
materials

Review

First-Principles Studies of Adsorptive Remediation of
Water and Air Pollutants Using Two-Dimensional
MXene Materials

Yujuan Zhang *, Ningning Zhang and Changchun Ge *

School of Materials Science and Engineering, University of Science and Technology Beijing,
Beijing 100083, China; zhangningning.1211@163.com
* Correspondence: zhangyujuan@ustb.edu.cn (Y.Z.); ccge@mater.ustb.edu.cn (C.G.)

Received: 23 October 2018; Accepted: 12 November 2018; Published: 14 November 2018 ����������
�������

Abstract: Water and air pollution is a critical issue across the whole world. Two-dimensional
transition metal carbide/nitride (MXene) materials, due to the characteristics of large specific surface
area, hydrophilic nature and abundant highly active surficial sites, are able to adsorb a variety of
environmental pollutants, and thus can be used for environmental remediation. First-principles
method is a powerful tool to investigate and predict the properties of low-dimensional materials,
which can save a large amount of experimental costs and accelerate the research progress. In this
review, we summarize the recent research progresses of the MXene materials in the adsorptive
remediation of environmental pollutants in polluted water and air using first-principles simulations,
and try to predict the research direction of MXenes in the adsorptive environmental applications
from first-principles view.
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1. Introduction

Water and air pollution has been always a critical issue across the whole world. The pollutants
exist in a variety of forms, including heavy metal ions, toxic organics, gases, bacterium, and even
radionuclides. They can pose significant negative effects on human beings and other living organism.
For example, in some cases, they cause serious diseases, and even cancer, to human beings [1].
Among various techniques for the removal of pollutants, such as membrane filtration, precipitation,
solvent extraction and ion exchange [2–5], adsorption especially attracts people’s attention, since
it possesses several advantages, e.g., easy-operation, cost-effective, and also can avoid secondary
pollution by generating other harmful substances [6–9]. The adsorbents usually have large specific
surface area, and active functionalities for pollutants. Nowadays, activated carbon has been widely
used for the removal of industrially discharged pollutants [10].

Since graphene was discovered [11], two-dimensional (2D) materials have been garnering great
attentions due to the unique properties different from their bulk counterparts. After graphene, more
and more members of the 2D family have been discovered, such as transition metal dichalcogenides
(TMD), hexagonal boron nitrides, phosphorenes, etc. [12–14]. These materials have been demonstrated
to be of promising applications in diverse areas. In 2011, Ti3C2 layered materials were first synthesized
using a hydrofluoric acid (HF) etching process [15]. In the years afterward, more 2D transition metal
carbide/nitride (labeled as MXene) materials were synthesized [16–18]. MXenes usually combine
the properties of both metals and ceramics, such as high chemical stabilities and high electrical
conductivities, behaving as “conductive clays” [19]. MXenes have great potential applications in the
energy-storage area, e.g., supercapacitors, and lithium-ion batteries [20–22]. The as-prepared MXenes
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using chemical etching method generally possess hydrophilic nature and abundant highly active
functional groups on the surfaces, and therefore are able to effectively adsorb various pollutants.

Experimental studies are usually subject to many factors, e.g., materials, equipment, and costs,
and therefore limit the research speed. However, theoretical simulation such as density functional
theory (DFT) based first-principles method is an effective approach to analyze and predict the
properties of low-dimensional materials. For the studies of the adsorption of pollutants on MXenes,
first-principles method can help researchers better predict the promising MXene candidates that can
efficiently adsorb specific toxic pollutants, thereby, eliminating the need to conduct experimental
studies with unproductive outcomes. Thus, in this regard, first-principles methods can help save time
and resources, but give very convincing results.

In this paper, we review the recent research progress of the MXene materials in the adsorptive
remediation of environmental pollutants in polluted water and air using first-principles simulations,
including heavy metal elements, radionuclides, and gaseous molecules, and try to predict the research
direction of MXenes in the adsorptive environmental applications based on first-principles theory.
We hope this review can help the theoretical researchers widen their research area, and even accelerate
the pace of applying the MXene materials in practical environmental systems.

