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Forcing of late Pleistocene ice 
volume by spatially variable 
summer energy
Kristian Agasøster Haaga   1,2,3, Jo Brendryen1,3, David Diego1,2 & Bjarte Hannisdal   1,2,3

Changes in Earth’s orbit set the pace of glacial cycles, but the role of spatial variability in the insolation 
forcing of global ice volume remains unknown. Here, we leverage the intrinsic dynamical information in 
empirical records to show that ice volume responded to summer energy at high northern latitudes, as 
predicted by Milankovitch theory. However, the external forcing of ice volume encompasses insolation 
signals with a wide range of orbital frequency content, and cannot be fully accounted for by a unique 
time series. Southern mid-latitude insolation forcing coincides with the position of the subtropical 
front and the westerlies, which have been implicated in Quaternary climate changes. Dominant forcing 
modes at northern mid-latitudes are anti-phased with the canonical Milankovitch forcing, consistent 
with ice volume sensitivity to latitudinal insolation gradients.

Earth’s climate and global ice volume oscillated in tune with changes in orbital geometry during the Quaternary 
period. Evidence of this relationship is derived from geochemical indicators in marine microfossils found in 
deep ocean sediment cores. Isotopic ratios in foraminiferal shells (tests) show that Northern Hemisphere ice 
sheets grew and receded periodically1. This periodicity is clearly visible in global sea level reconstructions2 and 
is also mirrored in other climate indices such as global sea surface temperature3. Because Earth’s rotational axis 
and the shape of its orbit vary with similar frequencies as the glacial cycles, the orbital changes have been dubbed 
a pacemaker of Quaternary glacial-interglacial climate variability1. Hypotheses for the origin of the recurrent 
ice ages include obliquity, precession and combined orbital pacing of deglaciations by various mechanisms1,4–12. 
The extent to which latitudinal insolation acted as a dynamical forcing of late Pleistocene ice volume variability, 
however, has not been directly quantified.

In the Pleistocene, large paleo-ice sheets were located in the Northern Hemisphere and summer ablation is 
considered a key factor controlling ice sheet size. Milankovitch theory predicts that if insolation controls conti-
nental ice sheet dynamics, then northern latitude summer insolation plays a central role13. We test this prediction 
by quantifying the dynamical response of global ice volume to latitudinal insolation forcing. To achieve this, we 
target a recent reconstruction of global sea level (GSL)2 spanning the past 800,000 years. The advantage of using 
GSL over stacked benthic isotope records (e.g.14) is that it explicitly records global ice volume changes, and that it 
minimises bias due to temperature-driven fractionation and differences in oxygen isotopes between the Atlantic 
and Pacific basins2.

The GSL time series does not simply record a response to insolation forcing, but contains information on 
greenhouse gases, ocean circulation, and other processes in the climate system of which ice volume itself is an 
active component. However, dynamical systems theory shows that one can reconstruct the dynamics of a system 
of unknown complexity from an observed time series of a single variable15–17. Hence, if latitudinally varying inso-
lation was a dynamical influence on changes in ice volume, then information about this insolation forcing should 
be recoverable from the GSL record of ice volume variations. To test this assertion, we use a model-free time series 
analysis method, convergent cross mapping (CCM)18,19. This method is based on state-space reconstruction from 
time delay embedding, and measures the extent to which a forcing time series can be predicted from a response 
time series. CCM can detect causal coupling in non-linear dynamical systems18, making the method well suited 
for studying climate dynamics, where non-linear interactions are ubiquitous. We use CCM to test if GSL can 
predict latitudinal insolation reconstructions. If GSL significantly predicts the insolation time series at a given 

1Department of Earth Science, University of Bergen, P.O. Box 7803, N-5020, Bergen, Norway. 2The K.G. Jebsen 
Centre for Deep Sea Research, P.O. Box 7803, N-5020, Bergen, Norway. 3Bjerknes Centre for Climate Research 
(BCCR), Allégaten 70, N-5007, Bergen, Norway. Correspondence and requests for materials should be addressed to 
K.A.H. (email: kristian.haaga@uib.no)

Received: 14 May 2018

Accepted: 20 July 2018

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0001-6880-8725
http://orcid.org/0000-0002-7637-758X
mailto:kristian.haaga@uib.no


www.nature.com/scientificreports/

2SCienTifiC REPOrtS |  (2018) 8:11520  | DOI:10.1038/s41598-018-29916-3

latitude, then there is empirical support for local insolation at that latitude contributing to the dynamical forcing 
of ice volume.

