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ABSTRACT 

We conducted a spatial analysis using imaging mass cytometry applied to stage III colorectal 

adenocarcinomas.  This study used multiplexed markers to distinguish individual cells and their 

spatial organization from 52 colorectal cancers.  We determined the landscape features of 

cellular spatial features in the CRC tumor microenvironment.  This spatial single-cell analysis 

identified 10 unique cell phenotypes in the tumor microenvironment that included stromal and 

immune cells with a subset which had a proliferative phenotype.  These special features 

included spatial neighborhood interactions between single cells as well as different tissue 

niches, especially the tumor infiltrating lymphocyte regions.  We applied a robust statistical 

analysis to identify significant correlations of cell features with phenotypes such as microsatellite 

instability or recurrence.  We determined that microsatellite stable (MSS) colorectal cancers had 

an increased risk of recurrence if they had the following features: 1) a low level of stromal 

tumor-infiltrating lymphocytes, and 2) low interactions between CD4+ T cells and stromal cells.  

Our results point to the utility of spatial single-cell interaction analysis in defining novel features 

of the tumor immune microenvironments and providing useful clinical cell-related spatial 

biomarkers. 
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INTRODUCTION 

Colorectal cancer (CRC) is a leading cause of cancer-related deaths.  An important contributor 

to CRC development, maintenance and metastasis is the tumor microenvironment (TME).  This 

cellular milieu contains neighboring tumor epithelial cells, normal epithelium, fibroblasts, 

endothelial cells, immune cells and many others.  The characterization of the TME is critical for 

understanding tumor biology as well as determining specific features with clinical implications.  

Representing a subset of the TME, the tumor immune microenvironment (TIME) has specific 

cellular characteristics that are important predictors for the response to treatments such as 

immunotherapy. 

 

Immunohistochemistry (IHC) and immunofluorescence (IF) are commonly used assays applied 

to tissue sections.  IHC and IF detect specific protein cancer markers such as immunotherapy 

targets like PD-1 and PD-L1.  These immune checkpoint markers provide spatial cellular 

information about the tumor microenvironment and its immune cell components.  However, 

methods such as IHC and IF have major issues that include significant variation in their staining 

patterns and limits in the number of protein markers1,2.  With the introduction of new spatial 

imaging methods, one can characterize the TIME with single-cell precision and much greater 

multiplexing capacity3.  For example, imaging mass cytometry (IMC) provides the spatial 

detection from eight to 120 proteins from a given tissue sample and resolves the expression 

from individual cells3.  Spatial imaging methods have identified new breast cancer subtypes and 

the spatial properties of the TIME, some of which may be linked to clinical outcomes and 

immune response4,5.  Spatial analysis with single cell resolution can infer cell-cell interactions as 

a proxy for TIME states and activities in the tumor - these features may be useful to measure 

disease progression and response to specific therapies6. 
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The prognostic value of tumor-infiltrating lymphocytes (TILs) has been extensively studied7,8.  

Currently, pathologists’ visual inspection is the most used approach for identifying and roughly 

estimating the number of TILs.  However, the manual characterization of TILs is a challenging 

task, prone to high level of interobserver variability and not scalable for large number of 

samples9.  A lack of reproducibility limits the use of these conventional means for measuring the 

presence of TILs10,11.  Moreover, histopathology assessment of TILs is qualitative and does not 

account for spatial features such as proximity to other cell types.  Approaches such as IMC 

provide a more objective, quantitative approach for spatially assessing TILs.  Overall, spatial 

assays for TIL measurement will provide significant insights into the CRC TIME. 

 

For this study, we focused on a set of stage III CRCs – these patients have CRC with local 

lymph node involvement.  Currently, clinical stage is the most important factor in terms of 

ascertaining prognosis.  The 5-year overall survival rate for CRC varies by stage at diagnosis, 

ranging from 90% for early-stage (I-II), to 70% for locally advanced stage (III) and to less than 

15% for metastatic (IV)12.  Even after surgical resection, patients with limited stage (I-III) CRCs 

have an increased risk of metastatic recurrence.  Adjuvant chemotherapy for stage III CRC 

decreases the risk but the recurrence of metastasis is still high with approximately 20% of 

patients have new sites of CRC after treatment13.  Given the poor prognosis of CRC metastasis, 

there have been multiple studies to identify specific molecular and cellular markers identifying 

the stage III patients at highest risk14-16. 

 

Herein, we evaluated spatial data from primary colorectal cancers, characterizing cell-cell 

interactions and describing the spatial patterns of cell neighborhoods.  We developed some 

novel approaches for evaluating spatial data, leveraging the single cell resolution of spatial 
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features.  We applied this approach to this set of stage III CRCs, determined their spatial TIME 

features and characterized cellular interactions among the various cells.  Finally, we explored 

the potential of integrating IMC-based, spatially-derived TIME features were associated with 

metastatic recurrence. 

 

RESULTS 

A computational framework for analyzing single-cell spatial features in CRC cancer 

We performed IMC assays on a set of stage III CRC samples to achieve high-resolution, single-

cell spatial profiling (Fig. 1a).  The IMC multiplexed panel utilized 16 antibodies that are markers 

for the following: 1) tumor epithelial cell markers such as E-cadherin and TP53, 2) immune cell 

markers such as CD3, CD4+, and CD8a, 3) stromal cell markers such as SM-actin and 

collagen, and 4) nuclear markers such as the Histone H3 protein (Supplementary Table 1). 

 

To analyze this single-cell level spatial data from IMC, we developed an analytical framework 

(Fig. 1b) with three tiers: 1) delineating cell type proportions, 2) investigating pairwise 

interactions among neighboring cells, and 3) characterizing the multicellular local tissue 

architecture within cellular neighborhoods (Methods). 

 

We used spatial IMC data from the 52 CRCs covering 162 tissue regions and seven non-tumor 

tissue regions from normal colon.  We analyzed these tissue regions, with image dimensions 

ranging from 141 µm × 500 µm to 1121 µm × 1309 µm.  The sample image count per each 

sample, ranged from 1 to 8, allowing us to cover more area from a given tissue 

(Supplementary Fig. 1a).  Other molecular characteristics such as tumor purity and number of 

cells per tissue regions are summarized in Supplementary Figure 1. 
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The first level involved single cell analysis - we examined the cell types and determined their 

proportions (Fig. 1b).  The results included quantitative characteristics of immune cell infiltration 

abundance across different cell types for a given cancer tissue region.  The second level 

involved cellular organization - we investigated the spatial relationships among the various cell 

types.  We measured the distances between cells and co-occurrence of different cell types 

using built-in functions in two programs, Histocat17 and Squidpy18.  Afterwards, we conducted 

statistical comparisons to determine of the enrichment of cell type pairs and their colocalization.  