2. Brief Introductions to the Development of First-Principles Simulation

Density functional theory-based first-principles simulation is a quantum mechanical method
that obtains electronic structures of materials through resolving Schrödinger equation and further
predicts the physical properties of the materials. This method starts from five basic physical constants,
i.e., electron mass, electron charge, Planck constant, speed of light, and Boltzmann constant, and does
not rely on any empirical constants, and thereby considered as a very accurate approach. With the
development of high-throughput computing science, first-principles calculation method has achieved
significant development and been widely used to study the physicochemical properties of materials.

The theoretical study of strong correlation systems like transition metals, lanthanides,
and actinides-including systems, involves relativistic effects and strong electronic correlation effects
that cannot be dealt with by traditional density functional theory. For example, Pacchioni et al. have
proved that the adsorption properties of CO on the Pt (100) surface can be well explained by taking
into account the scalar relativistic effects [23]. The scalar relativistic effect containing the relativistic
mass shift and the Darwin term is included in the projector augmented wave pseudopotential in
the studies of uranium ion adsorption on MXene materials by Zhang et al. [24,25] In recent years,
breakthroughs in the calculation of strong-correlation materials based on density functional theory
have been made, such as hybrid density functional method [26], self-consistent field interaction
correction [27] and density functional theory plus U (DFT+U) method [28]. The above methods correct
the strong correlation between 5f electrons, making it possible to accurately simulate strong-correlation
systems. Hybrid density functional method introduces the non-local Hartree-Fock exchange term
in the correlation term, which corrects the deficiency of the traditional density functional theory
method in dealing with self-interactions [26]. This method can accurately describe the structures,
density of states, and optical band gap properties of insulating materials. Wen et al. accurately
described the electronic and structural properties of lanthanide dioxide using the hybrid density
functional method [26]. Self-consistent field interaction correction can be regarded as a generalized
Hartree–Fock approximation considering the dynamic Coulomb shielding interaction [27]. It is used
to eliminate the unreal electronic self-interactions in the band structure theory derived from the
local spin density approximation (LSDA). Petit et al. applied this method to the calculation of the
ground state electronic structure of the lanthanide nitride [29]. The DFT+U method adds a Hubbard
U term to the Hamiltonian, which can correct the strong correlation interaction between electrons.
The DFT+U method has been developed into an effective theoretical research tool in dealing with
strongly correlated electronic materials. Guo et al. have studied the adsorption properties of Pb
and Cu on MXenes using DFT+U method [30]. For the metastable problem in DFT+U calculations,
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different approaches such as occupation matrix control (OMC) method [31], U-ramping method [32],
quasi-annealing (QA) method [33] and controlled symmetry reduction (CSR) method [28,34] have
been developed.

In addition, the first-principles dynamics method combining the first-principles method for
solving the Schrödinger equation and the classical molecular dynamics method has gradually become
an important theoretical research tool for the simulation of dynamic processes in materials. The biggest
difference between the first-principles dynamics method and the classical molecular dynamics method
is the way to obtain the interaction between particles. The force in the classical molecular dynamics
method is obtained by the potential function, and the first-principle dynamics method is based on the
electronic wave function, and the force between the particles is derived by the Hellmann–Feynman
theorem [35].