Results
Summer energy time series.  Ice sheets are most sensitive to insolation during summer melting season. 
Choosing a meaningful insolation metric is thus crucial for investigating climate system responses to insolation 
forcing. Summer energy is defined as the sum of daily insolation over days of the year exceeding a specified inso-
lation intensity threshold20 and varies with latitude and the choice of the threshold value21.

We use summer energy time series over all latitudes in 1° increments, generated at threshold values ranging 
from 0 Wm−2 to 500 Wm−2 in 25 Wm−2 increments. Integrating summer insolation over low thresholds yields 
time series representing longer summer periods, including the full annual insolation. Higher thresholds, on the 
other hand, yield time series representing peak summers (Fig. 1). Each summer energy time series corresponds 
to spatially separate physical forcing scenarios that span different portions of the year, and we seek to detect the 
dynamical influence of these local processes on global ice volume. We emphasize that we do not use these 1° 
increment insolation signals to force an ice sheet model. Instead, we use a model-free approach to quantify the 
dynamical contribution of local insolation at different latitudes on global ice volume.

According to Milankovitch theory, the strongest forcing is expected to occur at latitudes where landmasses 
were ice-covered during glacial intervals, with weaker or no latitudinal forcing in southern and equatorial parts of 
the globe. In addition, peak summer is expected to dominate the insolation forcing. Our spatiotemporally explicit 
approach allows us to test both aspects of the theory without making mechanistic assumptions.

Significance assessment.  We proceed by quantifying the extent to which GSL predicts each latitudinal 
summer energy time series. To determine whether the integrated insolation forcing at a given latitude is signif-
icant, we use the method of surrogate testing (see methods). A necessary condition for statistical detection of a 
causal response of ice volume to insolation forcing at a given latitude is that the prediction of summer energy 
time series from GSL is significant beyond their shared frequencies. This condition is tested by a null ensemble of 
amplitude-adjusted Fourier transform (AAFT) surrogates, which are constructed by randomising the data in a 
way that retains the autocorrelation function, or, equivalently, the periodogram of the original forcing time series. 
In order to resolve causal directionality, we compute CCM over a range of negative and positive time lags, and 
require that CCM skill must be stronger for negative lags (causal) than for positive lags (non causal; see methods). 
If both the surrogate test and the lag test pass, there is statistical evidence of dynamical forcing of sea level by 
insolation at that latitude.

Predicting summer energy from GSL on an orbitally independent age model.  CCM analysis 
yields three connected regions of positive prediction skill in latitude-threshold space (Fig. 2). These three clusters 
represent insolation forcing occurring during different portions of the year in distinct latitudinal bands.

In the latitudinal zone at 50–90°N, GSL predicts summer energy time series for a wide range of threshold 
values, primarily above 250 Wm−2 (cluster NH1 in Fig. 2). Prediction strengths in this latitudinal band are 
bi-modally distributed south and north of 70°N. North of 70°N, prediction is strongest when summer energy is 
defined by the 400–450 Wm−2 thresholds. South of 70°N, prediction strength peaks at the 300–350 Wm−2 thresh-
olds. This prediction pattern coincides with the relative dominance of orbital frequencies in the forcing time 
series: prediction skill is strongest for time series with roughly equal contributions of obliquity and precession 
(contour lines in Fig. 2). From the maximum prediction strength at around 50/50 obliquity/precession, prediction 
skills decrease as the summer energy time series get more precession or obliquity dominated; this corresponds to 
insolation integrated over shorter and longer summer time windows, respectively.