Based on the comparison of the observed colocalization to the null distribution, we identified 

changes in interactions between neighboring cells across samples and infer potential 

interactions contributing to the immune response.  The third level involved spatial cellular 

organization in a tissue - we evaluated thousands of local regions, each composed of up to the 

10 cell types19.  We refer to these regions as cell neighborhoods (CNs) where all cells are 

located within 40 µm radius (see Methods). Thus, we identified the spatial arrangement and 

potential interactions of various cell types within the localized tissue regions.  These cell 

neighborhoods helped us define and pinpoint TILs in the tumor microenvironment. 

 

Subsequently, we determined if there were correlations among spatial cellular features and 

various clinical metrics including microsatellite instability (MSI) status and disease recurrence, 

typically meaning the identification of a metastasis after surgery and adjuvant chemotherapy 

(Supplementary Table 2).  MSI is an indicator of loss of DNA mismatch repair – tumors with 

these features respond to immune checkpoint inhibitors.  All CRC samples had genomic data 

available including exome sequencing20.  We determined the MSI status using the program 

MSIsensor21 on the exome data (Supplementary Fig. 2).  For a subset of the samples, we had 
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the results from separate IHC assays for DNA mismatch repair proteins to determine 

microsatellite status.  There was complete concordance between the two MSI metrics. 

 

Single cell identification of cell types in stage III CRC 

The cohort included 52 stage III CRC with additional clinical information such as MSI and 

recurrence status (Supplementary Table 2).  After surgical resection of their CRCs, majority of 

patients had received chemotherapy as adjuvant treatment.  For each CRC undergoing IMC 

analysis, we identified individual cell types that included tumor, immune, and stromal cells.  After 

preprocessing and cell segmentation with 16 different antibodies, we had a total of 903,125 cells 

for all samples.  Subsequently, we quantified the expression intensity of each protein marker 

from the cells and identified clusters through unsupervised Leiden clustering (Supplementary 

Fig. 3a).  The clusters showed ten specific cell types as shown visually using Uniform Manifold 

Approximation and Projection (UMAP) (Fig. 2a, Supplementary Fig. 3b)22. 

 

From this set of samples, we identified 10 different major cell types with several different 

subcategories (Fig. 2b).  The non-immune included epithelial tumor cells, TP53+ tumor cells, 

proliferative tumor (Ki-67+) and stromal cells.  For the classification of immune cell types, we 

used established markers23 (Fig 2f, Supplementary Table 1).  The immune types included 

proliferative immune, macrophages, B cells, NK cells, CD4+ T cells and CD8+ T cells.  The 

most prevalent cell types were tumor epithelial and stromal cells which were most abundant in 

CRC tumor regions24,25.  To corroborate our results, a pathologist conducted a visual inspection 

of cells embedded within the tissues with histopathologic annotation.  This independent review 

confirmed the cell type classifications as we determined from the IMC data (Fig. 2c, d, e). 
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Macrophages were the most abundant immune cell type, a finding that is supported from prior 

reports26.  We identified proliferative immune phenotypes, representing a rare population of 

immune cells (<1% of total cells) distinguished by their high Ki-67 expression (indicating their 

proliferative state) along with expression of other immune markers (Fig. 2g).  Cells undergoing 

proliferation were identified by high KI-67 expression – this class of proliferating immune cells 

are increasingly being reported among various studies27-29.  Additional immune markers 

indicated a prominent prevalence of CD4+ T cells, accompanied by T cells and macrophages, 

within the population of proliferative immune cells (Fig. 2h). 

 

Different cell proportions across the CRCs and their TMEs 

We determined the distribution and abundance of the 10 unique cell types for the CRCs (Fig. 

3a).  This analysis included determining the abundance of the immune cell types as a fraction of 

total immune cells (Fig. 3b).  For comparison as an independent data set, we evaluated the 

cellular content of 77 stage III CRC samples of the Cancer Genome Atlas (TCGA).  For these 

CRCs, Luca et al. estimated the abundance of various cell types from bulk RNA-seq using the 

CIBERSORTx approach25.  Between these two sets of stage III CRCs, we observed the same 

ranking of abundance for the different immune cell types (Supplementary Fig. 4).  The high 

level of concordance between these two independent sets of CRCs validated our cell type 

identification using spatial analysis.  We also estimated tumor purity (Supplementary Fig. 

1b,c), employing it as a covariate in our linear models in downstream analyses.  This step 

allowed us to control for any sampling bias of tissue regions in the ensuing analyses. 

 

Cellular composition among CRCs with microsatellite instability 
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Approximately 10-15% of stage III CRCs have an important molecular phenotype related to loss 

of DNA mismatch repair (MMR)30.  Loss of this repair mechanism leads to a hypermutable state 

called microsatellite instability (MSI)30.  Mutations occur at a much higher rate in DNA 

sequences called microsatellite tracts.  High levels of MSI are also referred to as ‘MSI-H’ 

whereas microsatellite stable is called ‘MSS’.  In general, MSI-H CRCs have a better prognosis 

compared to MSS CRCs31,32.  MSI-H CRCs have an associated higher levels of TILs33.  In 

addition, MSI in CRCs is a clinical predictor for immune checkpoint inhibitors. 

 

Among the CRCs with MSI status, nine had MSI-H and thirty-three were MSS.  Subsequently, 

we compared the cellular composition between the MSI-H and MSS tumors.  We arranged 

samples by the abundance of CD8+ T cells as shown in Figure 3c.  Examination of the IMC 

images showed extensive heterogeneity in cell type composition.  For example, the MSI-H CRC 

(CR101) had a high proportion of these cells (Fig. 3d), whereas a MSS CRC (CR079) had a 

much low proportion of CD8+ T cells (Fig. 3e).  Citing another example, MSS CRCs like CR060 

and CR055 had an increased number of NK cells. 

