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Abstract

Reconstitution of the T cell repertoire after allogeneic stem cell transplantation is a long and

often incomplete process. As a result, reactivation of Epstein-Barr virus (EBV) is a frequent

complication that may be treated by adoptive transfer of donor-derived EBV-specific T cells.

We generated donor-derived EBV-specific T cells by stimulation with peptides representing

defined epitopes covering multiple HLA restrictions. T cells were adoptively transferred to a

patient who had developed persisting high titers of EBV after allogeneic stem cell transplan-

tation for angioimmunoblastic T-cell lymphoma (AITL). T cell receptor beta (TCRβ) deep

sequencing showed that the T cell repertoire of the patient early after transplantation (day

60) was strongly reduced and only very low numbers of EBV-specific T cells were detect-

able. Manufacturing and in vitro expansion of donor-derived EBV-specific T cells resulted in

enrichment of EBV epitope-specific, HLA-restricted T cells. Monitoring of T cell clonotypes

at a molecular level after adoptive transfer revealed that the dominant TCR sequences from

peptide-stimulated T cells persisted long-term and established an EBV-specific TCR clono-

type repertoire in the host, with many of the EBV-specific TCRs present in the donor. This

reconstituted repertoire was associated with immunological control of EBV and with lack of

further AITL relapse.
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Author summary

A characteristic feature of all herpesviruses is their persistence in the host’s body after pri-

mary infection. Hence, the host’s immune system is confronted with the problem to con-

trol these viruses life-long. When the immune system is severely compromised, for

example after stem cell transplantation from a foreign (allogeneic) donor, these viruses

can reappear, as they persist in the host’s body life-long after primary infection. Epstein-

Barr virus (EBV) is a herpesvirus that can cause life-threatening complications after stem

cell transplantation and only reinforcement of the host’s immune system can reestablish

control over the virus. Here we show that ex vivo manufactured EBV-specific T cells can

reestablish long-term control of EBV and that these cells persist in the host’s body over

months. These results give us a better understanding of viral immune reconstitution post-

transplant and of clinically-relevant T cell populations against EBV.

Introduction

Linked to its high prevalence in adults, approximately 30–40% of patients reactivate Epstein-

Barr virus (EBV) after MHC-matched allogeneic stem cell transplantation (allo-SCT), as deter-

mined by virus-specific PCR of cells of the peripheral blood [1]. Reactivation of EBV worsens

outcome after allo-SCT, since it imposes the risk of EBV-associated post-transplant lympho-

proliferative disorder (PTLD) and is associated with malignancies such as angioimmunoblastic

T cell lymphoma (AITL) [2]. AITL is a rare form of T cell non-Hodgkin Lymphoma in which

concomitant EBV infection often occurs [3]. EBV appears to play a role in AITL pathogenesis

and histological development [2,4], either through EBV-infected B immunoblasts found at

early AITL stages adjacent to neoplastic T cells [5–7] or infection of both cells types [8]. For

this reason, EBV serostatus and viral loads serve as important prognostic factors [9,10], espe-

cially among young patients [11].

EBV DNA load in peripheral blood is routinely monitored by polymerase chain reaction

(PCR) in patients after allo-SCT to allow for pre-emptive treatment strategies [12]. Since no

specific antiviral therapy is available to date, treatment of EBV-related disease in patients after

allo-SCT focuses on three major strategies: (i) in-patient depletion of EBV-transformed B cells

with antibodies -with depletion of other B cells as collateral damage- (ii) reduction of immuno-

suppression, or (iii) application of EBV-specific, donor-derived T cells [13–16].

The availability of B cell-depleting antibodies has reduced the occurrence of PTLD after

allo-SCT [17], but comes with severe side effects and costs. Due to the long-term depletion of

B cells, antibody generation is abolished and patients are at risk of severe infections, especially

with encapsulated bacteria whose control requires antibody opsonization [18,19]. Therefore,

frequent application of intravenous immunoglobulins is necessary. Furthermore, the problem

of failing immunological control of EBV is not resolved.