3. Structures of MXene Materials

Typically, MXenes can be synthesized from “MAX” matrix phase using a chemical etching process,
e.g., hydrofluoric acid (HF), hydrochloric acid (HCl) combined with lithium fluoride (LiF) [17,19].
The term “MAX” represents the reactant compounds Mn+1AXn (n = 1, 2, 3), where M denotes a
transition metal element, A stands for a group IIIA or IVA element (A = Al, Ga, In, Si, Ge, Sn, Pb, P,
As, S and Cd) and X is C or N element. An example of MAX is Ti3AlC2, from which the first MXene
material, Ti3C2, was fabricated [15]. Therefore, the structure of a MXene can be described as n+1 layers
of M atoms covering n layers of X atoms in an (MX)nM arrangement. So far, at least three different
MXenes, M2X, M3X2 and M4X3, have been confirmed [17,22], as shown in Figure 1.
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MXenes synthesized from chemical etching method usually possess various surficial functional 
groups, the most common ones of which are oxygen (–O), hydroxyl (–OH) or fluorine (–F) [36–38]. 
Therefore, the chemical formula of MXene is generally written as “Mn+1XnTx”, where T denotes the 
surficial functional groups. For example, Ti3C2 MXene synthesized from chemical etching method can 
at least have the following three formulae: Ti3C2(OH)2, Ti3C2O2 and Ti3C2F2, as shown in Figure 2. The 
species and quantities of these terminal groups are highly dependent on the synthesis process. As is 
known, hydrophilic nature facilitates adsorption for polar or ionic pollutants, i.e, the –F group is 
unfavorable for adsorption, which will be discussed in the following part.  

Employing chemical vapor deposition method, MXenes without surficial functional groups have 
also been successfully synthesized, such as Mo2C, WC, and TaC [39]. Since the exposed unterminated 
metal atoms are highly reactive, these MXenes are prone to combining with other substances, and 
thus very suitable to be adsorbents. First-principles calculations have confirmed this characteristic, 
which will be seen in the following text.  

Figure 1. The early reported three different structures of 2D transition metal carbide/nitride (MXenes)
(non-terminated): M2X, M3X2 and M4X3. Reprinted from Ref. [22] with permission. Copyright 2017
Macmillan Publishers Limited. (Color online).

MXenes synthesized from chemical etching method usually possess various surficial functional
groups, the most common ones of which are oxygen (–O), hydroxyl (–OH) or fluorine (–F) [36–38].
Therefore, the chemical formula of MXene is generally written as “Mn+1XnTx”, where T denotes the
surficial functional groups. For example, Ti3C2 MXene synthesized from chemical etching method can
at least have the following three formulae: Ti3C2(OH)2, Ti3C2O2 and Ti3C2F2, as shown in Figure 2.
The species and quantities of these terminal groups are highly dependent on the synthesis process.
As is known, hydrophilic nature facilitates adsorption for polar or ionic pollutants, i.e, the –F group is
unfavorable for adsorption, which will be discussed in the following part.

Employing chemical vapor deposition method, MXenes without surficial functional groups
have also been successfully synthesized, such as Mo2C, WC, and TaC [39]. Since the exposed
unterminated metal atoms are highly reactive, these MXenes are prone to combining with other
substances, and thus very suitable to be adsorbents. First-principles calculations have confirmed this
characteristic, which will be seen in the following text.
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4. First-Principles Progress of Adsorption of Pollutants on MXenes

Subject to calculation resources, first-principles method is more suitable for studying the
adsorption behaviors of small molecular adsorbates on MXenes, but is difficult for large and complex
species. For example, experiments have confirmed the excellent adsorption behaviors of organic
dyes [40–43] or even bacterium [44–46] on MXenes. However, first-principles based theoretical studies
for the adsorption behaviors of these complex systems on MXenes are not yet reported.

According to the types of the pollutants adsorbates in water and air reported in literature, we will
make discussions on heavy metal elements, radionuclides, and gaseous molecules.

4.1. Heavy Metal Elements Adsorption

Heavy metal elements can exist in cationic, anionic and electrically neutral forms. Heavy
metal ions generally exist in water bodies, such as rivers or lakes. They can cause serious threat
to human beings and other animals. Typical toxic heavy metal elements include Pb, Cr, Hg, Cd and
Cu. World Health Organization (WHO) has made clear statements for the upper limits of heavy
metal elements in drinking water, called WHO’s Drinking Water Standards (set up in Geneva in 1993).
For example, the upper limit of Pb in drinking water is 10 µg/L, and the upper limit of Cd is 3 µg/L.
Many researchers have studied the adsorption behaviors of heavy metal elements on MXenes using
first-principles method, which agree well with the experimental results.