 

There were some specific trends in cellular composition between MSI-H and MSS samples 

(Supplementary Fig. 5a,b).  Prior studies have shown that tumors with TP53 mutations have a 

higher level of TP53 protein staining34-36.  Moreover, MSI tumors have a significantly lower 

frequency of TP53 mutations (~7%) compared to MSS tumors (~71%)37.  Among our tumors, 

MSI-H CRCs had a significantly lower proportion of TP53+ tumor cells than MSS CRCs 

(adjusted p value=0.038, Figure 3f).  In fact, fewer than 5% of cells in MSI-H tumors were 

TP53+ tumor cells (Supplementary Fig. 5b).  We also corroborated this relationship in terms of 

tumor cells with TP53 protein expression using genomic data from our prior publication20.  We 
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also observed that CRCs with TP53 missense mutations had significantly more TP53+ tumor 

cells compared to CRCs that were wildtype TP53 (Supplementary Fig. 5c). 

 

Among the other MSI-H CRC features there was a higher proportion of CD8+ T cells compared 

to MSS samples (p value = 0.047, adjusted p value = 0.234) (Fig. 3f).  This result is consistent 

with other studies38-40.  For MSI-H tumors, the increase in CD8+ T cells is attributed to their 

having a higher level of immunogenicity that reflects a greater number of cancer mutations that 

generate neoantigens compared to MSS CRCs41,42.  From the TCGA CRC (COAD) cohort, 

there were higher numbers of CD8+ T cells in MSI-H tumors versus MSS tumors among stage 

III CRCs (Supplementary Fig. 6b). 

 

Next, we evaluated correlations between the proportions of pairs of distinct cell types in MSS 

tumors.  For instance, we investigated whether CRCs with a low proportion of CD4+ T cells also 

had a low proportion of CD8+ T cells.  Subsequently, we determined if there were correlations 

based on CRCs from patients with recurrence versus those without recurrence (Supplementary 

Fig. 7).  We observed a significant positive correlation between the proportions of CD4+ and 

CD8+ T cells among recurred patients’ tumors (adjusted p-value < 0.05), where both CD4+ and 

CD8+ T cell proportions were low.  This result aligns with observations from previous 

reports43,44.  In contrast among patients without recurrence, there was no correlation between 

these two cell types. 

 

Additionally, there were several other significant correlations between different cell types 

observed only in MSS CRCs from patients with recurrence (Supplementary Fig. 7a). Notably, 

the proportion of proliferative tumors was significantly higher in patients with right-sided colon 
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cancer compared to those with left-sided colon cancer (adjusted p-value = 0.045). It is worth 

mentioning that more right-sided CRCs had a higher frequency TP53 missense mutations 

compared to left-sided ones, and all nine MSI patients had right-sided colon cancer. 

 

Cell interactions in the CRC TME 

We leveraged spatial information to identify pairwise interactions between adjacent neighboring 

cells.  We defined interacting cells as being 6 µm or less apart between two adjacent cell 

borders (e.g., membrane) (Supplementary Fig. 8a).  We employed two methods for identifying 

significant pairwise interactions: 1) a permutation-based neighborhood approach described in 

Histocat to identify global patterns of interactions (Fig. 4a); 2) a method that we developed 

which provides a quantitative interaction score which we used to assess spatial relationships 

with specific clinical metrics (Fig. 4b). 

  

Histocat identifies cell type to cell type interactions for specific regions-of-interest from a given 

spatial image17.  Briefly, this algorithm compares the number of observed interactions against an 

expected distribution, computed through random shuffling of cell types.  This information is used 

to determine which cell type pairs preferentially interact versus non-interacting pairs that are 

separated spatially (Fig. 4a, Supplementary Fig. 8).  We summarized these results across all 

tumors as the log fold-change (logFC) between the number of interacting and avoiding regions-

of-interest for each cell type pair (Supplementary Fig. 9). 

 

We determined the homotypic and heterotypic interactions.  The homotypic interactions refer to 

the same cell types being adjacent to each other.  The heterotypic interactions refer to where 

different cell types are adjacent.  We observed that homotypic interactions were prevalent 
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across all cell types, with the notable exception of the proliferative immune cell class (Fig. 4c).  

This unique pattern can be attributed to proliferative immune cells engaging with each other in 

MSI-H tumors but lacking this type of interactions in MSS tumors (Supplementary Fig. 10a).  

Among the heterotypic interactions, we observed a trend where immune cells had a higher 

degree of close spatial interactions with stromal cells while being more distant from cancer cells 

(Fig. 4d).  This interaction pattern was particularly notable among macrophages, CD4+ T cells, 

and B cells. 

 

The Histocat method also provides a ‘directionality’ metric for each pairwise interaction.  This 

metric is defined based on a pair of different cells where the first type is surrounded by the 

second type.  Our results revealed a spatial arrangement where cancer cells were frequently 

surrounded by immune cells, including lymphocytes (Supplementary Fig. 9c,d). 

 

Quantitative interaction scores between different neighboring cells 

Histocat determines the significant pairwise interactions within individual tissue regions.  

However, it provides only a categorical output with the following labels: significant interaction, 

significant avoidance, or non-significance.  Categorical outputs are not as amenable to 

determine the statistically significant pairwise interactions across multiple tissue regions.  

Additionally, there is a lack of spatial analysis methods that provide statistical comparisons while 

treating regions-of-interest correctly as replicates of a patient's tumor and not as independent 

samples.  To overcome these intrinsic limitations of Histocat, we developed a quantitative 

interaction score, defined as the proportion of interactions between a specific pair of cell types 

versus the interactions among all types of neighboring cells (Fig. 4b).  Like other proportion-

based comparisons, this approach enables: 1) rigorous statistical testing for significantly 
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different interactions between conditions; 2) evaluating different regions-of-interest from the 

same sample. 

 

With this method, we determined if there were interactions among the different cell types in the 

CRCs (Fig. 4e,f).  Among the MSI-H CRCs, CD8+ T cells interacted with proliferative immune 

cells (p value = 0.023, adjusted p value = 0.17).  This proliferative subclass of immune cells was 

predominantly composed of CD4+ T cells.  Among the MSS CRCs, we observed a trend where 

CD4+ T cells were more likely to interact with stromal cells like fibroblasts (p value = 0.0081, 

adjusted p value = 0.13). 

 

Cell neighborhood categories in the immune microenvironment 

We quantified patterns in the local cellular architecture defined as cell neighborhoods (CNs).  

