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Primary membranous nephropathy (PMN) is one of the common causes of

adult-onset nephrotic syndrome and is characterized by autoantibodies

against podocyte antigens causing in situ immune complex deposition. Much

of our understanding of the disease mechanisms underpinning this kidney-

limited autoimmune disease originally came from studies of Heymann

nephritis, a rat model of PMN, where autoantibodies against megalin

produced a similar disease phenotype though megalin is not implicated in

human disease. In PMN, the major target antigen was identified to be M-type

phospholipase A2 receptor 1 (PLA2R) in 2009. Further utilization of mass

spectrometry on immunoprecipitated glomerular extracts and laser micro

dissected glomeruli has allowed the rapid discovery of other antigens

(thrombospondin type-1 domain-containing protein 7A, neural epidermal

growth factor-like 1 protein, semaphorin 3B, protocadherin 7, high

temperature requirement A serine peptidase 1, netrin G1) targeted by

autoantibodies in PMN. Despite these major advances in our understanding

of the pathophysiology of PMN, treatments remain non-specific, often

ineffective, or toxic. In this review, we summarize our current understanding

of the immune mechanisms driving PMN from animal models and clinical

studies, and the implications on the development of future targeted

therapeutic strategies.
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Introduction

Primary membranous nephropathy (PMN) is one of the

commonest causes of adult-onset nephrotic syndrome with an

incidence of 12 cases per million per year (1). It is a kidney-

limited autoimmune disease characterized by in situ formation

of subepithelial glomerular immune deposits containing

immunoglobulin G (IgG) autoantibodies and complement (2).

While spontaneous disease remission occurs in around 32% of

patients, approximately a third ultimately progress to kidney

failure needing dialysis or kidney transplantation (1). The

podocyte antigens responsible for eliciting an autoimmune

response in PMN remained elusive until 2009 when M-type

phospholipase A2 receptor 1 (PLA2R) was discovered, followed

by thrombospondin type-1 domain-containing protein 7A

(THSD7A) in 2014 (3, 4). These discoveries improved the

diagnosis of PMN with anti-PLA2R autoantibody testing

having a specificity of 99%, which together with the kidney

biopsy light microscopy findings of subepithelial “spikes” of the

glomerular basement membrane (GBM) on silver methenamine

stain, immunofluorescence finding of granular deposits of IgG

along the glomerular capillary wall, and electron microscopy

finding of exclusive subepithelial localization of electron-dense

deposits, differentiate PMN from other forms of nephrotic

syndrome (1, 5) . However , despite this improved

understanding, treatments for PMN remain non-specific.

Cytotoxic therapy (chlorambucil or cyclophosphamide) plus

glucocorticoids lower the 10-year incidence of kidney failure to

approximately 10% (compared to 40% in those receiving

supportive treatment) but is associated with significant toxicity

such as infertility, infection and malignancy (6–10). Calcineurin

inhibitors have proven short-term efficacy though are limited by

high relapse rate of 40% and long-term nephrotoxicity (11). The

anti-CD20 monoclonal antibody rituximab targeting B cells is

the most targeted treatment to date but may not eliminate

autoreactive B cells due to changes in the CD20 antigen, does

not eliminate high-affinity antibody-producing plasma cells that

do not express CD20, and fails to induce complete or partial

remission in up to 40% of patients (12, 13). In comparing these

existing treatments, a recent trial found cyclophosphamide plus

glucocorticoids to be superior to calcineurin inhibitors plus

single-dose rituximab (total 1g) though there was a higher

anti-PLA2R autoantibody titer at baseline in the calcineurin

inhibitor/rituximab group, which together with the low dose of

rituximab used, may have contributed to worse outcomes (14).

In contrast, rituximab (total 3g) was superior to calcineurin

inhibitors (12), but rituximab (total 2g) was comparable to

cyclophosphamide plus glucocorticoids (15). Lastly, recurrent

membranous nephropathy (MN) after kidney transplantation

also occurs in 35-50% of patients and accounts for 50% allograft
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loss 5 years after diagnosis, highlighting the unmet need for

targeted treatments in PMN (16–19).

Antigen-independent treatments targeting autoantibody

production is attractive and feasible given the multitude of

disease antigens implicated in PMN particularly with

improved antibodies targeting plasma cells. Targeted

treatments against antigen-specific B cells or antigen-specific T

cells helpers directed against antigens linked to PMN, using

chimeric antigen receptor (CAR) T cells, chimeric autoantigen

receptor expressing (CAAR) T cells, or CAR regulatory T cells

(Tregs) to eliminate or suppress antigen-specific effectors are

also conceivable. However, these experimental treatments

remain untested in human autoimmune disease and rigorous

testing in animal models of PMN is required (20). In this review,

we compare the immune mechanisms driving PMN and

associated animal models, and implications for evaluating

novel targeted therapeutics.
Pathological features in animal
models of membranous
nephropathy

Heymann nephritis

Heymann et al. described active Heymann nephritis (AHN)

in 1959, where immunization of the proximal tubular antigen

Fx1A with complete Freund’s adjuvant in Lewis rats caused

development of anti-Fx1A antibodies and in situ glomerular

subepithelial immune complex formation after 4 weeks, and

proteinuria after 8-10 weeks (21). Passive Heymann nephritis

(PHN) is a more limited model induced by administration of

sheep anti-rat Fx1A antibodies with cell- and blood-free

perfusion to prevent immune complex formation in the

circulation (22, 23). While PHN was widely used to study the

effector mechanisms caused by glomerular IgG deposition, it

does not recapitulate autologous formation of podocyte

autoantibodies seen in AHN and which leads to PMN.
Passive administration of anti-PLA2R or
anti-THSD7A antibodies in mice

The identification of antigens implicated in PMN has led to

the development of mouse models where passive administration

of anti-PLA2R and anti-THSD7A antibodies into transgenic

mice with murine full-length PLA2R on podocytes and wild-

type mice respectively were able to induce similar disease to

PMN with subepithelial glomerular IgG deposition, C3

deposition and proteinuria (24–27).
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Transgenic mice expressing human
PLA2R specifically on podocytes

Recently, Tomas et al. have described transgenic knock-in

mice expressing human PLA2R specifically on podocytes. These

mice spontaneously developed anti-human PLA2R

autoantibodies after 3 weeks, nephrotic syndrome with

glomerular deposition of murine IgG1 (equivalent of human

IgG4) and complement activation after 4 weeks, and glomerular

subepithelial electron-dense deposits after 6 weeks (28). Overall,

this model faithfully recapitulates human PMN.
Passive administration of anti-
aminopeptidase A, anti-dipeptidyl
peptidase IV, or anti-podocyte antibodies
in rats or mice

Passive administration of antibodies against mouse

aminopeptidase A (29, 30), dipeptidyl peptidase IV (31), and

anti-mouse podocyte antibodies were also able to induce

glomerular IgG deposition with proteinuria but without

complement activation, unlike human PMN (32, 33).

Furthermore, these antigens are not implicated in human PMN.
Exogenous antigen deposition onto the
glomerular basement membrane in
rabbits or mice

Intravenous injections of cationic bovine serum albumin

(BSA) and immunization of recombinant human non-

collagenous domain 1 of a3(IV) collagen (rh-a3NC1) both

produced significant albuminuria and subepithelial deposits of

IgG and C3 (34, 35). However, glomerular deposition of

exogenous antigen (BSA and rh-a3NC1) in these models

significantly differs from the pathogenesis of human

PMN (35).
Pathological features in human
membranous nephropathy

Human PMN is characterized by heterogeneous

presentation and clinical course with around a third of

patients undergoing spontaneous remission, a third

experiencing persistent proteinuria, and a third progressing to

kidney failure (36). While light microscopy findings on kidney

biopsy also exhibit some variability, ranging from a normal

appearance early in disease to thickened GBM as disease

progresses, granular deposition of IgG and C3 in glomeruli on
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immunofluorescence and electron-dense subepithelial deposits

on electron microscopy are seen at any stage of disease (1, 36).
Antigens and autoantibodies in
animal models of membranous
nephropathy

Heymann nephritis

The pathogenic antigen in Fx1A was identified as a 330-kDa

glycoprotein called megalin, which is a low-density lipoprotein

receptor involved in protein endocytosis and transcytosis

(Table 1) (53–56). Another autoantibody in AHN was

subsequently identified targeting the 44-kDa receptor

associated protein (RAP), which acts as an endoplasmic

reticulum chaperone for megalin (55).