As an alternative strategy, several groups have focused on the development of EBV-specific

T cell transfer, as reactivation of EBV is associated with use of T cell-depleted grafts or insuffi-

cient T cell reconstitution after transplantation. This approach does not bear the risk of devel-

oping de novo graft versus host disease [20–24]. Adoptive transfer of natural EBV-specific T

cells from EBV-positive donors has been performed and is considered overall a success due to

its effectiveness and safety [23]. For patients with EBV-seronegative donors, where natural

EBV-specific T cells are not available, adoptive transfer of EBV TCR-transduced T cells is a

promising alternative [25–29].
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We have recently described a Good Manufacturing Practice (GMP)-compliant method for

the generation of CMV- and EBV-specific T cells by stimulation of G-CSF mobilized alloge-

neic stem cell grafts or conventional PBMC with MHC-I- and MHC-II-restricted epitope pep-

tides derived from viral proteins [24]. We selected peptides that allow for comprehensive

quality control of the product and subsequent follow-up within the patient after adoptive

transfer, using flow cytometry with peptide-MHC multimers. However, little is known about

the detailed structure of the EBV-specific T cell repertoire recognizing each epitope and its fate

after adoptive transfer into the patient.

Here, we generated multi-epitope-specific T cells by peptide stimulation and adoptively

transferred them to a patient with severe EBV reactivation after allo-SCT. We selected several

peptides for defined latent and lytic epitopes of multiple well-established HLA restrictions.

Using peptide-MHC multimer binding in flow cytometry and high-throughput sequencing of

the TCRβ repertoire, we show that stimulation of T cells with EBV peptides generates a prod-

uct with a clonotypic TCRβ repertoire that is strongly focused on EBV-specific sequences, and

that this repertoire can be tracked long-term in vivo after adoptive transfer in the patient to

demonstrate immune reconstitution.

Results

Manufacturing of EBV-specific T cells

A 55-year-old, EBV-seropositive patient suffered from biopsy-confirmed chemotherapy-

refractory AITL (Stage IVB, EBV-, see S1 and S2 Figs) and was transplanted with G-CSF-mobi-

lized peripheral blood stem cells from an HLA 10/10 matched unrelated donor. Concomitant

with leukemic relapse shortly after transplantation (day 42), the patient developed high EBV

titers in peripheral blood on day 66 and received conventional unmanipulated donor lympho-

cyte infusion (DLI) on day 76 and Rituximab four times weekly on days 68–89. As major

symptoms of EBV reactivation (night sweats, fever, itching of the skin, and elevated liver

enzymes) were not controlled, we decided to prepare and adoptively transfer peptide-stimu-

lated EBV-specific T cells (ATCT) on day 105. An overview of the patient history is provided

in S1 Table and S3 Fig.

To prepare EBV-specific T cells, a total of 600 million conventional PBMC (frozen fraction

of the preparation for conventional DLI) were stimulated with a pool of defined EBV-derived

peptides (1 μg/ml per peptide, Table 1), similar to the procedure published previously [24].

Peptide-stimulated cells were subsequently expanded in a closed bag system for 9 days. Fig 1A

(left panel) shows the composition of the PBMC before peptide stimulation (day 0) and of the

resulting cell composition after 9 days of expansion. The dominant fraction of cells in the

product were CD3+ T cells (84.8%). B cells, NK cells and monocytes were reduced to 5.8% of

all cells. Other cells (9.4%) were mainly macrophages, activated monocytes, neutrophils (all

CD11b+, CD68+), and few remaining granulocytes. As shown in Fig 1A (right panel), total

CD3+ T cell number increased from approximately 315 million to 631 million cells over the

9-day period, and a total of approximately 750 million cells were harvested.

The T cell product was analyzed before and after peptide stimulation with peptide-MHC

multimers (Fig 1B) corresponding to the six peptides of the stimulation pool that were

restricted through HLAs present in transplant donor and recipient (Table 1). On day 0, 2.4%

of CD8+ T cells, mainly in the CCR7-negative subset, specifically bound peptide-MHC multi-

mers. By day 9, T cells specific for five of the six epitopes had strongly expanded and now

amounted to 64.6% of all CD8+ T cells. Two epitopes (RAK and EPL) from the immediate-

early protein BZLF1 and one epitope (HPV) from the latent antigen EBNA1 were particularly

dominant. Intracellular cytokine staining after restimulation demonstrated, as expected [44],
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that a variable proportion of CD8+ T cells specific for these epitopes secreted IFN-γ in response

to single peptide stimulation (Fig 1C). A high proportion of IFN-γ-secreting CD8+ cells