For the initial step in characterizing CNs, we identified each individual cell's ten closest 

neighbors to define the local cellular microenvironment.  For nearly all cells, the 10 nearest 

neighbors were located within a 40 μm radius.  This metric is also an indicator of direct cell-cell 

interactions within the target cell’s proximal microenvironment15.  With K-means clustering we 

identified and quantified the different CN classes for each central cell and the composition of its 

ten nearest neighbors (Methods).  A total of eight major CN classes were identified: 1) P53+ 

tumor; 2) stromal; 3) bulk tumor; 4) immune-enriched stromal; 5) CD8+ T cell enriched; 6) 

proliferative tumor; 7) NK-cell enriched; 8) mixed immune.  For example, a CD8+ T cell could be 

classified as belonging to a 'bulk tumor' CN if epithelial tumor cells constitute the most of its 

neighboring cells.  Similarly, a CD4+ T cell is assigned to a 'stromal' CN if stromal cells 

represent the largest proportion of its ten nearest neighbors (Fig. 5a). 
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Each single cell was assigned to the one of eight CNs based on their neighbors (Fig. 5b).  As 

expected, the CD8+ T cell-enriched CNs were predominantly composed of CD8+ T cells 

(>40%), accompanied by other immune cell types such as CD4+ T cells (Supplementary Fig. 

11a).  Similarly, the proliferative tumor CNs were primarily composed of dividing tumor cells 

(>50%), that were adjacent to non-proliferating epithelial/tumor cells (Supplementary Fig. 11a).  

These patterns were consistently identified across all CRCs. 

 

We determined the representation of CNs such as the abundance of CD8+ T cell-enriched CNs 

(Fig. 5c).  To illustrate the range of CN spatial patterns, we show contrasting tissue regions 

from two different CRCs.  The two tumors show the spectrum of CN abundance scale for CD8+ 

T cell-enrichment.  Figure 5d shows a tissue region from CRC101, an MSI+ tumor which 

exhibited the highest abundance of CD8+ T cell-enriched CNs in our cohort.  Figure 5e depicts 

a tissue region from CRC100, a MSS tumor which displayed the lowest abundance of CD8+ T 

cell-enriched CNs.  For this CRC, the bulk tumor CN was the dominant type.  The distribution of 

CN proportions across all CRCs is shown in Figure 5f.  The bulk tumor CNs were the dominant 

major feature, as expected.  Immune-related neighborhoods, including CD8+ T cell-enriched 

CNs, were frequently present as well. 

 

Paired cell neighborhood proportions and recurrence 

We evaluated the possible correlations between the different cell neighborhood pairs 

(Supplementary Fig. 12).  For example, we compared the proportion of the CD8+ T cell CN 

versus the stromal CN.  Afterwards, we determined if the CN correlations were different 

between CRCs patients with recurrence versus no recurrence.  We conducted this analysis 

across all CRCs and then examined the MSS subset, not having MSI, for associations in 

recurrence.  There were too few MSI samples to determine any CN correlations with recurrence. 
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However, we successfully assessed the proportion of lymphocytes such as CD4+ and CD8+ T 

cells within tumor CNs between MSI-H CRCs and MSS CRCs.  MSI-H CRCs had a trend 

towards higher levels of CD8+ T cells, CD4+ T cells, and B cells within tumor CNs compared to 

MSS CRCs (Supplementary Fig. 11b).  The proportion of proliferative immune cells within 

tumor CNs was significantly higher in MSI-H tumors compared to MSS tumors (adjusted p-value 

= 0.0438, Supplementary Fig. 11b).  This finding was corroborated by interaction score 

analyses, which revealed that proliferative immune cells had stronger interactions with cancer 

cells in MSI-H tumors compared to MSS tumors (Fig. 4e). 

 

We examined if specific CN types were associated with recurrence among MSS CRCs.  For 

patients with recurrence, we observed a significant negative correlation between the abundance 

of immune-enriched stromal CNs and the bulk tumor CNs (adjusted p-value < 0.05) (Fig. 5h).  

For patients without recurrence, we identified a significant negative correlation between mixed 

immune CNs and stromal CNs (adjusted p-value < 0.05).  Finally, we examined the abundance 

of proliferative tumor CNs, as a single variable.  This CN did not show any differences between 

the recurrence versus non-recurrence CRCs.  This result suggests that CN pairs may be more 

informative when looking for specific clinical associations. 

 

Evaluating intratumoral and stromal tumor infiltrating lymphocytes 

We used the CN method for characterizing the spatial properties of TILs.  Within the local tumor 

microenvironment, lymphocytes can be spatially associated and interact with either cancer or 

stromal cells.  To quantify these TIL interactions, we defined two types (Fig. 6a): 1) intra-tumoral 

TILs where lymphocytes were located within tumor-dominated CNs (e.g., bulk tumor, 

proliferative tumor, and TP53+ tumor CNs); 2) stromal TILs where the lymphocytes were located 

within stromal CNs as characterized by a high proportion of fibroblasts.  Figure 6b illustrates the 
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cellular composition and TIL distribution across patients.  The top panel shows the proportion of 

lymphocytes, tumor CN cells, and stromal CN cells.  The middle and bottom panels depict the 

percentage of intra-tumoral TILs within tumor CNs and stroma TILs within stromal CNs, 

respectively, for each patient.  The proportion of intra-tumoral TILs among tumor CNs ranges 

from 0.007 to 0.294 while the proportion of stroma tils among tumor CNs ranges from 0.049 to 

0.304. 

 

Correlation of intratumoral and stromal tumor infiltrating lymphocytes with CRC features 

There was a significantly higher proportion of intra-tumoral TILs in MSI-H versus MSS tumors (p 

value = 0.036, Fig. 6c).  The addition of spatial CN features was important in recognizing this 

difference between MSI-H versus MSS CRCs.  For example, if we used simple TIL quantitation, 

e.g., the number of lymphocytes within a given region without spatial metrics, there was no 

significant difference observed between the MSI-H and MSS CRCs (Supplementary Fig. 12b).  

This result highlights the importance of considering spatial context when characterizing immune 

cell distributions in the TIME. 

