved the conversion of medical
images to high-dimensional mineable data to quantitatively and
comprehensively describe tissues’ characteristics from imaging
(12). Several scholars have reported that the radiomics features
extracted from CT images showed some value in predicting MSI
status in CRC patients; however, the diagnostic performance
was limited (13, 14). Accordingly, we have presumed that the
radiomics analysis of iodine-based MD images might serve as
a non-invasive and reproducible way to preoperatively assess
MSI status in CRC patients and set up a study to investigate its
diagnostic efficacy.

MATERIALS AND METHODS

Patient Population
Our institutional review board approved this retrospective study
with waiver of the informed consent. Patients examined in
our institution from January 2016 to March 2019 who met
the following criteria were included in our study. Inclusion
criteria are as follows: (1) underwent curative-intent surgical
resection and diagnosed as CRC by postoperative pathology;
(2) underwent abdominal enhanced DECT examination within
about 1 week before surgery; and (3) withMSI information tested
by IHC staining in pathological report. Exclusion criteria are (1)
with any local or systematic anticancer therapy (radiotherapy,
chemotherapy, and biotherapy) before CT imaging; (2) without
available digital imaging data and communications in medicine
(DICOM) files in our system; (3) without available or complete
clinical data; and (4) with invisible target lesion on CT images.
According to the outcomes of MSI testing in the pathological
report, we collected 653 CRC patients including 34 MSI CRC
patients (incidence rate of 5.2%) and 619 MSS CRC patients.
For further statistical analysis, 34 MSI CRC patients (23 scanned
on Revolution CT and 11 scanned on Discovery CT 750HD)
and 68 controls with MSS CRC (46 scanned on Revolution CT
and 22 scanned on Discovery CT 750HD) in a 1:2 ratio (15)
(randomly selected from 619 MSS CRC patients) were ultimately
included in our study (61 males and 41 females; age: 63.82
± 11.51 years; range 26–87 years). The flowchart of patient
selection process is shown in Figure 1. The demographics of
CRC patients is listed in Table 1. The clinical data of all CRC
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FIGURE 1 | Flowchart of patient selection process.

patients including age, gender, carcinoembryonic antigen (CEA)
(normal level, 0–5 U/ml), carbohydrate antigen 19-9 (CA19-
9) (normal level, 0–27 U/ml), alcohol history, smoking history,
hypertension history, diabetes history, and family history of
cancer were recorded. The included CRC patients were divided
into two independent cohorts: (1) primary cohort: CRC patients
examined on the Revolution CT scanner were used to establish
a radiomics model to predict MSI status (70% samples were
randomly selected as the training set, and the remaining samples
were used to validate); and (2) testing cohort: CRC patients
examined on the Discovery CT 750HD scanner were used to test
the predictive model.

Microsatellite Instability Status
Assessment
The MSI status was assessed by IHC staining of MMR
proteins (MLH1, MSH2, PMS2, and MSH6). IHC staining

was routinely performed based on postoperative tissues via
standard streptavidin biotin-peroxidase procedure. According to
the staining results of MMR proteins, patients were classified
into the MSI or MSS group. CRC tissues with at least one of
four negatively stained MMR proteins were defined as MSI CRC;
others with four positively stained proteins were defined as MSS
CRC (2).

Iodine-Based Material Decomposition
Image Acquisition and Analysis
The abdominal DECT scans were performed on a Revolution
CT scanner or Discovery CT 750HD scanner (GE Healthcare)
in supine position. The non-enhanced abdominal CT scan was
performed first with the conventional CT protocol of using
the tube voltage of 120 kVp. The contrast-enhanced CT scans
were performed using the dual-energy spectral CT scanning
mode using the following scan parameters: helical, rapid switch
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TABLE 1 | Demographics of CRC patients.