(13.2%, compared to 24.1% of multimer-staining cells) was seen for the EPL epitope. An

increase of IFN-γ concentration and other cytokines was also detected in patient serum after

adoptive transfer (S4 Fig). While more than half (53.6%) of CD3+ T cells of the PBMCs (day 0)

had initially a naive phenotype (CCR7+/CD45RA+), these were reduced to 15.4% on day 9 (Fig

1D). In contrast, the proportion of T cells with effector/effector memory phenotype (CCR7-/

CD45RA-) changed from 22.8% to 80.0%. The three most dominant multimer-binding CD8+

T cell populations (EPL, RAK, and HPV) had a dominating effector memory phenotype in the

cellular product, despite a stronger CD62L expression in EPL- and RAK-specific T cells as

compared to HPV-specific T cells (S5 Fig).

Separate analysis showed that T cell memory phenotypes were extensively changed in the

CD8+ but hardly in the CD4+ T cell subset (Fig 1E), while expression of the activation markers

CD25, HLA-DR and CD38 was also largely limited to the CD8+ subset (Fig 1F). As far as is

known (and disregarding the possibility of promiscuous HLA class II restriction [45]), pep-

tides presented on HLA-DR to CD4+ T cells and which were used for stimulation (Table 1)

were not restricted for any donor or patient HLA-ABC molecule. Consequently, EBV-specific

CD4+ T cells may not have been stimulated by the EBV peptide pool, and therefore memory

and activation markers on CD4+ T cells were not altered.

Analysis of the TCR repertoire of the T cell product

Having demonstrated that stimulation of T cells with a pool of EBV peptides results in strong

expansion of peptide-specific CD8+ effector and effector/effector-memory T cells, we next ana-

lyzed the T cell receptor β-chain (TCRβ) repertoire before and after peptide stimulation. To

this end, we amplified the TCRβ of flow cytometry-sorted CD8+ T cells via high-throughput

sequencing (HTS) (see S6 Fig for multimer sorting gating strategy and purity). For compara-

bility, the same amount of DNA (100 ng per analysis)—representing the equivalent number of

Table 1. Peptide pool used for T cell stimulation.

label AA Sequence peptide length protein presented on HLA reference matched with patient

CLG CLGGLLTMV 9 LMP2 A�02:01 [30]

GLC GLCTLVAML 9 BMLF1 A�02:01 [31,32]

YVL YVLDHLIVV 9 BRLF1 A�02:01 [33]

FLY FLYALALLL 9 LMP2 A�02:01 [34]

RLR RLRAEAQVK 9 EBNA3A A�03:01 [35] +

RPP RPPIFIRRL 9 EBNA3A B�07:02 [35]

QAK QAKWRLQTL 9 EBNA3A B�08:01 [36] +

RAK RAKFKQLL 8 BZLF1 B�08:01 [37] +

YPL YPLHEQHGM 9 EBNA3A B�35:01 [36] +

HPV HPVGEADYFEY 11 EBNA1 B�35:01 [38] +

EPL EPLPQGQLTAY 11 BZLF1 B�35:01 [33] +

PYYV PYYVVDLSVRGM 12 BHRF1 DR�4 [39]

VVRM VVRMFMRERQLPQS 14 EBNA3C DR�11 [40]

FGQL FGQLTPHTKAVYQPR 15 BLLF1 DR�13 [41]

IPQC IPQCRLTPLSRLPFG 15 EBNA1 DR�13 [42]

TDAW TDAWRFAMNYPRNPT 15 BNRF1 DR�15 [43]

AA: amino acid sequence.

https://doi.org/10.1371/journal.ppat.1010206.t001
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Fig 1. Manufacture of EBV-specific T cells. (A) Composition of the apheresis product that served as starting material

(day 0) and the resulting T cell culture after stimulation with EBV peptides (day 9). Left panel: Proportions of different cell

types in CD45+ cells (monocytes: CD14+SSClow, NK cells: CD56+, B cells: CD19+, T cells: CD3+, rest of leukocytes). Right

panel: Composition in absolute cell numbers. (B) Percentage of peptide-specific T cells assessed by flow cytometry using

peptide-MHC multimers (RLR, HLA-A�03:01; QAK, RAK, HLA-B�08:01; YPL, HPV, EPL, HLA-B�35:01) on day 0 and
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T cell rearrangements (approximately 14,500 T cells)—was employed for each library prepara-

tion. Within a first study, we were able to demonstrate that analyzing this constant amount of

T cells reliably reflects T cell composition and T cell diversity [46].