 

To validate these findings, we obtained an independent spatial image data set from 35 

advanced stage CRCs15.  This study used a different approach for protein spatial analysis, co-

detection-by-indexing (CODEX).  Conducted by Schürch et al., they relied on a 56-protein 

marker CODEX assay applied to 27 primary CRCs from Stage III patients and 7 CRCs from 

Stage IV patients15.  This study had 140 CRC tissue regions.  The cohort included four MSI+ 

cases among 27 Stage III samples.  Since this study did not report results related to MSI status, 

we applied our spatial analysis methods to the data, incorporating metrics such as intra-tumoral 

TILs, as previously described. 
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From this independent CODEX CRC dataset, we observed similar trends despite the 

differences in the number of markers (16 vs. 56).  First, the rank order of immune cell 

proportions was consistent, with macrophages being the most abundant cell type, followed by 

CD4+ T cells, and so on.  Second, Schürch et al. also found that the most frequent pairwise 

cell-cell contacts were homotypic.  While their cell-cell contact analysis did not detect 

interactions between CD4+ T cells and stromal cells, they reported an enrichment of CD4+ T 

cells in CN-3 (immune-infiltrated stroma) among CLR patients with longer survival compared to 

DII patients with shorter survival.  This finding aligns with our results, where our interaction 

score revealed stronger interactions between CD4+ T cells and stromal cells in patients without 

recurrence compared to those with recurrence (Fig. 4f).  To identify TILs per our criteria, we 

classified lymphocytes located in CN-2 (bulk tumor) as intra-tumoral TILs. We observed a subtle 

trend of higher intratumoral lymphocyte presence in MSI-H tumors based on our iTIL definition, 

whereas overall lymphocyte proportions were lower among MSI tumors in this cohort. However, 

these observations were not statistically significant due to the small sample size of MSI cases 

(n=4, Supplementary Fig. 13). 

 

Next, we analyzed the stromal TIL distribution in relation to recurrence status and MSI.  Patients 

who did not have recurrence tend to have a higher proportion of stromal TILs (p = 0.27, 

Supplementary Fig. 12g).  This association was stronger among MSS tumors (p = 0.076) 

originating from patients without recurrence and this subset of MSS CRCs had 37% more 

stroma TILS compared to MSS CRCs from patients who did recur (Fig. 6d). 

 

From our study set, we determined if stromal TILs and intra-tumoral TILs had any association 

with survival.  MSI status as a single variable was not associated with survival (Supplementary 
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Fig. 14a).  However, the recurrence status significantly impacted survival (p value < 0.001, 

Supplementary Fig. 14b).  Additionally, our cohort includes 10 untreated samples, and 

treatment status did not significantly affect recurrence in this cohort (p = 0.0589, 

Supplementary Fig. 14c). 

 

Next, we categorized the CRCs into high and low stromal TIL groups using Otsu image 

thresholding (Methods).  Otsu’s method provides a single intensity level that is used to separate 

pixels into two classes, foreground and background.  We used the method to minimize intra-

class intensity variance, or equivalently, by maximizing inter-class variance, applied across all 

CRC images.  This processing provided a mean stromal TIL proportion of approximately 11%.  

Survival analysis on these two groups (high and low stromal TIL) revealed that high stromal TIL 

levels correlated with longer survival (Supplementary Fig. 14d), while intra-tumoral TIL levels 

showed no such association.  This stromal TIL-survival relationship was observed among MSS 

CRCs (p-value=0.038, Fig. 6e), with no significant correlation among MSI CRCs 

(Supplementary Fig. 14e).  Overall, these findings suggest stromal TIL abundance was a 

potential prognostic indicator in MSS colorectal cancer. 

 

DISCUSSION 

We conducted a spatial single-cell analysis on stage III colorectal cancer.  Our study employed 

mass cytometry imaging to determine the CRC cell topographic landscape.  To our knowledge, 

this report has the largest number of stage III CRCs ever used for a spatial analysis study.  We 

developed a novel hierarchical spatial analysis framework – it provides three key information 

patterns extracted from IMC spatial single-cell data, including: 1) proportions of individual cell 

types; 2) pairwise interactions between adjacent cells; 3) multicellular local tissue architecture in 
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CNs.  Then we evaluated how spatial distribution and cellular interactions within the TME and 

TIME were associated with MSI status and recurrence. 

 

Analyzing single cell spatial data has many advantages in defining specific cell types and spatial 

organization properties in cancers45.  This approach provides highly accurate quantitation of 

different cell types and their spatial organization features in the TME.  From our data, we first 

estimated cell proportion.  Then we used the cell proportion in combination with spatial features 

to characterize the different cell-cell interactions in their local community.  Across all CRCs and 

the162 tissue regions, we identified pairs of cell types that are likely to interact based on their 

spatial proximity and mediate specific joint functions in the TME. 

 

The metrics of cell proportion and cell-cell interactions were used to determine associations with 

specific clinical metrics.  For example, among patients with recurrence, their CRCs had a high 

positive correlation between CD8+ and CD4+ T cell abundance.  Patients with MSS CRCs and 

recurrence showed positive correlations with multiple immune cell types, including B cells and T 

cells and negative correlations between macrophages and cancer cells.  In contrast, the 

analysis of MSI status alone or immune cell proportion alone did not differentiate recurrence 

status.  These results suggest that considering the cell-cell interaction information improved the 

prediction of recurrence. 

 

We compared the differential enrichment of cell-cell colocalization at single cell resolution 

across different CRCs, considering variation within an individual tumor as well as those among 

different tumors.  There was higher interaction between cancer cells and CD8+ T cells among 

MSI-H CRCs compared to MSS CRCs.  This result was consistent with previous studies46,47 
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reporting higher lymphocyte infiltration, especially CD3 and CD8+ T cells in MSI-H CRCs.  Our 

study provided more specific and quantitative measures such as the interaction of CD8+ T cells 

and cancer cells. 

 

We observed greater interactions between cancer cells and proliferative immune cells in MSI-H 

tumors than MSS tumors.  T cells in contact with colorectal tumor cells proliferate at a higher 

rate compared to those T cells in contact with stromal cells48.  This phenomenon is related to 

the increased levels of neoantigens from MSI-H tumors – this leads to stimulation and 

proliferation of T cells, which we detected as proliferative immune cells.  The high level of 

interaction between CD8+ T cells and cancer cells is an immunologic biomarker of the better 

prognosis in MSI-H CRCs.  Citing a breast cancer example that parallels this result, the 

interaction between T cells and cancer cells has been associated with upregulation of activation 

markers49.  Interactive contact between activated CD8+ T cells and cancer cells has been 

associated with immunotherapy response in breast cancer patients49. 