Characteristic Primary cohort

(Revolution CT)

(n = 69)

Validation cohort

(Discovery CT

750HD) (n = 33)

MSI

(n = 23)

MSS

(n = 46)

MSI

(n = 11)

MSS

(n = 22)

Age (years) (mean ±

SD)

60.22 ±

11.95

63.5 ±

10.96

61.18 ±

10.83

69.59 ±

11.01

Gender, n (%)

Male 12 (52.2) 28 (60.9) 7 (63.6) 14 (63.6)

Female 11 (47.8) 18 (39.1) 4 (36.4) 8 (36.4)

CEA, n (%)

Normal 17 (73.9) 31 (67.4) 7 (63.6) 9 (40.9)

Abnormal 6 (26.1) 15 (32.6) 4 (36.4) 13 (59.1)

CA19-9, n (%)

Normal 19 (82.6) 39 (84.8) 9 (81.8) 15 (68.2)

Abnormal 4 (17.4) 7 (15.2) 2 (18.2) 7 (31.8)

Alcohol history, n (%)

Yes 2 (8.7) 4 (8.7) 2 (18.2) 2 (9.1)

No 21 (91.3) 42 (91.3) 9 (81.8) 20 (90.9)

Smoking history, n (%)

Yes 1 (4.3) 8 (17.4) 2 (18.2) 2 (9.1)

No 22 (95.7) 38 (82.6) 9 (81.8) 20 (90.9)

Hypertension, n (%)

Yes 7 (30.4) 21 (45.7) 1 (9.1) 5 (22.7)

No 16 (69.6) 25 (54.3) 10 (90.9) 17 (77.3)

Diabetes, n (%)

Yes 3 (13) 8 (17.4) 1(9.1) 1 (4.5)

No 20 (87) 38 (82.6) 10 (90.9) 21 (95.5)

Family history of cancer, n (%)

Yes 2 (8.7) 1 (2.2) 2 (18.2) 0 (0)

No 21 (91.3) 45 (97.8) 9 (81.8) 22 (100)

CT-reported tumor size

(cm) (mean ± SD)

2.46 ±

1.41

1.83 ±

1.39

2.83 ±

1.76

2.11 ±

1.61

CT-reported tumor location, n (%)

Right colon 12 (52.2) 14 (30.4) 7 (63.6) 13 (59.1)

Left colon 9 (39.1) 26 (56.5) 2 (18.2) 6 (27.3)

Rectum 2 (8.7) 6 (13) 2 (18.2) 3 (13.6)

CT-reported serous invasion, n (%)

Yes 21 (91.3) 28 (60.9) 8 (72.7) 18 (81.8)

No 2 (8.7) 18 (39.1) 3 (27.3) 4 (18.2)

CT-reported lymph node invasion, n (%)

Yes 17 (73.9) 32 (69.6) 8 (72.7) 9 (40.9)

No 6 (26.1) 14 (30.4) 3 (27.3) 13 (59.1)

CA19-9, carbohydrate antigen 19-9; CEA, carcinoembryonic antigen; CRC, colorectal

cancer; MSI, microsatellite instability; MSS, microsatellite stability.

between tube voltages of 80 and 140 kVp in 0.5ms; tube current,
230–445mA; detector width, 80mm; helical pitch, 0.992:1 on
the Revolution CT scanner and 1.375:1 on the Discovery CT
750HD scanner; rotation time, 0.6–0.8 s; slice thickness, 1.25mm;
and slice interval, 1.25mm. For the contrast-enhanced CT scans,
1.2 ml/kg of non-ionic contrast media iohexol (Omnipaque 300
mg/ml, GE Healthcare) was used. The contrast medium was

administered via the antecubital vein at an injection rate of
3 ml/s. The arterial phase, venous phase, and delayed phase
scans were obtained after 30, 60, and 120 s following the
administration of contrast agents. The CT scans covered the
abdomen and pelvis from the dome of diaphragm to pubic
symphysis. After CT scans, the iodine-based MD images in
the venous phase were reconstructed at 1.25-mm image slice
thickness and interval using the Gemstone Spectral Imaging
(GSI) software on an advanced workstation 4.6 (AW 4.6;
GE Healthcare).

Image analysis was performed by an abdominal radiologist
with 3 years of experience and independently verified by
another trained radiologist with 5 years of experience to
reduce possible bias. Their discrepant interpretations were
resolved via consultation. These observers were blinded to
all clinical and pathological information of CRC patients.
The following data extracted from CT images were analyzed
and recorded: (a) tumor size, defined as the maximum
axial diameter of tumors on images; (b) tumor location,
subclassified as right colon, left colon, and rectum; (c) CT-
reported serous invasion, defined as irregular projections
from the serosal surface, and/or clouding of the pericolic
fat, and/or loss of the normal fat planes, and/or thickened
contiguous fascial reflections; (d) CT-reported lymph
node invasion, defined as enlarged lymph node (short-axis
diameter > 1 cm), and/or clustered at least three lymph
nodes (16).