Further, we detect significant prediction of summer energy by GSL in two continuous clusters in 
latitude-threshold space, one in each hemisphere (clusters NH2 and SH in Fig. 2), where GSL predicts summer 
energy, primarily for time series corresponding to thresholds of 50–400 Wm−2. The overall pattern for both clus-
ters is that prediction is successful at lower latitudes for high threshold values, transitioning to increasingly higher 
latitudes as the threshold decreases. However, these clusters are hemispherically asymmetric. NH2 spans the 
latitudinal zone from 55°N to around the equator, while SH covers 30–65°S. GSL predicts time series with a wide 
range of obliquity-to-precession ratios for both clusters, but there are some cross-hemispheric differences (Fig. 3). 
SH corresponds to time series with frequency power distributed over the entire range of obliquity/precession 
ratios, while time series are more precession dominated for NH2. Annual integrated insolation at low threshold 
specifications (0–75 Wm−2) is also predicted by GSL. At these thresholds, successful prediction occurs in both 
hemispheres 45–55° (included in NH2 and SH).

We have verified our results on three different age models for the GSL record. The original GSL age model 
is based on the LR04 stack, whose age model is tuned to an ice sheet model forced by insolation. This approach 
may introduce circularity between the orbital forcing and the putative ice volume response. Therefore, we have 
constructed two alternative age models for the sea level stack (Fig. 4; see methods). One is based on tuning by 
aligning bandpass-filtered sea level and speleothem records22, and one utilises the connection between North 
Atlantic sea surface temperatures and Asian monsoon intensity, linking North Atlantic benthic δ18O records with 
U-Th-dated Chinese speleothem records23,24. Both alternative age models are based on U-Th and ice core data, 
but the latter uses a tuning independent of both ice volume and orbital parameters. The two alternative models 
give overall similar non-lagged CCM results as the LR04 age model when predicting summer energy from GSL 
(Fig. 5). To avoid circularity, we here present results based on the age model that is independent of both sea level 
and orbital tuning.
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Figure 1.  Examples of summer energy reconstructions at different latitudes. (A) Yearly insolation intensity 
(solid lines) at 65°N and 35°N for the current orbital configuration. For low threshold values (stippled line), 
local summer energy is integrated over large portions of the year (shaded area). (B) For higher threshold values, 
fewer days are integrated, with summer energy representing the local insolation forcing during peak summer. 
(C) Corresponding summer energy forcing time series reconstructed for orbital configurations over the past 
800 kyr. Latitudinal summer energy is computed using the code accompanying ref.20, which calculates daily 
insolation following ref.67 with orbital parameters from ref.68.
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Figure 2.  Predicting summer energy from global sea level records for the past 800,000 years. Each cell in 
the heat map indicates the CCM prediction skill when GSL is used to predict summer energy at that latitude 
and threshold. Low thresholds represent forcing by insolation over large portions of the year, whereas high 
thresholds represent peak summer insolation forcing. Non-zero skill implies that GSL contains information 
about summer energy beyond noise and shared frequencies, which, in the context of CCM, is interpreted as 
dynamical forcing of ice volume by summer energy at that latitude. The magnitude of CCM skill indicates the 
relative strength of summer energy forcing. Skill is set to zero for latitude-threshold specifications where the 
lagged causality test fails and/or the null hypotheses cannot be rejected at the 0.01 level (see methods). Contour 
lines indicate the fraction of obliquity (1/41 ± 1/150 kyr) to precession (1/21 ± 1/150 kyr) frequency band power 
for the corresponding summer energy time series, from obliquity dominated (dark red lines) to precession 
dominated (white lines).
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Figure 3.  Ratio of obliquity band (1/41 ± 1/150 kyr) to precession band (1/21 ± 1/150 kyr) variance in summer 
energy time series versus strength of coupling to ice volume indicated by CCM skill. Results are grouped 
according to the clusters in Fig. 2.
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Discussion
Our model-free approach, which makes no a priori assumptions about the coupling between ice volume and 
insolation, neither through explicit mechanisms nor through age model construction, provides strong evidence 
of Milankovitch type forcing of ice volume. Northern Hemisphere ice sheets dominated the global ice volume 
signal during the past 800,000 years. The latitudinal zone from 50–80°N corresponds to the known range of 
land-based Northern Hemisphere ice sheets during the late Pleistocene, which reached as far south as 40°N 
during glacial maxima25. The successful prediction of summer energy by GSL in the NH1 cluster (Fig. 2) thus 
provides a data-driven confirmation that Northern Hemisphere summer energy acted as a dynamical forcing of 
Northern Hemisphere ice sheets.