 

Beyond single cell level interactions, we defined and evaluated features of the local cell 

community in CRCs.  Among CRC patients with recurrence, their tumors showed enrichment of 

communities with CD8+ T cells and other type of immune cells.  The measurement of 

lymphocyte proportion as a single variable was not informative for determining recurrence 

compared to TILs in their spatial context.  Extending the concept of CNs, we developed a 

quantitative measurement of intra-tumoral TILs and stromal TILs.  Intra-tumoral TILs in MSI-H 

tumors were significantly higher than what was observed in MSS tumors15.  For those patients 

with recurrence, their CRCs had an increase in intra-tumoral and stroma TILs compared to the 

CRC from patients without recurrence.  Also, we found that a greater abundance of stroma tils 

was associated with prolonged survival in MSS tumors.  These results were consistent with the 
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results from another study determining the prognostic value of intra-tumoral TILs and stromal 

TILs in stage III colon cancers50. 

 

We found more TP53+ tumor cells in MSS than in MSI-H samples.  This result reflects the 

significantly higher frequency of TP53 mutations in MSS tumors (63%) compared to MSI-H 

tumors (31%)37.  Mutations in the gene lead to TP53 protein that accumulates in the cells and 

becomes visible with immunostaining51.  The cell type proportion comparison suggests that MSI-

H samples tend to be more immunogenic than in MSS tissues, for example with more CD8+ T 

cells, a trend consistent with previous reports and our independent analysis of TCGA stage III 

COAD cohort. We discovered a rare population of proliferative immune cell population (<1% of 

total cells), consisting of a mixture signature of CD4+ T cells, T regulatory cells and 

macrophages.  Golby et al.48 found that a subset of T cells in close proximity or in contact with 

tumor cells were more proliferative than those in stroma region.  In breast cancer, proliferative 

immune cells have also been associated with better immunotherapy response49.  Across all 

samples, the most common immune cells were macrophage and CD8+ T cells. Colon cancer is 

now recognized as an immunogenic disease52 which prompted us to conduct a detailed 

quantitative analysis of the interaction between immune cells and the surrounding 

cancer/stroma/immune environment41. 

 

To improve the power of our study we acquired tissue regions from the tumor which let us 

sample more patients with the tradeoff of not being able to capture as much intra-heterogeneity 

were the entire tumor section sampled.  Despite this sampling bias, we accounted for inter-

tissue region variability in our statistical testing.  For future studies, using a greater number of 

markers will reveal additional cell types and various functional states. 
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MATERIALS AND METHODS  

Samples 

This study was approved by the Institutional Review Boards (IRB) from Stanford University and 

Intermountain Healthcare.  We analyzed Stage III colon adenocarcinoma tumor samples (n=52) 

from Intermountain Healthcare (St. George, Utah, USA).  Selection criteria and clinical 

information are described previously20.  All patients consented to the study and publication of 

results. 

 

Imaging mass cytometry analysis 

CRCs were prepared from a subset of these collected tumor samples (n=52).  Tissue 

assessment using H&E-stained sections of all 52 tumor samples were performed by a board-

certified pathologist and used as a guide for selection of tissue regions during imaging mass 

cytometry.  Tissues were processed for antibody staining.  Briefly, slides were baked for 2 hours 

at 60oC. Simultaneous dewaxing and antigen retrieval was conducted using the Lab Vision PT 

Module (Fisher Scientific, Hampton, NH) at 96oC in Epredia Dewax and Heat Induced Epitope 

Retrieval buffer at pH 9 for 35 min.  After cooling, slides were blocked in 3% BSA in TBS for 1 h.  

Samples were incubated with Maxpar® Human Immuno-Oncology IMC™ Antibody Panel Kit 

(Fluidigm, San Francisco, CA) for 5 h. Samples were then washed 6x with TBS and dried before 

IMC. 

 

Using IMC Imaging System (Fluidigm, San Francisco, CA)53, we simultaneously profiled 16 

protein markers for each tissue section, capturing molecular signatures of tissue architecture, 

cancer cells, and immune cells.  All antibodies conjugated with metal were directly procured 

from Fluidigm (Maxpar® Human Immuno-Oncology IMC™ Antibody Panel Kit). These 16 
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antibodies were specifically chosen to target cancer, stromal, and immune cell types (see 

Supplementary Table 2).  IMC uses laser beam to accurately ablate every 1µm2 of tissue 

region stained with metal-tagged antibodies from the slide samples.  The metal tags are then 

directed to a time-of-flight mass spectrometer for analysis.  This technique produces data of 

exceptional subcellular precision for FFPE tissue sections presented on glass microscopy 

slides. For each FFPE slide, between 2-8 tissue regions were chosen for in-depth analysis, with 

an average of approximately 2098 cells per tissue region.  The dimensions of these tissue 

regions spanned between 141 µm x 500 µm and 1121 µm x 1309 µm. 

 

Data analysis 

We first converted the raw IMC data (in the form of .mcd files) to a standard multi-channel 

image format (OME TIFFs), where each channel signifies the expression of a specific protein 

staining marker.  Using 500-pixel x 500-pixel crops of the original images, we trained a pixel 

segmentation model in ilastik54 to categorize pixels as cell nuclei, cytoplasm, or background.  

This trained pixel classification model was then applied across the entire full-resolution dataset.  

We manually reviewed the probability maps for each IMC image and retrained the classifier on 

the few images where the model was not accurate so that each IMC image was accurately pixel 

classified into nuclei, cytoplasm or background. 

 

We performed cell segmentation with CellProfiler.  Given the variability in the imaging area of 

IMC, the number of cells extracted from each image fluctuated between 200 and 1600 cells per 

regions-of-interest.  Once cell segmentation was completed, the protein expressions for each 

cell were determined by averaging the intensity of signals from other channels within the cell 

boundary, a process conducted using CellProfiler55.  Cells that were anomalously small (likely 

due to signal noise) or excessively large (indicating potential overlapping cells) were excluded 
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from further analysis.  The comprehensive workflow is depicted in Supplementary Figure 15. 

 

Genomic characterization 

We performed whole-exome-sequencing (WES), PCR and IHC to determine the MSI status of 

tumors from 42 patients (Supplementary Fig. 2a).  From the WES data we determined MSI 

status by running MSIsensor21 to compute a MSIsensor score and applied an established cut-off 

of >= 10 to identify MSI high (MSI-H) tumors56 (Supplementary Fig. 2b).  Where multiple 

assays had been performed for a patient, agreement of MSI status was unanimous. 

 

Mapping individual cell identities 

We performed unsupervised Leiden clustering to identify 22 clusters (Supplementary Fig. 3a). 