Tumor Segmentation and Radiomics
Feature Extraction
The ROI was placed by two experienced abdominal radiologists
independently. Radiologist 1 (with 5 years of experience)
performed the segmentation of all patients twice with a 6-
month interval. Radiologist 2 (with 3 years of experience)
performed the segmentation of all patients once. From the
iodine-based MD images of venous phase, the two radiologists
selected the slice with the largest axial diameter of CRC
tumor and its adjacent upper and lower slices. Then, they
manually outlined the boundary of the visible tumor on the
selected slices via an open-source software ITK-SNAP (version
3.6.0) (17). The ROIs were required to include the area of
necrosis and bleeding within the tumor and excluded perienteric
fat and intestinal contents. To correct for acquisition-related
differences of differing voxel resolutions in the two different
CT scanners, voxel dimensions (mm) of each iodine-based
MD image dataset were isotropically resampled to a common
voxel spacing 0.5 × 0.5 × 0.5 mm3 (x, y, z) via linear
interpolation algorithm (18, 19). Next, a total of 606 radiomics
features for each CRC patient were extracted via Artificial
Intelligent Kit (GEHealthcare) in concordance with the reference
manual by the “Image Biomarker Standardization Initiative.”
These features were divided into four groups: (1) first-order
histogram features (n = 42); (2) second-order texture features:
gray level co-occurrence matrix (GLCM) (n = 240), Haralick
features (n = 10); (3) grey-level zone size matrix (GLZSM)
(n = 11); and (4) Gaussian transform (n = 303). The inter-user
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variability for radiologist 1 and intra-user variability between
radiologist 1 and radiologist 2 in tumor segmentation were
analyzed via intraclass correlation coefficient (ICC) method
[type: single rater; definition: absolute agreement; model: inter-
user ICC: two-way random effects; intra-user ICC: two-way
mixed effects (20)]. Details of radiomics features are described
in Figure 2. The formulas of radiomics parameters are shown in
Supplementary I.

Feature Selection and Prediction Model
Building
The dimensionality reduction of all features including clinical,
CT-reported, and radiomics features was performed based on
training dataset for further analysis. First, the radiomics features
with both inter-user and intra-user stability (with ICC values
>0.90) were selected via ICC analysis. Second, the continuous
features with significant differences (p < 0.05) between MSI

and MSS groups were selected by Student’s t-test (for normally
distributed data) or Mann–Whitney U-test (for non-normally
distributed data). Then, the categorical features (gender, CEA,
CA19-9, alcohol history, smoking history, hypertension history,
diabetes history, family history of cancer, tumor location,
CT-reported serous invasion, and CT-reported lymph node
invasion) were encoded by using one-hot encoding. One-
hot encoding uses N-bit state registers to encode N status,
each of which has its own register bits, and at any time,
only one of them is valid. One-hot encoding can convert the
category variables into a form readily available to machine
learning algorithms (21). For example, the “CT-reported tumor
location” has three status, right colon, left colon, and rectum,
which were coded as “1, 2, 3” in our study first. Then
we used one-hot encoding method to encode right colon,
left colon, and rectum as 100, 010, 001, respectively. One-
hot encoding method can ensure that “1, 2, 3” represents

FIGURE 2 | Details of radiomics features: (1) first-order histogram features (n = 42); (2) second-order texture features: gray level co-occurrence matrix (GLCM)

(n = 240), Haralick features (n = 10); (3) grey-level zone size matrix (GLZSM) (n = 11); (4) Gaussian transform (n = 303).
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FIGURE 3 | Workflow of radiomics analysis: iodine-based MD imaging and segmentation; feature extraction, feature selection, model building, and model evaluation.

MD, material decomposition.

the tumor location instead of the true value of 1, 2, or 3.
Third, Spearman’s rank correlation test was performed for each
feature. Radiomics features with correlation coefficient≥0.9 were
selected into the following steps and then transferred with min–
max standardization, whereas all features were normalized to
a range of 0 to 1. Finally, the least absolute shrinkage and
selection operator (LASSO) selection method was further used
to identify the top-ranked and most valuable features to build the
predictive model.