We re-iterate that CCM does not make assumptions about properties or mechanistic behaviors of the ice 
sheets, or their interaction with other climate system components. Our approach only targets the intrinsic 
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Figure 4.  Age models used in this study. Upper panel: the black line shows GSL on the original age model2, 
which is aligned with the LR04 stack14. The blue line shows GSL on the age model (‘speleothem’) constructed 
following the approach of ref.22 using band-pass filtering (see methods). The red line shows GSL on an orbitally 
independent age model (‘speleoice’) constructed by tuning a composite of North Atlantic SST proxy records 
to the speleothem record (see methods). Lower panel: age offsets between the original LR04-based GSL 
chronology and the two alternative age models. Dashed lines show the average offsets.
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Figure 5.  Comparison of non-lagged CCM results for the different age models considered in this study (see 
Fig. 4). Overall, CCM skills are higher for the LR04 age model, possibly reflecting stronger coupling induced by 
the tuning of the LR04 age model to the orbital forcing. All results discussed in the main text are based on the 
fully orbitally independent ‘speleoice’ age model.
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dynamical information in the observed GSL record, and estimates the strength of dynamical coupling over the 
entire 800 kyr interval covered by the GSL reconstruction. This way of looking at dynamical causality is funda-
mentally different from an event-based view26, in that an underlying dynamical coupling between insolation and 
the climate system might exist even if the relationship between components varies through time (e.g. lead-lag 
relationships between glacial terminations and insolation peaks). Thus, the detected couplings in our study cap-
ture not only direct, linear responses of ice sheets to specific insolation peaks, but also nonlinear, lagged effects 
which include modulation by other climatic factors such as greenhouse gases.

Causal pathways from local insolation to global ice volume vary with latitude. Different forcing scenarios 
overlap in their relative ratio of obliquity to precession variability (Figs 2 and 3) and might show strong covari-
ance, but unique latitude-threshold combinations correspond to physically distinct causal chains leading from 
local insolation to ice volume variations. An example of this distinction is Antarctic climate, which, due to its 
phase coherence with selected Northern Hemisphere insolation time series, has been interpreted to be controlled 
by northern insolation27. However, Antarctic climate variability can also be explained by a local response to the 
duration of the Antarctic summer28. Both local and remote forcings might thus influence a given geographical 
region. Because of the uncertainty inherent in ice sheet reconstructions, the boundary separating regions of direct 
insolation influence from regions of indirect influence cannot be precisely resolved. The NH1 cluster represents 
mostly direct insolation forcing effects, but likely also some indirect effects for the southernmost forcing signals. 
Similarly, the northernmost forcing signals in NH2 may represent the direct effect of annual insolation on ice 
sheets at these latitudes.

Our analyses indicate that Northern Hemisphere ice sheets respond to local summer insolation, but that 
insolation in the SH cluster (Fig. 2) also contributes to ice volume variations. Although the dominant modes of 
summer energy forcing in the NH1 and SH clusters are redundant (Fig. 6; black and red lines), individual forcing 
time series are highly variable (Fig. 3). Our interpretation is that there are distinct physical processes occurring 
during different times of the year in different geographical regions, each having a unique causal pathway to ice 
volume, that may have worked in tandem to produce the observed global ice volume variations. Covariance 
between different local summer energy forcing time series might be strong, but local climate necessarily responds 
to the duration of summer and the magnitude of the integrated insolation intensity at that location, the effect of 
which may be magnified or suppressed by other climatic processes.