This was followed by supervised cluster merging using lineage marker expression profiles 

(Supplementary Table 2) and tissue location to identify 10 cell types. 

 

Cell type proportion analysis 

We used R to compute the proportion of each cell type at the tissue region level and at the 

patient level. To generate stacked bar plots of the cell type proportions we used the 

ComplexHeatmaps package.  We performed statistical testing to compare the proportion of cell 

types between with different molecular (i.e. MSI) and clinical characteristics (i.e. recurrence). 

We leveraged propeller57  and limma in R to rigorously identify statistically significant differences 

in cell type proportions. We first applied propeller to calculate logit transformed variance-

stabilized cell type proportions for each region-of-interest. We fitted a mixed effects linear model 

to the transformed proportions using lmFit in limma. We included tumor purity as a covariate as 

tissue regions that sampled from the same patient may have different cell type proportions and 
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tumor purity depending on the sampled location (e.g., tumor core vs tumor margin) 

(Supplementary Fig. 1b, c). As multiple tissue regions were acquired for each patient, we 

accounted for replicates from the same individual using the duplicateCorrelation function in 

limma and including this a random effect in the linear model. To make comparisons between 

patients belonging to two conditions, we performed moderated t-tests using eBayes in limma. p 

values were false discovery rate (FDR) adjusted using Benjamini-Hochberg. 

 

Cancer genomic validation of cell type proportions 

We replicated our cell type proportion testing on a cohort of Stage III colon adenocarcinoma 

patients from The Cancer Genome Atlas (TCGA). Cell type proportions were collected from 

previously published CIBERSORTx deconvoluted transcriptomic data25. To determine MSI 

status, we downloaded MSIsensor scores from cBioPortal58 and applied the identical cut-off 

used for our data (Supplementary Fig. 4a). To establish recurrence status, we used a 

standardized dataset of clinical outcomes from TCGA59 and considered patients with a disease-

free interval event (DFI=1) to have recurred. Ultimately, from the TCGA Stage III colon 

adenocarcinoma cohort, we selected patients with CIBERSORTx derived cell type proportions 

and MSI status or recurrence status. We performed same statistical testing as for IMC data, 

however, as there is only one replicate, we do not need to account for sampling variation with 

duplicateCorrelation.  

 

Cell type proportion correlations 

We computed the cell type proportions at the patient level and calculated the spearman 

correlation between each pair of cell types with the rcorr function from the Hmisc package in R. 

p values were FDR adjusted and only significant correlations with p<=0.05 were plotted as 
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correlograms using the corrplot package in R. The same process was used for both IMC and 

TCGA CIBERSORTx data. 

 

Cell-cell interaction analysis using a permutation-based approach 

After annotating the spatial single-cell data, we sought to identify pairwise interactions between 

cells neighboring each other.  We implemented the permutation-based neighborhood analysis 

developed for the Histocat software17.  In this approach, for each tissue region, we first 

determined pairwise interactions based on proximity between cell membranes identified in cell 

segmentation.  We defined a cell as interacting with a neighboring cell if the distance between 

the two outer membranes were 6um or less (Supplementary Fig. 8a).  Next, we counted the 

number of pairwise interactions between all cell types (Supplementary Fig. 8b).  We 

considered the first cell type to the cell type of interest which lies in the vicinity (i.e., 

neighborhood) of the second cell type.  For each pairwise interaction, we divided the number of 

the interaction by the number of the cell type of interest to calculate the mean interactions for 

each cell type pair (Supplementary Fig. 8c).  

 

To determine which pairs of cell types are preferentially interacting or avoiding each other, we 

compared the mean interactions we observed against a baseline distribution where the cells are 

randomly distributed. To estimate this baseline distribution, we randomly shuffled the identity of 

the cells while maintaining the same no. of each cell type (Supplementary Fig. 8d).  We 

repeated this procedure 1000 times and recorded the number of the pairwise interactions for 

each cell type pair for each random iteration.  Finally, the observed pairwise interactions were 

compared to the baseline distribution through two one-tailed permutations tests 

(Supplementary Fig. 8e).  We considered interactions with P < 0.01 to be significant. 
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Cell-cell interaction testing using an interaction score 

We developed a quantitative interaction score to enable identification of statistically significant 

interactions between conditions (Fig 4b).  We applied the same definition of interacting cells as 

in the Histocat approach.  To reducing the noise in the data, we removed tissue regions with 

fewer than 20 cells of any cell type and focused on 33 interactions involving immune cells.  For 

the interaction score we computed the number of interactions between the cell pair of interest / 

total number of interactions for each region-of-interest.  As the interaction score represents a 

proportion, we applied the same limma framework as described for cell type proportion testing 

to rigorously identify statistically different cell type – cell type interactions between conditions. 

 

We quantified the center-to-center distance between neighboring cells to inform our definition of 

cell neighborhoods. To identify neighboring cells, we applied Delaunay triangulation 

implemented in the Squidpy18 python package to construct a spatial graph where cells are 

represented by nodes on the graph and neighboring cells/nodes are connected as edges. We 

quantified the distances between neighboring cells across all samples.  As shown in 

Supplementary Figure 17, the most frequently observed distance between two neighboring 

cells across all samples as approximately 10 pixels, which is equivalent of 10 μm.  

 

Identifying cell neighborhoods (CNs) 

We defined cell neighborhoods as an index cell and the 10 nearest neighboring cells 

surrounding it.  In very sparse tissues, an index cell’s closest neighbors may still be far away 

and beyond the ability of cell-cell communication.  Thus, we only considered neighboring cells 

within 40 μm of the index cell to avoid classifying distant cells within sparse tissues are 
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belonging to the same cell neighborhood. The radius threshold was informed by the cell-cell 

distance analysis. Using Delaunay triangulation to construct a spatial graph of neighboring cells 

across all samples, we found that two adjacent cells were most frequently 10 μm apart (center 

to center) and almost all were within 40 μm (Supplementary Fig. 17).  Accordingly, any cells 

located outside a 40 radius from a cell's center were excluded from the count of neighboring 

cells. Indeed, most cells had ten immediate neighbors. 

 

We expect that CNs with similar cell compositions will have similar functions.   Therefore, we 

performed K-means clustering to identify consistent cell neighborhoods across all patients and 

found that 8 neighborhoods were the most interpretable yet discriminative.  We annotated the 

neighborhoods based on the composition of cells within the neighborhood. 