The selected features were applied to construct
multiparameter logistic regression model to predict MSI
status. The 5-fold cross-validation technique was used for
model selection. The data in training set were divided into
five subsets equally. Then, four subsets were selected each
time to train, and the remaining one subset was used to test.
By changing the subtest set in turn, five loss function values
(L (w)) during the above five models would be obtained.
The average value of L (w) was calculated. When the average
L (w) reached a minimum value, the optimization of the
logistic regression model would be completed, and the final
model would be constructed. The details of L (w) are shown
in Supplementary II. A nomogram based on clinical factors
and radiomics score was generated via the proposed logistic
regression model. The probability of MSI status defined as a
nomogram score can be calculated for each patient by using
the developed nomogram. The data from the Revolution CT

equipment were used to establish and validate the radiomics
model, and the data from the Discovery CT 750HD equipment
were used to test the radiomics model.

Radiomics Model Evaluation
The discrimination performance was accessed by using receiver
operating characteristic (ROC) curve analysis. The area under
the ROC curve (AUC), accuracy, sensitivity, and specificity was
calculated. DeLong’s test was used to compare the statistically
difference between AUCs. The calibration performance was
tested by using the calibration curve accompanied by the
Hosmer–Lemeshow test (H-L test). The calibration curves
measure the consistency between the predicted MSI status
probability and the actual MSI status probability. The H-L test
assesses the goodness of fit of the prediction models. The clinical
utility of radiomics model was assessed by using decision curve
analysis. For decision curve, the horizontal axis indicates the
threshold probability with a range of 0.0 to 1.0. The vertical axis
indicates the clinical net benefit values. There are two reference
lines defined under the assumption that all patients are diagnosed
to be either MSI or MSS. A larger area under the decision
curve suggests a better clinical utility. All statistical analyses
were conducted with R software (version 3.6.0; https://www.
r-project.org/). The workflow of radiomics analysis is shown
in Figure 3.
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RESULTS

Inter-user and Intra-user Variabilities
The stable radiomics features (with ICC values >0.90) were as
follows: 503 features between the two sets of measurements for

FIGURE 4 | The heat map gives a good visual representation of the feature

correlation. The x axis and y axis indicate features. Color scale on the right

side displays the absolute value of the correlation coefficient (higher from 0 to

1, and from blue to yellow).

radiologist 1, 568 features between the first measurement of
radiologist 1 and radiologist 2, and 430 features between the
second measurement of radiologist 1 and radiologist 2. Finally,
429 features were considered stable with both inter-user and
intra-user stability. These 429 features obtained by radiologist 1
in the first measurement were used for the next analysis.

Feature Selection and Radiomics Model
Building
From a total of 429 radiomics features and 13 clinical
or CT-reported features, the nine top-ranked features
were finally selected for subsequent analysis: gender,
smoking, family history of cancer, MaxIntensity,
uniformity, GLCMEnergy_AllDirection_offset6_SD_Gaussian,
GLCMEnergy_angle90_offset8_Gaussian, GLCMEntropy_
AllDirection_offset8_Gaussian, and HaralickCorrelation_
AllDirection_offset8_SD_Gaussian. The correlation heat map
summarizes the correlations of features (Figure 4). Feature
selection using the LASSO algorithm is shown in Figure 5.
The nomogram based on clinical factors and radiomics score is
shown in Figure 6.

Rad − score =

−5.63e− 01 × MaxIntensity

−5.08e− 01 × uniformity

−1.76e− 02 × GLCMEnergy_AllDirection_offset6_SD_Gaussian

−8.25e− 02 × GLCMEnergy_angle90_offset8_Gaussian

−3.70e− 02 × GLCMEntropy_AllDirection_offset8_Gaussian

−6.30e− 01 × HaralickCorrelation_AllDirection_offset8_SD

_Gaussian

FIGURE 5 | Feature selection using the LASSO algorithm. (A) The LASSO tuning parameter (lambda,λ) is iteratively updated by the optimization theory, and the

optimal values of λ are indicated by the dotted vertical lines, a value λ of 0.0612 with log(λ) = −2.79 is chosen. (B) The LASSO algorithm performs the trend of the

coefficients in the feature selection process. A coefficient profile plot is generated by violating the log (λ) sequence. The parameter λ is optimized by a five-fold

cross-validation technique, and when the loss function reaches a minimum, 12 variables are selected. The 12 variables correspond to nine features including three

clinical features and six radiomics features. The vertical line indicates the coefficient size of each variable and the corresponding log(λ) value when the model is

optimal. LASSO, least absolute shrinkage and selection operator.
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FIGURE 6 | Nomogram based on clinical factors and radiomics score.