AHN is characterized by anti-Fx1A autoantibodies without

circulating IgG subclass predominance but induce proteinuria

via complement-fixing rat IgG2b (equivalent to human IgG1)

(Figure 1A.1) (57–59). The main pathogenic epitope on megalin

at its N-terminal domain is glycosylation- and conformation-

dependent though epitope spreading occurs, similar to PMN,

whereby the immune response to a disease antigen may extend

to non-cross-reactive peptide sequences on the same antigen

(intramolecular spreading) or adjacent antigens (intermolecular

spreading) over time (60, 61). Accordingly, anti-RAP

autoantibodies likely represent intermolecular epitope

s p r e ad ing due t o th e a s s o c i a t i on o f RAP w i th

megalin (Figure 1A.2).
Passive administration of anti-PLA2R or
anti-THSD7A antibodies in mice

For the passive administration of anti-PLA2R antibodies,

transgenic mice expressing murine PLA2R were required due to

a lack of PLA2R expression normally on murine podocytes (24).

Murine PLA2R has 72% sequence homology with human

PLA2R and adoptive transfer of human anti-PLA2R

autoantibodies could not bind murine PLA2R. Instead disease

induction required transfer of rabbit anti-PLA2R antibodies

(24). Therefore, the pathogenicity of human anti-PLA2R

antibodies remains to be definitively proven in vivo.

In contrast, murine podocytes normally express THSD7A.

Interestingly, human sera containing anti-THSD7A antibodies

but not purified human anti-THSD7A antibodies activated the

lectin complement pathway on murine podocytes and caused

oxidative stress, disruption of nephrin, and rearrangement of the

podocyte actin cytoskeleton (25–27). In comparison, rabbit anti-

THSD7A antibodies (with or without sera) induced significant
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TABLE 1 Disease antigens implicated in Heymann nephritis and membranous nephropathy.

Antigen Normal tissue
expression
(References)

Function of antigen Prevalence
of antigen
in disease

IgG sub-
class

deposited
in

glomeruli

Serum
antibody

Pathogenicity
of antibody

Complement
activation

Mean
age

(years)

Sex
(M:
F)

Other disease
associations

Heymann nephritis

Megalin
(in
Fx1A)

Podocyte,
proximal tubular
brush border,
type II
pneumocytes,
epididymis (37,
38)

Low-density lipoprotein receptor,
calcium handling, mediates
transcytosis of certain proteins
(eg. albumin, retinol binding
protein) and degradation of other
proteins in lysosomes

100% Rat
IgG2ba >>
Rat IgG1b

Yes Yes C3, C5b-9 NA NA Human
ABBA disease

RAP All cells,
primarily in
kidney and brain
(39)

Endoplasmic reticulum chaperone
for lipid receptors such as
megalin

Unclear Unclear Yes Yes Unclear NA NA None

Primary membranous nephropathy

PLA2R Podocyte (3) Unclear in kidney. Regulates
cellular senescence, migration,
hormone and cytokine release

70% IgG4 Yes (non-
reducing)

Highly likely C3, C5b-9,
MBL

48 2:1 None

THSD7A Podocyte (4) Stabilizes and enhances podocyte
adhesion

2.5% IgG4 Yes (non-
reducing)

Yes C5b-9, MBL,c

C3bc
50 1:3 Malignancy

(33%)

NELL1 Osteoblast, brain,
kidney tubule
(40)

Unclear in kidney 2%d IgG1 Yes (non-
reducing)

Unclear C3, rarely
C1q

63 1:1 Malignancy
(33%)

Sema3B Most organs
(especially CNS),
kidney tubule,
endothelial cells,
podocyte (41,
42)

Unclear in kidney. CNS
development

Uncleare IgG1 >>
IgG4

Yes
(reducing)

Unclear C3, rarely
C1q

15 3:2 None

PCDH7 Brain, kidney
tubule (43)

Unclear in kidney. Cell signaling 2% IgG4 >>
IgG1,
IgG2,
IgG3

Yes (non-
reducing)

Unclear Trace C3 61 3:1 Autoimmune
disease
(21%),
malignancy
(14%)

Serine
protease
HTRA1

Non-specific,
podocyte (44)

Unclear in kidney. Cell growth,
apoptosis, and inflammation

1-2% IgG4 Yes (non-
reducing
or
reducing)

Unclear C3, rarely
C1q

67 1:1 None

NTNG1 Brain, podocyte
(45)

Unclear in kidney. Axonal
adhesion molecule

0.4% IgG4 Yes (non-
reducing)

Unclear Unclear 58 Male
in all
3
cases

None

Secondary membranous nephropathy

EXT1/
EXT2

Non-specific,
podocyte in
kidney (46)

Synthesize heparan-sulfate
backbone of glycosaminoglycan
residues on proteins

28% MLN IgG1 No Unclear C3, C1q 36 1:4 Autoimmune
disease
(71%),
malignancy
(8%)

NCAM1 CNS, thyroid,
adrenal, heart,
stomach,
immune cells,
kidney
interstitial cells,
podocyte (47)

Unclear in kidney. Synaptic
plasticity, neuronal migration,
axonal branching, fasciculation
and synaptogenesis in CNS

7% MLN IgG1 >
IgG3 >
IgG2,
IgG4

Yes (non-
reducing)

Unclear C3, C1q 34 1:2 Autoimmune
disease,
especially SLE
(90%)

TGFBR3 Podocyte,
mesangial cell,
endothelial cell
(48)

Accessory receptor for TGF-b
signaling, protecting against
autoimmunity

6% MLN IgG1,
IgG2 or
IgG3

No Unclear C3, C1q 40 1:16 Autoimmune
disease,
especially SLE
(82%)

(Continued)
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proteinuria in the absence of complement activation (25, 27).

These discrepant results could be related to lower amounts of

injected purified human antibody, alteration of autoantibodies

when purified using acid-elution or the presence of other

proteins within human sera required for complement activation.

Furthermore, it is unclear whether generation of rabbit anti-

PLA2R and anti-THSD7A antibodies are predominantly of IgG4

subclass (like their human counterparts) and therefore whether

disease pathophysiology caused by passive administration of these

antibodies is homologous to human PMN (24, 27).
Transgenic mice expressing human
PLA2R specifically on podocytes

Full length human PLA2R was expressed on podocytes of

these mice and anti-human PLA2R antibodies recognized the

cysteine-rich domain as well as C-type lectin domains (CTLD) 1,

7 and 8, which are the same epitopes recognized by anti-PLA2R

antibodies in patients with PMN (28, 62–64). Therefore, this

represents the ideal model for confirming the pathogenicity of

human anti-PLA2R autoantibodies.
Frontiers in Immunology 05
Antigens and autoantibodies in
human membranous nephropathy

While there are many similarities between Heymann

nephritis and PMN, they are not homologous primarily due

to differences in the disease antigen. Megalin (called low-

density lipoprotein receptor-related protein 2 (LRP2) in

humans) is 77% homologous between rodents and humans,

though human tissue expression is predominantly on proximal

tubular brush border and glomerular staining is weak (56, 65).

Accordingly, anti-LRP2 antibodies in humans cause ABBA

(anti brush border antibody) disease, characterized by

tubular immune deposits with segmental glomerular

subepithelial deposits, subnephrotic proteinuria, and kidney

failure (66).