There are several climatic processes operating at southern mid-latitudes that might be significantly influenced 
by local insolation. For example, the Patagonian ice sheet resides at these latitudes, and it has been hypothesized 
that Patagonian ice sheet dynamics affect the flux of dust over the Southern Ocean and Antarctica29. Variation 
in the dust supply to surface waters drives natural iron fertilisation and regulates the intensity of the biological 
pump30. This process could influence ocean stratification and venting of CO2 from the deep oceans, resulting in 
global climatic impacts. We also note that the 40–60°S latitudinal band coincides with the position of the oceanic 
subtropical and sub-Antarctic front systems and the mid-latitude westerlies31. It has been proposed that the posi-
tion of the subtropical front relative to the southern tip of Africa modulates glacial climate through regulation 
of heat and salt exchange between the Indian and Atlantic oceans by the Agulhas leakage, affecting the strength 
of the Atlantic meridional overturning circulation31–33. In addition, the position of the westerlies and Southern 
Ocean sea ice dynamics may regulate venting of deep water and the release of stored CO2 to the atmosphere, 
which in turn affects ice sheets in the Northern Hemisphere34.

Our analysis shows no statistically significant effect of southern high latitude summer energy on global sea 
level. The response to direct insolation forcing at high southern latitudes may be too small in comparison to that 
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Figure 6.  Comparing dominant latitudinal summer energy modes to the canonical Milankovitch forcing 
signal. The first principal component (PC1) time series of the three significant forcing clusters in Fig. 2 explain 
94% (NH1), 77% (NH2), and 82% (SH) of the variance in each cluster. The conventional Milankovitch forcing is 
represented by summer energy at 65°N for the 350 Wm−2 threshold. For reference, the upper time series shows 
the sea level record (GSL) used to predict insolation curves (for details on the orbitally independent age model, 
see Fig. 4).
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of northern hemisphere ice sheets for it to be detectable beyond our chosen null hypothesis. This result may be 
understood in terms of the difference between the Arctic and Antarctic ice sheets. Because the Antarctic ice sheet 
mostly loses mass along the continent edges28, it is less affected by albedo and elevation feedbacks35. Its influ-
ence on global sea level on the time scales considered here could thus be negligible compared to the Northern 
Hemisphere ice sheets, which show much larger variability over the same time span.

In addition to the direct effect of local northern insolation, Northern Hemisphere ice sheets were likely also 
influenced by local and global feedbacks involving basal sliding36, greenhouse gases34, changes in vegetation37, 
dust38 and glacial isostasy39. The explicit role of different mechanisms in the insolation-climate link, however, 
cannot be resolved with the global data sets used here. For regions in the Northern Hemisphere south of the 
maximal extent of the late Pleistocene ice sheets, the influence of local summer energy forcing on ice volume 
must necessarily be indirect. Overall, insolation forcing in the NH2 cluster is overall more precession dominated 
compared to further north in NH1 (Figs 2, 3 and 6). The sensitivity of local climatic processes to local insolation 
forcing at these latitudes was likely different from regions hosting large Northern Hemisphere ice sheets, where 
the detected insolation forcing is mostly restricted to the summer half-year. In the NH2 cluster, the dominant 
forcing mode is generally in anti-phase and inversely correlated with the direct Milankovitch type summer forc-
ing of more northern latitudes (Fig. 6; blue line). This inverse relationship is consistent with a role of differential 
heating due to meridional insolation gradients in the Northern Hemisphere, which may regulate atmospheric 
fluxes of moisture and heat40,41.