Radiomics Model Evaluation
ROC analysis was applied to evaluate themodel’s performance for
predicting MSI status. In the training set, AUC was 0.961 (95%CI
[0.861, 0.996]; accuracy: 0.875; sensitivity: 1.000; specificity:
0.812); in the validation set, AUC was 0.918 (95%CI [0.714,
0.992]; accuracy: 0.875; sensitivity: 0.875; specificity: 0.857); and
in the testing set, AUCwas 0.875 (95%CI [0.715, 0.964]; accuracy:
0.788; sensitivity: 0.909; specificity: 0.727) (Table 2). DeLong’s
test revealed that above AUCs had no significant difference,
which suggested that there was no overfitting among training,
validation, and testing sets: p= 0.535 (1 = 0.043, 95%CI [0.0416,
0.0894]) between the training and validation sets; p = 0.198
(1 = 0.085, 95%CI [0.0266, 0.1476]) between the training and
testing sets; and p = 0.631 (1 = 0.042, 95%CI [0.0224, 0.1492])
between the validation and testing sets. The ROC curves are
shown in Figure 7. Good calibrations of radiomics models for
predicting MSI status in training, validation, and testing sets
are shown in Figure 8. The H-L test was not significant (p >

0.05), demonstrating a good fit (training set: p= 0.462; validation
set: p = 0.785; testing set: p = 0.568). The decision curves for
radiomics models in training, validation, and testing sets (with
net benefit of 17.44, 15.40, and 13.43, respectively) are presented
in Figure 9.

DISCUSSION

In our study, we established a radiomics model based on iodine-
based MD images to predict MSI status in CRC patients before
surgery. We achieved a good diagnostic performance based on
data from the Revolution CT equipment in both the training set
(AUC, 0.961) and validation set (AUC, 0.918). And this radiomics
model was also suitable for the iodine-basedMD images acquired
on another CT equipment (Discovery CT 750HD) although with
slightly lower diagnostic performance (AUC, 0.875).

Iodine-based MD images can quantitatively reflect the
vascularization of tissues. A clear relationship between blood
supply and IC values calculated from iodine-based MD images
has been confirmed; the richer blood supply is accompanied

TABLE 2 | ROC analysis for predicting MSI status.

Revolution CT Discovery CT 750HD

Training set Validation set Testing set

AUC 0.961 0.918 0.875

95%CI [0.861, 0.996] [0.714, 0.992] [0.715, 0.964]

Accuracy 0.875 0.875 0.788

Sensitivity 1.000 0.875 0.909

Specificity 0.812 0.857 0.727

ROC, receiver operating characteristic; AUC, area under the ROC curve; CI, confidence

interval; MSI, microsatellite instability.

FIGURE 7 | ROC curves of the radiomics models in training, validation, and

testing sets. ROC, receiver operating characteristic.
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FIGURE 8 | Calibration curves for radiomics models in training (A), validation (B), and testing sets (C). The diagonal dashed reference line represents a perfect

estimated MSI status by an ideal model. Solid lines represent estimated MSI status of the model. Good alignment of diagonal dashed reference line and solid line

indicates a good performance. MSI, microsatellite instability.

by a higher IC value (8, 22, 23). Our previous study has found
that IC value of MSI CRC was significantly lower than that
of MSS CRC and demonstrated the clinical value of using the
IC values to distinguish MSI status with limited diagnostic
performance (10). The measurement of IC in the previous
study only reflected the average IC value in ROIs, and more
information (such as tumor heterogeneity) was not evaluated.
Therefore, radiomics approach, which can provide a wealth
of complementary information of the images, should further
extend our knowledge and improve the diagnosis (24–26). In
our study, six radiomics features were finally selected as the most
closely related features to the MSI status. For iodine-based MD
images, the MaxIntensity generally represents the most abundant
blood supply value within the predefined ROI. This may be
explained by the biological characteristics of MSI CRC with
less angiogenic phenotype confirmed by previous investigations
(11, 27). The uniformity is a measure of the sum of the squares of
each intensity value. From the perspective of image smoothness,
the higher the intensity value, the higher the uniformity of the
image. GLCMEnergy_AllDirection_offset6_SD_Gaussian
and GLCMEnergy_angle90_offset8_Gaussian describe
the uniformity of the intensity level distribution.
GLCMEntropy_AllDirection_offset8_Gaussian describes
the randomness of image values. It mainly calculates the
average amount of information to encode image values.
HaralickCorrelation_AllDirection_offset8_SD_Gaussian
measures the linear dependency of grey levels of neighboring
pixels; in other words, it measures the similarity of the grey
levels in neighboring pixels and tells how correlated a pixel is
to its neighbor over the whole image (28, 29). They have all
served as recognized parameters to reflect tumor heterogeneity.
We reviewed the biological differences between MSI and MSS
tumors and tried to explain the imaging heterogeneity observed
in this study. De Smedt et al. suggested that the morphological
heterogeneity was the most striking feature to distinguish MSI
from MSS CRC. Histologically, MSI CRC is often more inclined
to present with a mixed morphological patterns including