Unlike Heymann nephritis, IgG4 is the predominant IgG

subclass in most patients with PMN though IgG1 is

predominantly found in neural epidermal growth factor-like 1

protein (NELL1)- and semaphorin 3B (Sema3B)-associated

PMN without significant activation of the classical

complement pathway based on rare C1q deposition (40, 41).
TABLE 1 Continued

Antigen Normal tissue
expression
(References)

Function of antigen Prevalence
of antigen
in disease

IgG sub-
class

deposited
in

glomeruli

Serum
antibody

Pathogenicity
of antibody

Complement
activation

Mean
age

(years)

Sex
(M:
F)

Other disease
associations

CNTN1 CNS, PNS,
kidney glomeruli
(49)

Unclear in kidney. Neuronal cell
adhesion molecule that regulates
myelination and nodal/paranodal
organization in CNS

Unclear IgG4 Yes Unclearf C3 70 Male
in all
5
cases

CIDP (100%)

FAT1 Podocyte, kidney
proximal tubular
epithelial cells,
CNS, skin,
esophagus, lung
(50)

Unclear in kidney. Mediates
calcium-dependent cell-cell
recognition and adhesion

Unclear IgG4 Yes (non-
reducing
or
reducing)

Unclear Mild C3 (0-1
+)

60 9:5 Allogeneic
HSCT
(100%)

Neonatal membranous nephropathy

NEP Podocyte, lung,
intestine,
adrenal, prostate,
breast, uterus,
CNS (51, 52)

Regulate levels of various peptides
(eg. atrial natriuretic peptide)

Unclear IgG1 Yes Yes C3, C1q From
birth

1:1 None
fr
RAP, receptor associated protein; NA, not applicable; ABBA, kidney anti brush border antibodies and kidney failure; PLA2R, M-type phospholipase A2 receptor 1; MBL, mannan-binding
lectin; THSD7A, thrombospondin type-1 domain-containing protein 7A; NELL1, Neural epidermal growth factor-like 1 protein; Sema3B, Semaphorin 3B; CNS, central nervous system;
PCDH7, Protocadherin 7; SLE, systemic lupus erythematosus; HTRA1, high temperature requirement A serine peptidase 1; NTNG1, netrin G1; EXT1/EXT2, exostosin 1/exostosin 2; MLN,
membranous lupus nephritis; NCAM1, neural cell adhesion molecule 1; SLE, systemic lupus erythematosus; TGFBR3, type III transforming growth factor b receptor; CNTN1, contactin 1;
PNS, peripheral nervous system; CIDP, chronic inflammatory demyelinating polyneuropathy; FAT1, protocadherin FAT1; HSCT, hematopoietic stem cell transplant; NEP, neutral
endopeptidase.
aRat IgG2b equivalent to human IgG1.
bRat IgG1 equivalent to human IgG4.
cOnly in experimental data of murine glomeruli exposed to human sera containing anti-THSD7A antibodies.
dPrevalence derived from “Wang et al. Neural Epidermal Growth Factor–Like 1 Protein–Positive Membranous Nephropathy in Chinese Patients. Clin J Am Soc Nephrol. 2021 May 8;16
(5):727-35” since discovery cohort only reported prevalence of NELL1-associated PMN of 16% in PLA2R-negative PMN.
eDiscovery cohort only reported prevalence of Sema3B-associated PMN of 9% in PLA2R-, THSD7A-, EXT1/EXT2-, and NELL-1-negative PMN.
fAnti-CNTN1 proven to be pathogenic in CIDP but not MN.
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B

A

FIGURE 1

Mechanism of podocyte injury in Heymann nephritis (A) and primary membranous nephropathy (B) Created with BioRender.com. GBM,
glomerular basement membrane; ROS, reactive oxygen species; cPLA2, cytosolic phospholipase A2; PGE2, prostaglandin E2; TxA2,
thromboxane A2; COX, cyclo-oxygenase; AA, arachidonic acid; ER, endoplasmic reticulum; RAP, receptor associated protein; Treg, regulatory
T cell; Th1, CD4+ T helper-1 cell; Tfh, CD4+ T follicular helper cell; FH, fumarate hydratase; WT-1, Wilms tumor-1; PLA2R, M-type phospholipase
A2 receptor 1; C3aR, C3a receptor; C5aR, C5a receptor; MBL, mannan-binding lectin; MASP, mannan-binding lectin serine protease; ZO-1,
zonula occludens-1; THSD7A, thrombospondin type-1 domain-containing protein 7A; NELL1, neural epidermal growth factor-like 1 protein;
Sema3B, semaphorin 3B; PCDH7, protocadherin 7; HTRA1, high temperature requirement A serine peptidase 1; NTNG1, netrin G1; Th2, CD4+

T helper-2 cell; Th17, CD4+ T helper-17 cell; IFN-g, interferon-g; *cognate antigen for anti-NELL1, anti-Sema3B, anti-PCDH7, anti-serine
protease HTRA1, and anti-NTNG1 autoantibodies respectively. (A): 1. In Heymann nephritis, anti-Fx1A antibodies bind primarily to megalin on
podocytes and activate the classical complement pathway (via the IgG2b subclass). 2. Anti-RAP antibodies are also detected and may represent
epitope spreading due to the association between megalin and RAP, which assists the transport of megalin from ER to cell surface. 3.
Complement activation may be potentially exacerbated by binding of anti-Fx1A antibodies to complement regulatory proteins Crry and CD59. 4.
Sublethal C5b-9 injury causes intracellular calcium influx, activating cPLA2, which hydrolyzes membrane phospholipids of the podocyte, ER and
nuclear envelope. This causes ER stress, generation of ROS, disruption of the slit diaphragm protein nephrin, and release of AA with subsequent
COX-mediated generation of prostanoids (PGE2, TxA2) that increase glomerular filtration pressure, exacerbating proteinuria. Glomerular IgG and
complement deposition attract glomerular infiltrates of CD8+ T cells, Th1 cells, and macrophages, potentially via the IgG Fc receptor and
anaphylatoxins C3a/C5a. 5. Autoantibody production in Heymann nephritis is at least in part dependent on Qa-1-expressing Tfh cells, which are
inhibited by CD8+ Tregs. (B): 1. In primary membranous nephropathy (PMN), autoantibodies are predominantly directed against PLA2R, and 2.
less commonly against THSD7A, 3. NELL1, PCDH7, serine protease HTRA1 and NTNG1, except in pediatric PMN where Sema3B is the most
common podocyte antigen targeted by autoantibodies. 4. Increased B cells and Tfh cells are observed, which interact in the germinal center of
lymph nodes to induce differentiation of B cells into high-affinity antibody-producing plasma cells. Autoantibodies in PMN are primarily of the
IgG4 subclass, potentially due to Th2-mediated IL-4 production. Loss of tolerance to podocyte antigens such as PLA2R may be due to loss of
thymus-derived podocyte antigen-specific Tregs. 5. Glycosylated anti-PLA2R IgG4 bind the MBL/MASP-1/2 complex to activate the lectin
complement pathway. 6. This causes activation of C3aR and C5aR as well as deposition of C5b-9, which activates cathepsin L- and an aspartic
protease-mediated proteolysis of the actin cytoskeleton protein synaptopodin and slit diaphragm protein NEPH1 respectively. Anti-PLA2R
antibody-containing serum is also associated with reduced FH, impaired autophagy and reduced adhesion to the GBM, though it is unclear
whether these effects are mediated via complement activation. 7. Impairment in autophagy results in internalization of nephrin and the actin
cytoskeleton protein a-actinin-4. 8. Reduced FH leads to intracellular fumarate accumulation, which is associated with increased generation of
ROS, reduced slit diaphragm protein ZO-1 and reduced transcription of WT-1, which normally activates the expression of podocyte proteins
nephrin and podocalyxin. The mechanisms of podocyte injury of other autoantibodies associated with PMN remain incompletely understood.
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PLA2R

PLA2R is the primary disease antigen in 70% of PMN and

while the pathogenicity of anti-PLA2R autoantibodies is highly

likely due to the strong correlation of antibody titres with disease

activity, in vitro evidence of podocyte injury caused by anti-

PLA2R sera and lectin pathway activation by anti-PLA2R IgG4,

definitive in vivo evidence of pathogenicity is yet to be confirmed

(Figure 1B.1) (3, 67–70). The major epitope targeted by anti-

PLA2R antibodies is located at the 31-mers peptide sequence of

the cysteine-rich domain of PLA2R (specifically the N-terminal

linear stretch VIQSES and C-terminal stretch SVLTLENC

regions) with additional antibody epitopes identified at

CTLD1, CTLD7 and CTLD8 (62, 64, 71). Epitope spreading

from the cysteine-rich domain to the CTLD1 and/or 7 domains

occurs in 25-66% of patients over the course of 3 months to 2

years (72, 73). However, data are inconsistent regarding whether

epitope spreading is associated with treatment resistance (64,

72, 73).