Pb(II) is the first heavy metal ion confirmed to be effectively adsorbed on MXenes by
first-principles method. Peng et al. reported that NaOH-treated Ti3C2 MXene material
Ti3C2(OH/ONa)xF2−x has excellent adsorptive ability for Pb(II), and interpreted it based on
first-principles theory [47]. The adsorption chemical equations are:

Ti3C2(OH)2 + m Pb(NO3)2→Ti3C2(O2H2−2mPbm) + 2m HNO3

Ti3C2(ONa)2 + m Pb(NO3)2→Ti3C2(O2H2−2mPbm) + 2m NaNO3

i.e., ion exchange reactions occur between Pb and H/Na atoms. Electron localization function (ELF)
calculations show that the mechanism of adsorption includes two aspects: Pb atom forms strong
chemical bonds with oxygen atoms (hydroxyls losing H atoms), and at the same time with the
surrounding hydroxyl groups, as in shown in Figure 3. This mechanism can be vividly described
as the Pb atom being trapped by two underneath oxygen atoms and eight surrounding hydroxyl
groups. First-principles calculation also predicts that the sites of hydroxyl groups and the types
of surficial functional groups significantly affect the adsorption behaviors of Pb(II) on Ti3C2(OH)2
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MXene [48]. The hydroxyl groups on top of the titanium atoms have larger adsorption energies than
other adsorbed structures, implying stronger ability for the adsorption of Pb(II). Surficial fluorine
groups have negative effects on the adsorption efficiency, while the addition of Li, Na, and K atoms
facilitates the adsorption. Moreover, the coverage of Pb(II) on the MXene surface has important effects
on the adsorption energy: the adsorption energy decreases with increasing the coverage, i.e., with
increasing the adsorbed Pb atoms, further adsorption ability of the MXene is weakened. When the
coverage is smaller than 1/9 monolayer (ML), the MXene exhibits strong adsorption ability for Pb(II)
ions (adsorption energy greater than −1 eV). Peng et al. have also studied the adsorption behaviors
of Pb(II) on different MXenes with a general form M2X(OH)2 (M = Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta,
and X = C or N) using first-principles theory [49]. The results indicate that only Zr2C(O2H2−2xPbx)
and Sc2C(O2H2−2xPbx) have positive formation energies, i.e., Sc2C(OH)2 and Zr2C(OH)2 MXenes are
not suitable for Pb(II) removal. All adsorption products M2N(O2H2−2xPbx) have negative formation
energies, and more negative than their carbide counterparts, indicating the M2N(OH)2 MXene has
stronger Pb adsorption ability than M2C(OH)2 MXene. These results are of great significance for
guiding practical applications.
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Similar to Pb(II), first-principles calculations show that alkaline intercalated Ti3C2 MXene can
also effectively adsorb a series of other divalent heavy metal ions including Cu, Zn, Pd, Cd [48].
The adsorption chemical reaction of divalent heavy metals Y (in nitrate form) can be written as
Ti3C2(OH)2 + m Y(NO3)2→Ti3C2(O2H2−2mYm)2 + 2m HNO3. When the coverage is smaller than
1/9 mololayer (ML), adsorption energies for all four heavy metal elements are greater than −1 eV,
i.e., all the ions can be effectively adsorbed on Ti3C2(OH)2 MXene. Ti3C2Tx MXene has been
experimentally confirmed to be an effective adsorbent for Cu(II) ion [50]. Additionally, it is also
experimentally reported that Ti3C2Tx MXene can effectively adsorb Ba(II) ion [51,52], yet lack of
first-principles analysis.

Except for the above positively charged heavy metal ions, MXenes have also been confirmed
to adsorb negatively charged heavy metal ions. For example, experimental studies have shown that
Ti3C2Tx MXene possesses a high purification capacity for Cr2O7

2− ions in water [53,54]. At low pH,
the adsorption of Cr (VI) on Ti3C2Tx is attributed to the electrostatic attraction between positively
charged surface of MXene and negatively charged Cr2O7

2− ion. Along with the adsorption, the MXene
can reduce Cr (IV) to Cr (III) at the same time. However, there is no related first-principles analysis
regarding the adsorption of negatively charged heavy metal ions on MXenes yet.