From a linear perspective, we can distil the variance of clusters of summer energy time series in 
latitude-threshold space using the eigenvector of the covariance matrix of each cluster with the largest corre-
sponding eigenvalue (Fig. 6). For both NH1 and SH clusters, their first principal component time series nearly 
perfectly covary with 65°N summer energy at the 350 Wm−2 threshold, which closely matches the caloric summer 
half-year insolation at 65°N that was considered by Milankovitch13. Using 65°N summer energy at 350 Wm−2 as 
a first approximation of regional insolation forcing of global ice volume on these time scales is thus supported 
by intrinsic dynamical evidence in the GSL record on an orbitally independent age model. In contrast, the first 
principal component time series for NH2 is more precession dominated and generally in antiphase with the NH1 
and SH principal components. Hence, the dynamics of the summer energy time series in the NH2 cluster repre-
sents regional insolation forcing of global ice volume that is not captured by the canonical Milankovitch forcing. 
We emphasize that although the dominant insolation forcing modes for the NH1 and SH clusters are similar to 
the canonical Milankovitch forcing (Fig. 6), significant predictability occurs for a range of time series with very 
different characteristics within each cluster. The nature of our causality test ensures that any inferred dynamical 
coupling between global ice volume and summer energy on these time scales cannot be accounted for solely by 
the dominant modes of forcing or by orbital frequency content alone.

Both obliquity and precession components feature prominently in the dynamics of global ice volume. Our 
analysis shows that there is no clear answer to the question of which orbital parameter plays a greater overall 
dynamical role as a forcing of global ice volume (Figs 2 and 3). The spread of obliquity-to-precession frequency 
content in significantly predicted summer energy time series arises naturally as a consequence of spatiotemporal 
heterogeneity in the insolation forcing.

Methods
Convergent cross-mapping (CCM) analyses.  If two variables belong to the same dynamical system, 
then there is a 1:1 mapping between the reconstructed state spaces of both variables16. CCM estimates to what 
extent such a mapping exists, using the amount of information from the “driving” variable that is encoded in the 
“response” variable, and vice versa18. To resolve causal directionality, we employed time-lagged analyses using the 
rEDM implementation42 of CCM. Rather than inferring causality whenever the optimal lag is negative19,43,44, we 
used a more stringent criterion to reduce the likelihood of false positives: the total significant CCM skill (ρccm) of 
negative lags (past affects future) had to exceed that of positive lags (future affects past):

∑ ∑ρ
ρ ρ

= −
=

−

=n nccm
causal

i min lag

ccm
i

lags i

max lag
ccm
i

lags( )

1

1

( )

where results for zero lag were excluded to avoid bias in either direction. A directional causal forcing was detected 
if ρ > 0ccm

causal . In contrast, ρ ≤ 0ccm
causal  implied that there was no detectable causal effect. We chose this conservative 

approach to limit the likelihood of false positives; we did not infer strict causal delays, which might be biased45, but 
limited our interpretation to causal directionality. Our lagged causality test (Fig. 2) used a maximum lag of 12 kyr.

Choice of embedding dimensions.  CCM estimates dynamical coupling using a time-delay reconstruc-
tion16,17,46 of the dynamics. We took the minimal embedding dimension (Emin) as the integer dimension strictly 
larger than twice the box-counting dimension17 of the reconstructed attractor, and required the false nearest 
neighbour (FNN) rate to be less than 0.01. We used the tseriesChaos47 and fractaldim48 R packages to estimate the 
minimal FNN ( < .Emin

FNN 0 01) and box counting dimensions (Emin
box). To ensure numerical stability when estimating the 

box-counting dimension, summer energy time series with >2% zero values were excluded from the analyses. 
Optimal embedding parameters Eopt were then selected by maximizing self-prediction using simplex projection49 
over integer dimensions …< .max E E{ { , }, , 10}min

box
min
FNN 0 01  with embedding lag 1, setting 10 as the maximum embed-

ding dimension to limit computational cost. Optimal embedding parameters were estimated separately for each 
pair of GSL-insolation time series. For each cross mapping, we constructed embeddings using the optimal embed-
ding dimension for the target variable (the presumed driver). Leave-k-out cross validation with an exclusion radius 
of 30 kyr was used on prediction libraries to limit autocorrelation bias.
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Statistical acceptance criteria.  CCM requires that the correlation between predicted and observed values 
increases with increasing library size18. We determined convergence by regression of ρccm on 20 different library 
sizes (L) in the range + + ...E tau max lag L( ( , 1), , ) distributed among the smallest possible and largest possible 
library sizes. Analyses were labelled convergent if the value of the constant q  in the expression 
ρ ρ ρ= − ⋅ − −emax

q L L
0

( )0  was positive; here, ρ is the median CCM predictive skill and L is the library size. The 
value of q was found through linear regression of the logarithmic transformation of the same equation, or 