Genome-wide association studies have greatly enhanced our

understanding of how self-antigens such as PLA2R trigger an

autoimmune response. The risk of PMN was substantially

increased in individuals with both single nucleotide

polymorphisms (SNP) in class II human leukocyte antigen

(HLA-DQA1*0501 in Europeans, -DRB1*1501 in East Asians,

and -DRB1*0301 in both ethnicities) on antigen-presenting cells

(APC) and SNPs in the PLA2R locus (rs4664308 in Europeans

and rs17831251 in both Europeans and East Asians) (74, 75).

These non-coding region SNPs were either associated with other

SNPs within the PLA2R coding region or an enhancer element

resulting in an altered amino acid sequence or increased tissue

expression respectively (75). This may enhance antigen

presentation by APCs expressing risk HLA variants to their

cognate CD4+ T cell, thereby initiating the process of

autoimmunity. In silico analysis predicted HLA-DRB1*1501

and HLA-DRB1*0301 preferentially bound to PLA2R peptides

in the CTLD1, CTLD7 and between CTLD4 and CTLD5 regions

compared to the 31-mers peptide, though experimental

validation is required (76).

In recurrent PLA2R-associated MN after kidney

transplantation, detectable anti-PLA2R autoantibody titres pre-

transplantation and steroid-free immunosuppression are known

risk factors (16, 77–79). Positive glomerular staining for PLA2R

in these cases also suggest the same antigen is implicated in

recurrent MN (78). However, the HLA risk alleles (HLA-

DQA1*0501, -DRB1*1501, and -DRB1*0301) associated with

PMN were not associated with recurrent MN but rather two

non-coding HLA-D SNPs (rs9271550 and rs9271705) and three

PLA2R SNPs (rs3828323, rs17830558, and rs3749117)) when

present on the donor but not the recipient (80). Another study

found an association between recurrent MN and recipient HLA-

A3 (81). Discrepancies between studies may be due to the
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for recurrent MN. Overall, the pathogenesis of recurrent MN

remains poorly understood and further studies are required.
THSD7A

THSD7A was the second podocyte antigen discovered in

PMN, implicated in 10% of PLA2R-negative PMN (Figure 1B.2)

(4). THSD7A and PLA2R are structurally similar as are their

associated autoantibodies, which are predominantly of IgG4

subclass, activate complement with glomerular C5b-9 staining,

bind initially to the immunodominant epitope on the N-

terminal domain of their target antigen exclusively in non-

reducing conditions, and are associated with epitope-spreading

(4, 25, 63, 82). Contrary to the prevailing paradigm of a single

podocyte antigen being targeted in PMN, dual anti-PLA2R and

anti-THSD7A antibodies and staining on biopsy has been

reported in 1% of cases (83).
Other antigens implicated in primary
membranous nephropathy

Laser microdissection and mass spectrometry on kidney

biopsies of PLA2R-negative PMN has led to the discovery of

many more disease antigens such as NELL1, Sema3B,

protocadherin 7 (PCDH7), high temperature requirement A

serine peptidase 1 (HTRA1), and netrin G1 (NTNG1)

(Figure 1B.3). These antigens account for less than 10% of

PMN and their associated autoantibodies vary in their

predominant IgG subclass, ability to activate complement, and

the association of their pathogenic epitope with disulfide bonds

based on whether autoantibodies were detected under reducing

or non-reducing conditions (Table 1) (40, 41, 43–50). Anti-

Sema3B autoantibodies correlated with disease activity in a case

report of severe pediatric PMN, suggestive of pathogenicity (84).

However, the pathogenicity of other autoantibodies remains to

be determined and the mechanism by which these self-antigens

trigger an autoimmune response remain unclear. Furthermore, it

remains unclear how some of these antigens such as NELL1 and

PCDH7 display weak or no staining in normal glomeruli but are

implicated in PMN, whereby the subepithelial localization of

deposits on electron microscopy in NELL1- and PCDH7-

associated MN strongly suggest shedding from podocytes

rather than mesangial or endothelial cells. NELL1 and PCDH7

are known to be secretory proteins and highly glycosylated

proteins respectively (85), which may impact their expression

under healthy conditions. However, further research on the

expression and localization of these novel antigens in normal

podocytes are required. Overall, it is apparent that PMN is not a

single disease entity but rather a group of diseases characterized
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by autoantibodies against different antigens causing kidney-

limited autoimmune disease.
Antigens implicated in secondary and
neonatal membranous nephropathy

MN podocyte antigens exostosin 1/eoxstosin 2 (EXT1/

EXT2), neural cell adhesion molecule 1 (NCAM1), and

transforming growth factor-b receptor 3 (TGFBR3) are

associated with other autoimmune diseases, especially

systematic lupus erythematosus (SLE) (46–48). In particular,

EXT1/EXT2-associated membranous lupus nephritis confers a

better prognosis than EXT1/EXT2-negative membranous lupus

nephritis (86). This may be due to EXT1/EXT2-related

glycosylation of heparan sulfate, which protects the GBM

against immune injury. Contactin 1 (CNTN1) is associated

with chronic inflammatory demyelinating polyneuropathy-

related MN and protocadherin FAT1 (FAT1) is associated

with allogeneic hematopoietic stem cell transplant-related MN

(49, 50).

In contrast, while MN secondary to infections such as

hepatitis B have been well described and hypothesized to be

due to molecular mimicry, the associated podocyte antigen

remains unclear (87). Evidence of molecular mimicry due to

malignancy is more convincing for THSD7A- and NELL1-

associated MN. THSD7A was found in tumor and follicular

dendritic cells of tumor-infiltrated lymph nodes in separate cases

of gallbladder adeno-neuroendocrine carcinoma and

endometrial carcinoma (88, 89) Up to 33% of NELL1-

associated MN were secondary to malignancy with NELL1

tumor expression demonstrated in 2 cases (invasive ductal

carcinoma of the breast and follicular lymphoma) (90). Lastly,

neutral endopeptidase (NEP/CD10) is a podocyte antigen

implicated in neonatal MN, which is caused by placental

transfer of anti-NEP antibodies to the fetus from NEP-

deficient mothers (truncating mutations in the MME gene)

who undergo alloimmunization during the pregnancy or from

previous miscarriages (51, 91).
Other antigens reported in primary
membranous nephropathy

IgG4 against aldose reductase (AR) and superoxide

dismutase 2 (SOD2) have also been described in multiple

PMN cohorts (92, 93). However, these antigens are not

expressed on the surface of normal podocytes, antibody titres

do not correlate with disease activity, and both AR and SOD2 are

involved in oxidative stress, a known downstream effect of

podocyte injury (92, 93). Accordingly, in vitro and in vivo
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SOD2 increasing with intracellular oxidation and after passive

transfer of anti-THSD7A IgG respectively (27, 92). These data

suggest antibodies targeted AR and SOD2 are a secondary

phenomenon to autoantibody-mediated podocyte injury

exposing neoantigens rather than autoantibodies driving PMN

pathogenesis. More recently, autoantibodies against Formin-like

1 (FMNL1) were detected in patients with PMN as well as other

forms of glomerular disease (IgA nephropathy and focal

segmental glomerulosclerosis), which recognize FMNL1

expression on macrophages (94). Whether FMNL1 positive

macrophages contribute to the pathogenesis of PMN (ie. M1

macrophages) or highlight a reparative role of macrophages (ie.