glandular, mucinous, and solid content, which caused the tumor
heterogeneity (30). In addition, the higher incidence of internal
heterogeneity in MSI CRC may also be explained by a higher
density of tumor-infiltrating lymphocytes and a lower cell
proliferation rate than MSS CRC (31, 32). Our results that the
imaging heterogeneity was a biomarker for MSI tumors were
consistent with those of previous studies (14). During radiomics
analysis, integrating diverse clinical features plays an important
role in improving the performance of the diagnostic model.
We recorded the clinical features and CT reported features,
which were discrete data except for age and tumor size. We used
the one-hot encoding to process category variables, with the
main benefits of one-hot encoding as follows: (1) to solve the
problem that the classifier is not good at processing category
data; (2) to a certain extent also play a role in expanding features;
and (3) to choose the most representative new features. In our
study, we found that the gender, smoking, and family history
of cancer were closely related with the MSI status in CRC
patients, and further explorations were required based on larger
samples (13, 33).

Radiomics analysis is a promising method to unveil large
amount of tumor features hidden in medical images. However,
previous studies have reported that the repeatability of radiomics
features can be influenced by different CT scanners (34). Our
study included data from two different DECT scanners including
Revolution CT and Discovery CT 750HD. We first used the
data obtained from the Revolution CT scanner to establish a
model for preoperatively predicting MSI status; the AUCs of
training and validation sets were 0.961 and 0.918, respectively.
Subsequently, we analyzed whether this radiomics model was
suitable for another DECT scanner (Discovery CT 750HD), and
we found that the performance was good with AUC of 0.875.
Our results suggested that the radiomics model established in
this study was applicable to both Revolution CT and Discovery
CT 750HD, and this might be attributed to the stability of
the iodine quantification, and that there is little effect of
various DECT scanners and acquisition parameters on iodine
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FIGURE 9 | Decision curves for radiomics models in training (A), validation (B),

and testing sets (C). The grey reference line indicates the assumption that all

patients are diagnosed to be MSI CRC; black dashed reference line indicates

the assumption that all patients are diagnosed to be MSS CRC. In training,

validation, testing sets, the net benefit is 17.44, 15.40, and 13.43, respectively.

A larger area under the decision curve indicates a better clinical utility. MSI,

microsatellite instability; CRC, colorectal cancer; MSS, microsatellite stability.

density (35). Hence, further studies are recommended to focus
on the radiomics analysis of iodine-based MD images with
DECT imaging.

Our study has several limitations. First, the study was
retrospective and may result in inherent biases. Second, although
IHC test is a reliable way to assess MSI status, the PCR should
still be recommended. Third, only a handful of patients were
analyzed owing to the low incidence rate of MSI in CRC patients.
Further studies are required using a larger sample. Fourth, only
three slices of CT images were analyzed, and we plan to compare
the performance of using three slices and whole tumors in future
investigations. Fifth, some discrepancies caused by manually
outlined ROIs are unavoidable, even though we had made efforts

to minimize the bias by using two trained radiologists. Sixth, our
data were only from a single center. In the future, we will try to
collect multicenter data to reinforce the conclusions of our study.

In conclusion, radiomics analysis based on iodine-based
MD images with DECT imaging can provide a relatively high
diagnostic value for predicting MSI status in CRC patients.
This study provides insight into the potential applications of
using radiomics analysis of iodine-based MD images produced
via DECT in predicting MSI status, and its usefulness for
preoperatively providing more information in CRC clinical
outcome and treatment decision making.
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