Besides the charged heavy metal ions, MXenes have also been shown to be effective adsorbents
for free non-ionic heavy metal atoms based on first-principles theory. Guo et al. have systematically
investigated the adsorption behaviors of non-ionic Pb and Cu atoms on different MXenes using
DFT+U method, including Ti3C2, V2C1 and Ti2C1 MXenes with bare, H, OH, and F terminations [30].
The results show that surface terminations significantly influence the adsorption ability for Pb and
Cu atoms. All the MXenes can effectively adsorb Pb atoms with binding energy larger than 1 eV
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except F terminated ones, and only bare and OH terminated MXenes can effectively adsorb Cu atoms.
The mechanism of the adsorption is related to the complex interactions between the adatoms (Pb and
Cu) and MXene atoms. Based on first-principles calculations, Ti2C(OH)2 and Ti3C2(OH)2 MXenes are
also shown to effectively adsorb free non-ionic Au atoms with adsorption energy greater than 3 eV [55].
The replacement of OH group by O and F terminations can significantly weaken the adsorption ability.
Up to now, no experimental studies have been carried out for the adsorption of free heavy metal atoms
on MXenes.

In short, first-principles studies have confirmed the excellent adsorption behaviors of MXenes
for positively charged heavy metal ions and free non-ionic heavy metal atoms. For both types of
heavy metal elements, surface terminations are found to significantly affect the adsorption behaviors,
and generally speaking, –F group can reduce the adsorption ability of the MXenes.

4.2. Radionuclide Elements Adsorption

With the increase in nuclear energy utilization, nuclear waste pollution is becoming a challenging
environmental concern because the contamination of the radionuclides can be significant hazards
even at trace amounts due to their long-term radiological and chemical toxicities. Regarding the
charged state, radionuclide elements can exist in different forms, e.g., cationic UO2+, anionic TeO4

2−,
and neutral Xe. Up to now, only cationic UO2+ has been studied for the adsorption behaviors
on MXenes.

Titanium carbide Ti3C2Tx is the first MXene material predicted to be an ideal adsorbent for
radionuclide purification by Zhang et al. [25]. First-principles studies have shown that hydrated
uranyl cation [UO2(H2O)5]2+ can be effectively adsorbed by Ti3C2(OH)2 MXene in aqueous solution.
Uranyl preferentially adsorbs as a bidentate inner-sphere adsorption configuration coordinated to OH
groups on the MXene surface. In this configuration, penta-coordinated uranyl species removes two
coordinated water ligands and binds to two surface O atoms deprotonated from hydroxyl groups in
activated Ti sites, forming a bidentate coordinated complex TiO2–UO2(H2O)3, as shown in Figure 4.
Besides the U–O chemical bonds, hydrogen bonds between the two axial O atoms of the uranyl
and the terminated H atoms on the MXene surface also contribute to the adsorption interactions.
When coordinated by the anionic ligands such as OH−, Cl− and NO3

−, the uranyl species can also
be strongly adsorbed by the Ti3C2(OH)2 MXene. Ab initio molecular dynamical calculations for
the bidentate adsorption configuration of TiO2–UO2(H2O)3 in ambient water show that the water
molecules do not have negative effects on the adsorption. Based on the stable adsorption configuration,
the theoretical adsorption capacity is calculated to be as high as 595.3 mg/g for [UO2(H2O)5]2+ species.
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Wang et al. experimentally confirmed the strong adsorption ability of V2CTx MXene for
uranyl species and analyzed the results with the first-principles theory [56]. The most energetically
favorable adsorption configuration is the bidentate inner-sphere adsorption configuration, where
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penta-coordinated uranyl species removes two coordinated water ligands and forms chemical bonds
with two surface O atoms deprotonated from hydroxyl groups, forming a VO2–UO2(H2O)3 complex,
which is very similar to the situation of Ti3C2(OH)2. To further clarify the adsorption behaviors
of uranyl on V2C MXene, the adsorption properties of V2C(OH)2 nanosheets for uranyl ions with
different ligands in the general form [UO2(L1)x(L2)y(L3)z]n (L1, L2 and L3 stand for H2O, OH and CO3)
are studied by Zhang et al. [24]. The results show that all the uranyl species can bind strongly with
V2C(OH)2 nanosheets with high adsorption energies greater than 3 eV. Among the studied uranyl
species, aquouranyl [UO2(H2O)5]2+ bonds the strongest to the hydroxylated V2C nanosheet. It is also
found that the terminated –F groups on V2C nanosheets could weaken the adsorption capability for
uranyl ions, which is very similar to the results of heavy metal elements adsorption on MXenes.