M2 macrophages) in PMN requires further study.
T and B cell immunity in
animal models of
membranous nephropathy

Heymann nephritis

There is a clear T cell role in Heymann nephritis with CD4+

T cell depletion abolishing IgG and C3 deposition as well as

proteinuria, demonstrating the essential role of CD4+ T cell-B

cell interaction in autoantibody formation (95). In contrast,

CD8+ T cell depletion reduced proteinuria with intact

glomerular IgG and C3 deposition in AHN (59, 96), and

reduced proteinuria in the autologous phase (week 2-4) in

PHN but not during the heterologous phase (week 1) where

infused anti-Fx1A antibodies cause complement-mediated

podocyte injury (97). Therefore, the small CD8+ T cell

infiltrate seen in Heymann nephritis likely occurs downstream

of podocyte antibody deposition and proteinuria.

Development of anti-Fx1A autoantibodies in AHN suggest

loss of immune tolerance, likely due to escape from thymic

deletion by megalin-specific effector T cells and/or impaired

induction of megalin-specific Foxp3+ CD4+ Tregs, though

overall levels of Foxp3+ CD4+ Tregs are unchanged in AHN

(98). In contrast, evidence of regulation that dampen

autoimmunity in AHN were found to be mediated by thymus-

derived CD8+ T cells, which reduced autoantibody production

and proteinuria upon adoptive transfer (99, 100). In particular,

CD8+ Tregs reduced anti-Fx1A antibody production in AHN by

targeting CD4+ T follicular helper (Tfh) cells expressing the non-

classical MHC class I molecule Qa-1 (Figure 1A.5). In PMN,

CD8+ Tregs have yet to be described while CD4+ Tregs were

reduced in patients with active disease prior to receiving

immunosuppression (101).
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Transgenic mice expressing human
PLA2R specifically on podocytes

Tomas et al. demonstrated that human PLA2R was not

expressed in the thymus of their transgenic mice, explaining the

spontaneous formation of anti-human PLA2R antibodies is

likely due to a lack of central tolerance (28). In contrast,

another study described transgenic knock-in mice with

ubiquitous expression of human PLA2R that did not develop a

PMN phenotype, likely due to establishment of immune

tolerance to human PLA2R, though expression of human

PLA2R in the thymus of these mice was not reported (102).

Lastly, in the study by Tomas et al, a PMN phenotype did not

develop in recombination activating gene (RAG) 2 knock-out

mice expressing human PLA2R specifically on podocytes,

indicating the requirement of mature T and B cells for the

formation of anti-human PLA2R autoantibodies (28).
T and B cell and innate immunity in
human membranous nephropathy

Study of T cell subsets in PMN have revealed an increased

CD4+:CD8+ T cell ratio (103, 104). Further analysis of CD4+ T

cells in PMN showed increased Th2 cells without change in

Th1 cells, increased Tfh cells, and lower CD4+ Tregs, which

were associated with increased IgG4 production, increased

plasma cells and a loss of immune tolerance respectively

(Figure 1B.4) (101, 103, 105–108). Our understanding of

PMN disease antigens and class II HLA linkage suggest that

HLA-driven effector T cells and/or the loss of Tregs likely play

a role in loss of immune tolerance, similar to Goodpasture

disease, another autoimmune kidney disease caused by

autoantibodies directed against a glomerular antigen (109).

Indeed, reduced CD4+ Treg number and/or function have been

described in various autoimmune diseases, demonstrating its

critical role in maintaining immune tolerance (110–113).

Accordingly, enhanced ability of Tregs to suppress the anti-

PLA2R response in PMN has also been hypothesized to be the

mechanism underlying the spontaneous remission observed in

a third of patients, however data supporting this theory are

lacking (114).

More recently, increased Th17 cells have been demonstrated

to correlate with disease activity, relapse and thrombotic

complications in PMN (115, 116), and IL-17 signaling was

differentially expressed in single-cell RNA sequencing of

kidney biopsy specimens in patients with PLA2R-associated

PMN (117). Whether Th17 activation is triggered by

glomerular antibody deposition, proteinuria or tissue injury
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requires further study. Single-cell RNA sequencing of kidney

biopsy specimens in PMN also identified tumor necrosis factor

(TNF) signaling and NOD-like receptor signaling in glomerular

endothelial cells, pericytes and tubular cells compared to healthy

controls, suggesting a role of innate immunity (117). In

comparison, bulk RNA sequencing and microarray expression

profiles of the glomerular compartment of kidney biopsies

revealed a PMN-specific signature significantly enriched in

NF-kB1 targets compared to other glomerulopathies, which is

consistent with a GWAS finding of a variant at the NF-kB1 locus

conferring an increased risk of PMN (75, 118). Regarding the

significance of TNF signaling in PMN, circulating TNF receptors

correlated with proteinuria and tubular TNF receptor expression

but not anti-PLA2R autoantibody titres, which may reflect a

downstream effect of heavy proteinuria on stimulating tubular

cell chemokine production and infiltration of TNF-a-producing
macrophages and lymphocytes (119, 120). Indeed, TNF

inhibition reduced kidney inflammatory infiltrates but not

proteinuria or immune complex deposition in BSA-induced

murine MN, highlighting the need to validate the findings of

transcriptomic profiling with in vivo studies to improve our

understanding of disease pathophysiology (121).

Analysis of B cell populations in PMN have demonstrated

an increase in naive B cells and reduced memory B cells, which

could be secondary to Tfh-mediated differentiation of B cells

into autoantibody-producing plasma cells or B cell infiltration

into the kidney (104, 122). B cell depletion with rituximab was

associated with increased CD4+ Tregs, potentially due to B cell

expression of interferon-g, which suppressed CD4+ Tregs in

animal studies (Figure 1B.4) (104, 123, 124). Regulatory B cells

(Bregs) have been implicated in the suppression of B-cell-

mediated autoimmunity through IL-10 production. Breg levels

in PMN have varied between studies due to differences in

surface markers assessed (101, 125, 126), though overall higher

Bregs correlated with better treatment responses (101, 125).

Despite the rapid discovery of antigens targeted by

autoantibodies in PMN, identification of antigen-specific T

and B cells has yet to be described. T cell receptor (TCR) gene

sequencing in patients with PMN revealed lower diversity of the

VDJ cassette combination compared to healthy controls, which

may represent expansion of antigen-specific T cells (127). The

same group analyzed the B cell receptor (BCR) sequences in

patients with PMN and found increased somatic hypermutation

and length distribution of the third complementarity-

determining region of the heavy chain (CDR-H3) of all

immunoglobulin isotypes compared to healthy controls,

indicative of overall increased B cell activation in PMN (128).

Future studies linking TCR and BCR sequences with pathogenic

epitopes of PLA2R (or other antigens implicated in MN) may

assist in identifying autoreactive T and B cells.
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The complement system in animal
models of membranous
nephropathy

Heymann nephritis

While megalin alone could recapitulate AHN, immunization

with Fx1A caused more severe proteinuria suggesting additional

antigens targeted by anti-Fx1A autoantibodies contributed to

podocyte injury (129). Such antigens include solid-phase

complement regulatory proteins such as Crry (murine equivalent

of complement receptor 1 (CR1)) and CD59 (Figure 1A.3,

Figure 2). Indeed, Crry-deficient Fx1A could not induce AHN

without administration of anti-Crry antibodies (130). Lower

glomerular CR1 and CD59 are reported in PMN though without

evidence of associated autoantibodies and may simply represent

podocyte loss (131, 132). Overall, these data suggest complement

activation plays an important role in mediating podocyte injury

after antibody deposition in Heymann nephritis.

The crucial role of complement-mediated glomerular injury

in Heymann nephritis was demonstrated by the prevention of

proteinuria in PHN with complement depletion using cobra

venom factor (133). In AHN, proteinuria was dependent on

glomerular deposition of rat complement-fixing IgG2b

suggesting classical pathway activation (57, 58), and increased

podocyte expression of complement factor H (CFH) in PHN

also suggests alternative pathway activation (134). More

recently, classical and alternative pathway but not lectin

pathway activation was confirmed in PHN with associated

increases in plasma C3a and glomerular expression of C3a

receptor (C3aR). Accordingly, C3aR antagonism ameliorated

disease by inhibiting the downregulation of synaptopodin (actin-

associated protein in podocytes) and Bcl2 (apoptosis inhibition

gene), and the upregulation of b-catenin on podocytes, which

was recapitulated in human podocyte cell lines exposed to PMN

sera (135). Interestingly, C3aR antagonism did not alter

inflammatory cell infiltration (including CD4+ T cells, CD8+ T

cells, and macrophages) in the kidney of PHN rats despite C3a,

an anaphylatoxin, being a potent chemoattractant (135).