ρ ρ ρ= − − −q ln ln L L[ ( ) ( )]/( )max0 0 . In addition, to be convergent, we tested whether CCM skills were higher 
at the largest library sizes compared to the lowest library sizes by the means of a Wilcoxon rank sum test, which 
had to reject the null at the 0.01 level. Non-convergent analyses were discarded from the calculation of ρccm

causal.
The upper limit of the CCM skill for a given analysis is determined by the coupling strength between the 

variables, but also by process noise18. Therefore, to claim significant forcing, we establish a distribution in the 
form of an ensemble of amplitude-adjusted Fourier transform (AAFT) surrogate time series50. These surrogates 
are randomized realizations of the original time series that preserve both the histogram and the frequency power 
spectrum (i.e. autocorrelation) of the original insolation forcing time series. Rejecting the null hypothesis thus 
implies that the dynamical coupling between GSL and the insolation cannot be fully accounted for neither by 
noise properties nor by shared frequencies.

Rejection of the null hypothesis for each driver-response pair involved passing a one-sided rank-order test51 
where the ρccm of the data had to exceed the 99th percentile ρccm of the surrogate ensemble. We used 400 surrogates, 
and verified the results at selected threshold-latitude configurations using 1,000 surrogates.

Orbitally independent chronology.  We explored three different chronologies for the GSL record (Fig. 4). 
The original age model for the GSL record2 is aligned with the LR04 stack14, which is tuned to an orbitally forced 
ice sheet model. We constructed an alternative age model following the approach of ref.22, wherein a filtered GSL 
(band-pass filtered using a 22 ka Gaussian filter) was tuned to an equivalently filtered composite δ18O record from 
U/Th dated Chinese speleothems24. GSL was then aligned with the speleothem record by tiepoints determined 
from peaks and troughs in the band-pass filtered versions. The speleothem record goes back to 640 kyr; age con-
trol for the older parts of the GSL record was obtained by linear interpolation to a tie point on the LR04 stack at 
787 kyr, close to the Brunhes-Matuyama boundary. In an effort to obtain an orbitally independent chronology, 
we constructed another GSL age model by tuning a North Atlantic SST composite proxy record to the speleothem 
record. The GSL record was then matched to the benthic δ18O records of the respective North Atlantic archives. 
This approach utilizes the close connection between millennial-scale North Atlantic climate and the intensity of 
the Asian Monsoon documented in several studies52–54. In the interval from 0 to 332 kyr we used the GICC05/
NALPSpeleo chronology from ODP site 98323 with a benthic δ18O record from ref.55. In the interval from 332 to 
553 kyr we used the SST record from IODP site U131356 and the corresponding benthic δ18O record56,57. In the 
interval older than 553 kyr, we used the abundance of the polar planktonic foraminifer Neogloboquadrina pach-
yderma sinistral and the benthic δ18O records from ODP site 98058. Age control beyond the reach of the speleo-
them composite was obtained by matching the ODP 980 data to the Epica Dome C methane record59 placed on a 
modified AICC2012 gas age chronology. The AICC201260 was modified by matching the methane record to the 
composite speleothem record from 554 to 627 kyr, and to two tie points at 783 and 792 kyr determined by Ar/Ar 
dated tephras and a δ18O record from an Italian lacustrine sediment sequence61, utilizing the close relationship 
between the atmospheric methane concentration, North Atlantic climate and Asian Monsoon intensity (e.g.62,63). 
Age models were constructed with Oxcal 4.364, using the P sequence65 and variable k66 options.

Code.  Code to reproduce all analyses and figures is available at https://github.com/kahaaga/Haaga_et_al_insolation.
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