In short, first-principles studies have confirmed the strong adsorption ability of hydroxylated
MXenes for uranyl species UO2

2+. The main adsorption mechanism is the chemical interaction between
the U atom and two O atoms deprotonated from hydroxyl groups on the MXene surface.

4.3. Gaseous Pollutants Adsorption

Industry discharged gaseous pollutants are becoming a critical issue, including toxic inorganic
gases, and volatile organic compounds (VOCs). They can cause serious diseases to the respiratory
system, and further other systems, of human beings. Several first-principles studies have been carried
out on gaseous pollutants adsorption using MXenes, including NH3, SO2 and CO2.

Yu et al. have investigated the adsorption behaviors of a series of gas molecules (NH3, H2, CH4,
CO, CO2, N2, NO2 and O2) on monolayer Ti2CO2 MXene, and found only NH3 could be chemisorbed
on the monolayer Ti2CO2 as compared with other gas molecules, as seen in Figure 5a [57]. Calculations
show that N–Ti chemical interaction is the main adsorption mechanism. The adsorption energy of
NH3 on Ti2CO2 is −0.37 eV. This intermediate energy implies that Ti2CO2 is a promising recyclable
material for NH3 purification as it could easily release NH3. Furthermore, the electrical conductivity of
Ti2CO2 is enhanced significantly after the adsorption of NH3, indicating Ti2CO2 could be a potential
NH3 sensor with high sensitivity, as shown in Figure 5b. Additionally, the adsorption of NH3 on
Ti2CO2 can be further enhanced by applying strain on the nanosheet. Xiao et al. further studied the
adsorption behaviors of NH3 on a series of O-terminated semiconducting MXenes with the general
form M2CO2 (M = Sc, Ti, Zr, and Hf) using first-principles simulations [58]. The results show that NH3

could be strongly adsorbed on all four M2CO2 MXenes with apparent charge transfer, which renders
them the potential candidates as the NH3 sensor or capturer. In particular, the NH3 could be released
by tuning the number of the electrons injected into M2CO2 MXenes. These results are very informative
for practical applications of M2CO2 MXenes as NH3 sensors.
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Going along with the similar thinking, toxic gaseous SO2 adsorption on O-terminated M2CO2

(M = Sc, Hf, Zr, and Ti) monolayers has also been studied based on first-principles calculations by
Ma et al. [59]. It is found that Sc2CO2 is the most preferred monolayer for SO2 molecules adsorption
with suitable adsorption strength (adsorption energy −0.646 eV) compared to other monolayers.
The S–Sc chemical bonds are the main adsorption mechanism. Similar to the adsorption of NH3 on
Ti2CO2, the adsorption strength of SO2 on Sc2CO2 can be further enhanced by applying strains on the
nanosheet; and the conductivity of Sc2CO2 increases with the adsorption of SO2. It is noted that electric
field has significant influence on the adsorption behaviors of SO2 on Sc2CO2: negative electric field
facilitate the adsorption, while positive electric field weakens it (positive direction is the direction from
the unadsorbed side to the adsorbed side). This characteristic is very meaningful for the applications
of sensors or recycling use as adsorbent materials.