Glomerular deposition of terminal complement component

C5b-9 has been demonstrated in both Heymann nephritis and

PMN (70). PVG/c rats with or without C6 deficiency induced with

PHN or AHN demonstrated no differences in proteinuria, though

C6 depletion using goat anti-rat C6 IgG in Sprague-Dawley rats

with PHN significantly reduced proteinuria (97, 136, 137).

Nevertheless, C5b-9 has been shown to cause sublethal

podocyte injury, leading to activation of cytosolic phospholipase

A2, oxidative stress, lipid peroxidation, DNA damage, and

disruption of the podocyte slit diaphragm (Figure 1A.4) (138).
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The complement system and other
mechanisms of Glomerular injury in
human membranous nephropathy

Despite glomerular IgG and complement deposition being

well-described in PMN, this finding long appeared to be

inconsistent with the predominance of non-complement

fixing IgG4. While there is a predominance of complement-

fixing IgG1 deposition in early stages of PMN (139, 140), the

lack of glomerular C1q but almost universal C4d deposition

suggested activation of the lectin pathway rather than the

classical pathway (Table 2) (141). Indeed, glomerular

deposition of mannan-binding lectin (MBL) co-localized

with anti-PLA2R IgG4 and correlated with disease activity

(142, 143). Recently, Haddad et al. provided important

insights into the mechanism of lectin pathway activation in

PMN by showing glycosylation patterns on anti-PLA2R IgG4

allow binding of MBL (Figure 1B.5). Such glycosylation

patterns were not demonstrated in IgG4 of PLA2R-negative

PMN, secondary MN or other glomerular diseases,

demonstrating distinct autoimmune responses against

different antigens implicated in PMN. Furthermore, anti-

PLA2R IgG4 but not IgG4-depleted sera from patients with

PLA2R-associated PMN was essential for the proteolysis of

two podocyte proteins synaptopodin and NEPH1 via C3aR

and C5aR activation on podocytes (Figure 1B.6), which could

be prevented by inhibiting MBL-associated serine protease

(MASP) or using C6-depleted sera (70). Increased serum C3a

and glomerular expression of C3aR have also been

demonstrated in PMN patients, which correlated with

disease activity and was associated with increased podocyte

expre s s ion of PLA2R and reduced expres s ion of

synaptopodin (135).

Despite growing evidence of lectin pathway activation in

PMN, PLA2R-associated PMN has also been described in

patients with MBL deficiency in whom disease activity was

mediated by alternative pathway activation (144). However,

the mechanism of alternative pathway activation in PMN

without initial activation of the lectin pathway remains

unclear though one could postulate the role of traditional

activators of the alternative pathway such as infection, which

increase C3a levels and subsequent overexpression of PLA2R

on podocytes that predisposes to autoimmunity. Anti-CFH

autoantibodies are an unlikely mechanism of alternative

pathway activation, detected in only 3% of patients with

PMN (145). CFH also binds to human glomeruli via

interaction with heparan sulfate, which is downregulated

in PMN, AHN and PHN though whether this results in

alternative pathway activation remains unproven (146–149).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1036249
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chung et al. 10.3389/fimmu.2022.1036249
Other mechanisms of glomerular injury
in primary membranous nephropathy

Impaired podocyte autophagy, fumarate accumulation in

podocytes causing oxidative stress, and disruption of podocyte

adhesion to collagen IV in the GBM have also been implicated in

glomerular injury in PMN. Impairment of podocyte autophagy

in PMN causes internalization of nephrin and a-actinin-4
(podocyte actin cytoskeleton protein), which in PLA2R-

associated PMN may be mediated by activation of the mTOR/

ULK1ser757 signaling pathway (Figure 1B.7) (150–153).

Fumarate hydratase, which co-localizes with podocalyxin on

podocytes, is reduced in PLA2R-associated PMN in an oxidative

stress- and C5b-9-dependent manner (Figure 1B.8) (154).

Inhibition of fumarate hydratase using small interfering RNA

results in fumarate accumulation within podocytes causing

oxidative stress and reduction in zonula occludens-1 (podocyte

slit diaphragm protein) and Wilm’s tumor 1 (podocyte

transcription factor) (154, 155). Lastly, in vitro evidence

suggests human sera containing anti-PLA2R antibodies impair

podocyte adhesion to collagen IV on the GBM though the exact

mechanism remains unclear (156).
Novel therapeutics: Potential targets
and challenges

Targeting autoantibody production by
B cells and plasma cells

PMN appears to be different disease entities rather than a

uniform disease but with a unified immunological phenotype of

autoantibody formation against an antigen mostly expressed on

podocytes. Therefore, targeting antibody generation through B-

cells, plasma cells and Tfh cells is an attractive strategy

(Figure 3). While rituximab, a chimeric anti-CD20 monoclonal

antibody, is effective at depleting B cells, treatment response in

PMN is variable (60-85% complete or partial remission at 24

months) (12, 15). This may be related to autoantibody

production by CD20-negative plasma cells, changes in the

CD20 antigen that may be restricted to autoreactive B cells, or

the development of neutralizing antibodies against rituximab.

Ofatumumab and obinutuzumab are humanized anti-CD20

monoclonal antibodies, which have successfully treated

patients with PMN who developed serum sickness to

rituximab or anti-rituximab antibodies (157, 158), and

demonstrated superior B-cell depletion compared to rituximab

respectively (159). The efficacy of binutuzumab and belimumab

[humanized monoclonal antibody against B-cell activating

factor (BAFF)] in lupus nephritis, another disease mediated in

part by autoreactive B cells, and CD19 CAR T cells in treatment-
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refractory SLE are also promising alternative B cell-depleting

therapies, which require further evaluation in PMN (160–163).

Treatment resistance to B-cell depletion may also be

attributable to persistent memory plasma cells, which produce

autoantibodies independent of T and B cell interactions. The

proteasome inhibitor bortezomib effectively depletes plasma

cells and has been effective in both treatment-resistant and

treatment-naïve PMN (164, 165). Plasma cells express CD38

and CD138, which could be targeted by anti-CD38 monoclonal

antibodies such as daratumumab. However, safety concerns of

neurotoxicity with bortezomib and infection with both

bortezomib and daratumumab may limit their use. An

alternative approach could be a short course of plasma cell-

depleting therapy followed by B cell depletion or T cell co-

stimulatory blockade to inhibit the Tfh-mediated B cell

differentiation into plasma cells. In an uncontrolled cohort

study and a case series of kidney transplant recipients with

antibody-mediated rejection, short-duration bortezomib (on

average 4 doses of 1.3 mg/m2) followed by adjunctive therapy

(including rituximab, plasmapheresis, or intravenous

immunoglobulin) or T cell co-stimulatory blockade with

belatacept respectively were effective (166, 167). However,

controlled clinical trials are needed to confirm the efficacy of

these treatment regimens.
Targeting antigen-specific B and T cells

The discovery of the disease antigens driving PMN also

raises the possibility of antigen-specific therapeutics such as

CAR or CAAR T cell therapies against PLA2R-specific B cells. In

pemphigus vulgaris, an antibody-mediated autoimmune

blistering skin disease, CAAR T cells expressing the disease

autoantigen desmoglein 3 was able to eliminate desmoglein 3-

specific B cells in a mouse model even in the presence of

circulating autoantibodies and without off-target toxicity (168).