 

Cell neighborhood proportion testing 

As each cell has its own neighborhood, we compare cell neighborhood proportions using the 

same methodology as comparing cell type proportions. Similarly, we compared cell 

neighborhood proportion correlations using the same approach as for comparing cell type 

proportion correlations. 

 

Identification of tumor-infiltrating-lymphocytes (TILs) 

We defined two classes of TILs: intratumoral TILs (intra-tumoral TILs) and stromal TILs (stroma 

tils). We defined intratumoral TILs as lymphocytes (I.e. CD4+ T cell, CD8+ T cell, B cell) that 

belonged to a tumor cell neighborhood (I.e. bulk tumor CN, TP53+ tumor CN, proliferative tumor 

CN). Likewise, we defined stromal TILs as belonging to a stromal cell neighborhood (I.e. stromal 

CN, immune-enriched stromal CN). 
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With this definition we calculated the proportion of TILs relative to the total number of tumor 

cells in tumor CNs for each tissue region. To compare between different conditions, we adopt 

the same framework used for cell type proportion testing.  

 

Validation of TILs 

We downloaded public data of CODEX spatial proteomics15 of Stage III and IV colorectal 

cancers to validate our TILs identification approach. As the cells had already been classified 

and aggregated into cell neighborhoods, we labelled each T cell or B cell subtype as a 

lymphocyte and considered those belonging to the CN-2 (Bulk tumor) to be intra-tumoral TILs.  

 

TILs survival analysis 

To determine whether the abundance of TILs was associated with overall survival (OS) we first 

classified patients as low or high TIL and then applied a cox proportional hazards model. We 

sought to automatically classify patients are low or high TIL and selected the Otsu threshold 

method, implemented in the autothresholdr60 package for R. This approach finds a threshold 

that maximizes the variance between two classes and minimizes the variance within each class. 

After identifying low and high TIL patients, we performed survival analysis using the survival 

package for R. 

 

Data availability 

The Seurat and Scanpy objects for single-cell data, along with a CSV file containing coordinates 

and cell types for all single cells, have been deposited in Zenodo under the DOI: https://doi.org/ 
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10.5281/zenodo.13901180. The original IMC image data has also been uploaded to Zenodo 

under the same DOI. All these files are publicly accessible as of the publication date. 

 

Code availability 

All the code used in this study, along with detailed instructions, are available with instructions on 

GitHub: https://github.com/BiomedicalMachineLearning/CRC_Spatial_Landscape/tree/main 
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FIGURES 

Figure 1. Overview of the computational framework for single-cell spatial analysis. a) 

Cohort overview and data generation pipeline, b) Analytical workflow: from single-cell features 

to higher-order spatial characteristics. 

 

Figure 2.  Determining single-cell identity.  a) The UMAP plot displaying 10 cell types 

identified via unsupervised Leiden clustering, b) heatmap of lineage marker expression for each 

cell type, accompanied by a bar plot showing the total cell count for each type across all 

samples, c) example of an IMC Hyperion image, d) corresponding  cell type annotation image, 

e) corresponding H&E image with pathologist annotations, f) heatmap of immune cell makers for 

various immune cell types, g) the expression level of four markers across the 10 cell types, f) 

relative expression of markers in proliferative immune cell type compared to the other cell types. 

 

Figure 3.  Cell type composition across all samples. a) The box plots showing the 

distribution of all cell type proportions, b) immune cell type proportions across all samples (n = 

52), c) stacked bar plot illustrating cell type proportions in MSI (n = 9) and MSS (n = 33) 

samples, ordered by CD8+ T cell proportion, d) representative IMC images of tissue region from 

a patient with the highest CD8+ T cell proportion, e) a patient with the lowest CD8+ T cell 

proportion, f) box plots comparing the proportion of TP53+ tumor cells and CD8+ T cells 

between MSI and MSS tumors (*p < 0.05), g)  cell type proportion correlation correlograms for 

patients with tumor recurrence (MSI: n = 5, MSS: n=26), showing only significant correlations 

(Spearman's correlation, adjusted p ≤ 0.05). Color scale bar indicates the strength and direction 

of correlations across tissue regions. 
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Figure 4.  Cell-Cell interactions in the tumor microenvironment. a) An overview of 

Histocat's random permutation approach for assessing significant interactions or avoidance 

between cell type pairs at the tissue region level, b) quantitative interaction scores for identifying 

significant pairwise cell interactions between two conditions, c) homotypic interactions shown as 

the logarithmic fold-change (LogFC) of interacting versus avoiding tissue regions, d) heterotypic 

interactions highlighting the top 10 most engaged and avoided pairs, e) boxplots comparing 

interaction scores between MSI-H and MSS samples, displaying the 5 lowest adjusted p-values, 

f) boxplot of interaction scores between two cell types in MSS samples, comparing cases with 

and without recurrence. 

 

Figure 5.  Cell neighborhoods (CN) in Stage III colorectal cancer.  a) definition of cell 

neighborhoods with three examples, b) K-means clustering identifies 8 distinct CNs, with a 

heatmap showing the cell type composition for each cluster (x-axis: cell types; y-axis: CNs), c) 

Stacked bar plot of CN composition in each patient's tumor, categorized by MSI status and 

ordered by CD8+ T cell-enriched CN proportion, d) Example tissue region from a patient with 

the most abundant CD8+ T cell-enriched CNs, e) from a patient with the least abundant CD8+ T 

cell-enriched CNs, f) Overall abundance of each CN across all samples, g and h) correlation 

correlograms between different CN proportions among MSS patients with and without 

recurrence, only showing significant relationships (adjusted p ≤ 0.05).  The scale bar indicates 

correlation strength across tissue regions. 

 

Figure 6.  Spatial definition and clinical relevance of TILs in CRC Stage III.  a) definition of 

lymphocytes as two types of TILs: intra-tumoral TILs (intra-tumoral TILs) in tumor CNs and 

stromal TILs (stroma tils) in stromal CNs, b) major cell type proportions including intra-tumoral 

TILs and stroma TILs across all samples with MSI status (n=42), c) intra-tumoral TIL proportion 
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differences per tissue region between MSI and MSS samples, d) stromal TIL proportion 

differences per tissue region between recure and no recur among MSS or MSI samples, e) 

classification of samples into high and low stroma tils using Otsu thresholding, with 

corresponding overall survival curves for all MSS samples (n = 33). 
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