Morales-Garcia et al. first-principles calculated the adsorption behaviors of CO2 on unterminated
M2C (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) MXenes and found that these bare MXenes can effectively
adsorb CO2 even at low CO2 partial pressures and high temperatures, thus can act as very promising
candidates for carbon dioxide capture, storage, and activation [60]. The adsorption mechanism
involves complex interactions between CO2 molecules and the MXenes, and is dependent on the
species of MXenes. Since CO2 is considered chemically inert, this result provides strong evidence that
bare MXenes are very reactive for adsorbing pollutant species.

In short, O-terminated semiconducting M2CO2 MXenes exhibit reversible adsorption behaviors
towards NH3 and SO2, and thus can act as gas sensors or adsorbents. Chemical bonds between the gas
molecules and the M atoms of the MXenes are the main adsorption mechanism.
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5. Summary and Outlook

First-principles calculations have shown that the MXenes, i.e., 2D transition metal
carbides/nitrides display very encouraging performances in adsorptive remediation for various
pollutants in polluted water and air, including heavy metal elements, radionuclides and gaseous
pollutants. Different mechanisms contribute to different adsorption systems. For clarity, the MXene
adsorbents and pollutant adsorbates, together with the main adsorption interactions, are summarized
and displayed in Table 1. Experimental studies have confirmed some of the theoretical results.
However, there are still several open questions that need to be addressed from first-principles view.

Table 1. A list of MXene adsorbents and pollutant adsorbates and their main adsorption interactions
by first-principles studies.

MXene Adsorbate Main Adsorption
Interaction Reference

Ti3C2(OH)2
Mad(II) (Mad = Pb, Cu, Zn,

Pd, Cd) Mad–O bonds [47,48]

M2C(OH)2 (M = Ti, V, Cr, Nb, Mo, Hf, Ta)
M2N(OH)2 (M = Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta) Pb(II) Pb–O bonds [49]

Mn+1Cn (Ti3C2, V2C1, Ti2C1) Mad (Mad = Pb, Cu) Mad–M and Mad–C
interactions [30]

Ti2C(OH)2, Ti3C2(OH)2 Au Au–OH bonds [55]
Ti3C2(OH)2 U (IV) U–O bonds [25]
V2C(OH)2 U (IV) U–O bonds [24]

M2CO2 (M = Sc, Ti, Zr, and Hf) NH3 N–M bonds [57,58]
Sc2CO2 SO2 S–Sc bonds [59]

M2C (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W) CO2
CO2–MXene complex

interactions [60]

As discussed in above section, surficially bare MXenes are very reactive and able to adsorb a variety
of pollutants species from water and air. At the same time, just because of this high reactivity, bare
MXenes are very easy to react with ambient molecules, e.g., water and oxygen molecules [15,20,61,62].
These molecules may compete with the pollutant species in the adsorption process, and hinder the MXene
materials in practical environmental remediation applications. Therefore, deeper studies of adsorption
behaviors of pollutant species on bare MXenes, especially the competing behaviors between the pollutant
species and ambient molecules should be conducted.

As we have shown, all the discussed charged heavy metal ions are cations. Since anions,
e.g., Cr2O7

2−, are also experimentally reported to be adsorbed by MXenes, deep first-principles studies
of the adsorption behaviors of heavy metal anions on MXenes need to be carried out. Especially,
regarding nuclides, only one species UO2

2+ has been considered, and the adsorption behaviors of
other nuclide cations and anions on MXenes are still blank and deserve investigations.

Most VOCs are chemically reactive and toxic to human beings, and experimental studies show that
the physical properties of MXenes can be affected by adsorption of some VOC molecules, including
ethanol, methanol and acetone, and thus can be used as VOC sensors [63]. Since the family of
MXenes has a large number of members, adsorptions of different VOCs on different MXenes should
be systematically studied based on first-principles method.

In addition, although MXenes have been shown to be able to adsorb gaseous pollutants,
e.g., NH3, SO2, and CO2 [57–60], there are no related experiments reported yet, which should be
conducted to confirm their performances. After all, practical applications are the ultimate purpose of
scientific studies.
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