A similar approach is conceivable in PMN where B cell-

mediated autoimmunity is driven by a single autoantigen in

most cases.
Establishing immune tolerance

Inducing immune tolerance without abrogating anti-

infection and anti-tumor immunity is the ultimate therapeutic

strategy. CAR CD4+ Tregs targeting organ-specific antigens

suppressed autoimmunity in animal models of type 1 diabetes,

multiple sclerosis and autoimmune colitis (169–171). In

particular, CAR Tregs in the autoimmune colitis model were

able to suppress disease activity despite being specific for an

antigen distinct from the disease antigen (171). This

demonstrates the phenomenon of infectious tolerance whereby

CD4+ Tregs can confer suppressive activity to conventional T
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cells via membrane-bound transforming growth factor-b (TGF-

b) (172, 173). PLA2R may represent an ideal tissue marker to

direct CAR Tregs to the glomerulus in PMN. An alternative

strategy may be selective expansion of Tregs using low-dose IL-

2, which was effective in animal models of rheumatoid arthritis

and autoimmune colitis (174). However, a mechanism of IL-2

delivery to the kidney remains unclear.

Two distinct regulatory T cell subsets also exist to maintain

immune tolerance at the germinal center: CD8+ Tregs and T

follicular regulatory (Tfr) cells. In a mouse model of multiple

sclerosis, yeast libraries have been used to identify peptides that

engage the CD8+ Treg TCR and vaccination of these peptides

suppressed disease activity (175). Neuritin, a protein produced
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by Tfr cells to prevent differentiation of B cells into plasma cells

has also been shown to suppress autoantibody production in

Tfr-deficient mice (176). However, the importance of CD8+

Tregs and Tfr cells in PMN remains to be established and

development of these promising though experimental

therapies will require rigorous pre-clinical evaluation.
Are current animal models suitable for
preclinical testing of novel therapeutics?

Heymann nephritis has significantly contributed to our

understanding of the disease mechanisms causing PMN but
FIGURE 2

Overview of the complement system. Created with BioRender.com. MBL, mannan-binding lectin; MASP, mannan-binding lectin serine protease;
C4BP, C4b-binding protein; DAF, decay-accelerating factor; MCP, membrane cofactor protein; CR1, complement receptor 1; MAC, membrane
attack complex; C3aR, C3a receptor; C5aR, C5a receptor; PMN, primary membranous nephropathy; PLA2R, M-type phospholipase A2 receptor
1; THSD7A, thrombospondin type-1 domain-containing protein 7A. The complement system consists of 3 pathways: classical pathway, lectin
pathway and alternative pathway, which can be conceptually understood using 4A’s: attachment, activation, amplification, and attack (steps of
complement activation in bold text below). In the classical pathway, complement C1q attaches to the Fc receptor of antigen-bound antibodies
(IgG1, IgG3 and IgM in humans, and IgG2a and IgG2b in rodents). The lectin pathway is similar to the classical pathway where lectins (such as
ficolins, MBLs or collectins) attach to carbohydrates on pathogens, activating MASP-1 and MASP-2 (analogous to C1r and C1s of the classical
pathway), which cleave C4 and C2 to form C3 convertase (C4b2b). In the alternative pathway, small amounts of C3 are spontaneously activated
(“C3 tickover”) due to a labile thioester bond, forming a C3b fragment that binds to factor B (B), which in turn is cleaved by factor D (D) to form
the alternative pathway C3 convertase (C3bBb) that is stabilised by properdin (P), forming C3bBbP. Regardless of the pathway of activation, C3
convertase cleaves C3 into C3a and C3b, which amplifies alternative pathway activation whereby further factor B binds to C3b forming more
C3 convertase. Apart from amplifying C3 convertase formation, C3b also acts as an opsonin and binds to C3 convertase to form C5 convertase
(C4b2b3b and C3bBbC3bP), which cleaves C5 into C5a and C5b. C3a and C5a act as potent anaphylatoxins via their respective receptors (C3aR
and C5aR). Complement attack is initiated by C5b sequentially binding C6, C7, C8, and C9 to form the MAC (C5b-9), which causes
transmembrane pores that cause osmotic cell lysis or sublethal cell injury, activating internal cellular processes. The complement system is
tightly regulated by proteins present in plasma (fluid-phase) and on cell surfaces including the podocyte (solid-phase). Fluid-phase regulators
include C1q inhibitor (binds C1r/C1s and MASP-1/MASP-2 to prevent classical and lectin pathway activation), C4BP (binds C4b to prevent
formation of the classical/lectin pathway C3 convertase), factor H (binds C3b to prevent formation of the alternative pathway C3 convertase),
factor I (cofactor for factor H and MCP, which both inhibit C3 convertase formation), vitronectin (binds the C5b-7 complex to prevent MAC
formation) and clusterin (binds C7, C8, C9 to prevent MAC formation). Solid-phase regulators include DAF (dissociates C2b from C4b and Bb
from C3b to inactivate C3 convertase), MCP (binds C3b and C4b to prevent C3 convertase formation), CR1 (binds C3b and C4b to prevent C3
convertase formation) and CD59 (binds C8 and C9 to prevent MAC formation).
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distinct differences in the underlying disease antigen, predominant

autoantibody IgG subclass, and mechanism of complement

activation and glomerular injury remain. Despite this, AHN

remains a relevant and feasible model that recapitulates the

unifying disease phenotype of PMN and therefore is suitable for

testing novel therapeutics targeting autoantibody production.

Activation of the alternative complement pathway is also a

hallmark of both AHN/PHN and PMN with C3aR antagonism

ameliorating disease in PHN (135), and an ongoing trial will

evaluate the factor B inhibitor iptacopan (LNP023) compared to

rituximab in PMN (NCT04154787).

Models of PMN induced by passive administration of anti-

PLA2R and anti-THSD7A autoantibodies may better resemble

the mechanism of glomerular injury in human PMN. However,

PLA2R and THSD7A in these models were not humanized,

reflecting the inability of transferred human anti-PLA2R

autoantibodies or purified human anti-THSD7A to

recapitulate disease. Furthermore, rabbit anti-THSD7A
Frontiers in Immunology 13
antibodies lack the ability to activate complement, a hallmark

of THSD7A-associated PMN. These animal models also require

the passive administration of antibodies and therefore do not

reproduce the immunological mechanism of autoantibody

production in PMN.

Most recently, transgenic knock-in mice expressing human

PLA2R specifically on podocytes faithfully recapitulates human

PMN phenotype, representing an important and exciting

development that opens opportunities to further understand

the disease mechanisms driving PMN and test novel antigen-

specific therapeutics such as CAR or CAAR T cells. It remains

unclear whether a similar approach can be replicated to model

MN associated with non-PLA2R antigens, though developing

transgenic mice with podocyte-specific expression of the

numerous non-PLA2R MN disease antigens present a

significant challenge as well as feasibility issues. An alternative

approach would be to immunize susceptible murine strains with

a specific PMN-associated antigen and adjuvant. However, while
TABLE 2 Complement system involvement in Heymann nephritis and membranous nephropathy.

Component of the
complement pathway

Change in
membranous
nephropathy

Comments

Classical pathway

C1q HN: ↑
PMN: ↔

SMN: ↑/↔

Glomerular deposition of IgG2b in HN binds C1q.
IgG4 (predominant IgG subclass in PLA2R-, THSD7A-, PCDH7-, HTRA1- and NTNG1-associated PMN) does not
bind C1q. Predominant IgG1 (NELL-1- and Sema3B-associated PMN) not associated with C1q deposition.
IgG1 (predominant IgG subclass in EXT1/EXT2- and NCAM-1-associated MN) binds C1q. IgG4 (predominant IgG
subclass in CNTN1- and FAT1-associated MN) does not bind C1q.

Lectin pathway

MBL HN: ↔
PMN: ↑
SMN:?

Glomerular MBL staining negative in HN.
Glycosylated anti-PLA2R IgG4 allows MBL binding. MBL deposition also demonstrated in THSD7A-associated
PMN.

Alternative pathway

Factor B/Properdin HN: ↑
PMN: ↑
SMN:?

Increased glomerular deposition of factor B in HN.
Factor B and properdin deposition in PMN patients with MBL deficiency. Mechanism of activation unclear.

Common pathway

C3 HN: ↑
PMN: ↑
SMN: ↑

C3 deposition is a hallmark of HN and MN (primary and secondary). Increased serum C3a and glomerular
expression of C3aR demonstrated in both HN and PMN.

C5b-9 HN: ↑
PMN: ↑
SMN:?

Glomerular deposition of C5b-9 in HN.
C5b-9 deposition demonstrated in PLA2R- and THSD7A-associated PMN.

Complement regulatory proteins

Fluid-phase HN: ↑
PMN: ↑
SMN:?

Increased factor H reflecting alternative pathway activation.
Increased factor H reflecting alternative pathway activation. Increased vitronectin and clusterin reflecting C5b-9
activation.

Solid-phase HN: ↓
PMN: ↓
SMN:?

Anti-Fx1A antibodies bind Crry and CD59.
Decreased CR1 and CD59, potentially reflecting podocyte loss.
"↑" = increase, "↔" = no change, "↓" = decrease, and "?" is unknown.
HN, Heymann nephritis; PMN, primary membranous nephropathy; SMN, secondary membranous nephropathy; NA, not applicable; PLA2R, M-type phospholipase A2 receptor 1;
THSD7A, thrombospondin type-1 domain-containing protein 7A; NELL-1, Neural epidermal growth factor-like 1 protein; Sema3B, Semaphorin 3B; CNS, central nervous system; PCDH7,
Protocadherin 7; NTNG1, netrin G1; SLE, systemic lupus erythematosus; HTRA1, high temperature requirement A serine peptidase 1; EXT1/EXT2, exostosin 1/exostosin 2; NCAM-1,
neural cell adhesion molecule 1; CNTN1, contactin 1; FAT1, protocadherin FAT1; MBL, mannan-binding lectin; C3aR, complement 3a receptor; CR1, complement receptor 1.
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expression of Sema3B and serine protease HTRA1 have been

demonstrated in murine podocytes, PCDH7 is not detectable in

rat kidneys and it is unclear whether murine podocytes express

NELL1 or NTNG1 (42, 177–179).
Conclusion

Our understanding of PMN is rapidly evolving with the

promise of targeted therapeutics now emerging. Integrating

technologies such as mapping T and B cell receptor sequences

to their cognate antigen, HLA-peptide tetramer analysis, and
Frontiers in Immunology 14
single-cell RNA sequencing of lymphocytes will likely offer

greater insights into the immune mechanisms causing PMN

leading to the development of more effective and targeted

treatments in this challenging disease.
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FIGURE 3

Potential immunological targets for novel therapeutics in primary membranous nephropathy. Created with BioRender.com. BAFF-R, B-cell
activating factor receptor; CAR, chimeric antigen receptor; CAAR, chimeric autoantibody receptor; PLA2R, M-type phospholipase A2 receptor 1;
Treg, regulatory T cell, In primary membranous nephropathy, autoreactive B cells produce autoantibodies targeting podocyte antigens
(represented by PLA2R in this figure but also include thrombospondin type-1 domain-containing protein 7A, neural epidermal growth factor-like
1 protein, semaphorin 3B, protocadherin 7, high temperature requirement A serine peptidase 1, and netrin G1). These autoreactive B cells
originate from the bone marrow, mature from immature B cells to mature B cells, become activated upon interaction with CD4+ T helper cells
(via cytokines and CD40 ligation) and undergo isotype switching. Activated B cells subsequently migrate to the germinal center of secondary
lymphoid organs where they interact with CD4+ T follicular helper cells, resulting in B cell proliferation and somatic hypermutation, ultimately
differentiating into plasmablast and long-lived plasma cells which secrete high-affinity autoantibodies. Immature, mature, activated and germinal
center B cells express CD19 and CD20, which can be targeted by 2nd and 3rd generation anti-CD20 monoclonal antibodies (eg. ofatumumab
and obinutuzumab), which may be superior to rituximab, or CD19 CAR T cells. However, in cases of primary membranous nephropathy resistant
to 1st generation anti-CD20 monoclonal antibodies (eg. rituximab) that respond to 2nd or 3rd generation anti-CD20 monoclonal antibodies, this
may be due to changes in the CD20 antigen that may be restricted to autoreactive B cells. CD19 and CD20 are also not expressed on
plasmablasts or long-lived plasma cells which continue to secrete autoantibodies despite B cell depletion. Monoclonal antibodies targeting BAFF
(eg. belimumab), preventing binding to the BAFF receptor, target both B cells and plasmablasts but not long-lived plasma cells. Proteasome
inhibitors have been shown to be effective in depleting plasmablasts and plasma cells. Anti-CD38 monoclonal antibodies (eg. daratumumab)
may also be effective against plasma cells, plasmablasts and B cells. However, proteasome inhibitors and anti-CD38 monoclonal antibodies are
associated significant toxicity and short-duration therapy to deplete plasma cells followed by adjunctive therapy (eg. B cell depletion or T cell
co-stimulatory blockade to prevent B cell activation) may be better tolerated. With the discovery of disease antigens underpinning primary
membranous nephropathy, CAR T cells or CAAR T cells targeting autoantibodies (eg. anti-PLA2R) on autoreactive B cells, plasmablasts and
plasma cells are conceivable. Lastly, harnessing the capacity of CD4+ regulatory T cells to induce immune tolerance at sites of inflammation
independent of antigen specificity (infectious tolerance) is attractive. Such strategies may involve CAR regulatory T cells directed to the kidney
(eg. targeting PLA2R on the podocyte) or low-dose IL-2, which preferentially expands regulatory T cells not effector T cells.
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Phospholipase A2 receptor 1 epitope spreading at baseline predicts reduced
likelihood of remission of membranous nephropathy. J Am Soc Nephrol (2018)
29(2):401. doi: 10.1681/ASN.2017070734
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Glossary

ABBA Anti brush border antibody

AHN Active Heymann nephritis

APC Antigen-presenting cells

AR Aldose reductase

BAFF B-cell activating factor

BCR B cell receptor

Bregs Regulatory B cells

BSA Bovine serum albumin

C3aR Complement 3a receptor

CAAR Chimeric autoantigen receptor

CAR Chimeric antigen receptor

CDR-H3 Third complementarity-determining region of the heavy chain

CFH Complement factor H

CNTN1 Contactin 1

CR1 Complement receptor 1

CTLD C-type lectin-like domains

DNA Deoxyribonucleic acid

EXT1/EXT2 exostosin 1/exostosin 2

FAT1 Protocadherin FAT1

FMNL1 Formin-like 1

GBM Glomerular basement membrane

HLA Human leukocyte antigen

HTRA1 High temperature requirement A serine peptidase 1

IgG Immunoglobulin G

IL Interleukin

LRP2 Low-density lipoprotein receptor-related protein 2

MASP MBL-associated serine protease

MBL Mannan-binding lectin

mTOR Mammalian target of rapamycin

NCAM1 Neural cell adhesion molecule 1

NELL1 Neural epidermal growth factor-like 1 protein

NEP/CD10 Neutral endopeptidase;

NTNG1 Netrin G1

PCDH7 Protocadherin 7

PHN Passive Heymann nephritis

PLA2R M-type phospholipase A2 receptor 1

PMN Primaryn membranous nephropathy

RAG Recombination activating gene

RAP Receptor associated protein

Rh-a3NC1 Recombinant human noncollagenous domain 1 of a3(IV) collagen

RNA Ribonucleic acid

Sema3B Semaphorin 3B

SLE Systematic lupus erythematosus

SNP Single nucleotide polymorphism

SOD2 Superoxide dismutase 2

TCR T cell receptor

Tfh T follicular helper

Tfr T follicular regulatory

(Continued)
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TGF-b Transforming growth factor-b

TGFBR3 Transforming growth factor-b receptor 3

Th T helper

THSD7A Thrombospondin type-1 domain-containing protein 7A

TNF Tumor necrosis factor

Tregs Regulatory T cells

ULK1 Unc-51 like autophagy activating kinase 1

VDJ Variable

Diversity Joining gene segments
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