Following this approach, we observed a strong change in the usage of TCR Vβ segments of

the sorted CD8+ T cells before and after EBV peptide stimulation (Fig 2A, left panel). While

the proportion of Vβ19, 20, and 4 was reduced over 9 days of cultivation, we observed an

expansion of Vβ6 and Vβ7 chains. Next, we enriched EBV epitope-specific CD8+ T cells by

flow cytometry cell sorting based on peptide-MHC multimer binding on day 9. Interestingly,

individual patterns of Vβ usage were characteristic for each EBV epitope (Fig 2A, right panel),

with predominant Vβ6 usage in EPL and HPV multimer-enriched CD8+ T cells, and Vβ7 and

Vβ4 predominant in RAK-enriched T cells.

Individual clonotypes were defined as TCRβ complementarity-determining regions 3

(CDR3) DNA sequences with a percentage of reads equal to or above the cut-off of 0.01%. We

compared the frequencies of the 25 most abundant TCRβ clonotypes at day 0 and day 9 of the

CD8+ T cells, ordered by read frequency in descending order (Fig 2B, left panel). While the

percentage of the most common clonotype (labeled by arrow) of the total CD8+ T cell fraction

on day 0 was 1.4%, the most dominant clonotype on day 9 reached 14.5%.

Analysis of the clonotype distribution of multimer-sorted T cells (Fig 2B, right panel)

revealed a steep distribution curve for epitope HPV-sorted T cells with the most dominant sin-

gle TCRβ clonotype (CASGTEAFF) representing 38.8% of all HPV-sorted TCRβ sequence

reads. In contrast, RAK- and EPL-sorted CD8+ T cells showed a less steep distribution curve,

indicating a higher variety of different TCRβ clonotypes.

A higher percentage of the most common clonotype correlated with a lower total number

of different clonotypes per sample. This correlation was also present in clonotype numbers in

CD8+ T cells before and after peptide stimulation (Fig 2C, left panel). At day 0, we identified

1,957 different TCRβ clonotypes (cutoff 0.01% of reads) derived from an equivalent of approx-

imately 14,500 T cells (100 ng input DNA). This number was reduced to 471 clonotypes after

stimulation, and 276 of these were shared in both samples. These 276 clonotypes accounted for

27.4% of total sequence reads on day 0 and for 80.8% of reads on day 9. Of these 276 clono-

types, 208 were found in multimer-sorted populations: 108 in EPL-, 97 in RAK-, and 96 in

HPV peptide-MHC multimer-binding T cells (overlapped clonotypes had only minor frequen-

cies). These 208 clonotypes accounted for 16.2% of all CD8+ TCRβ sequence reads of the

healthy donor (day 0). This fraction increased to 77.5% of all detected CD8+ T cell TCRs in the

peptide-stimulated T cell product (day 9).

After flow cytometric cell sorting with the three peptide-MHC multimers, a total of 327 clo-

notypes were present in cells sorted with EPL multimer, 341 clonotypes in RAK-sorted cells,

and 313 clonotypes in HPV-sorted cells. Multimer sorting gate was kept stringent to achieve a

sorting purity above 98% (S6 Fig). To clearly identify epitope-specific clonotypes and remove

both overlapping and contaminant cells in multimer-sorted populations, we established two

additional filters: (1) a frequency cutoff of 0.1% before and after multimer sorting, and (2) a

requirement that epitope-specific clonotypes were at least ten times more highly enriched in

day 9. (C) IFN-γ secretion of peptide-specific T cells after restimulation with single peptides on day 9, assessed by

intracellular cytokine staining (neg.: unstimulated CD8+ T cells, pos.: stimulation of T cells with ionomycin). (D) Flow

cytometric analysis of T cell memory/differentiation markers on day 0 and day 9. Plots on the right side are pre-gated on

CD3+ cells. temra = terminally differentiated effector memory T cells (CCR7- CD45RA+), eff/em = effector/effector

memory T cells (CCR7-CD45RA-), cm = central memory T cells (CCR7+ CD45RA-), naïve = naïve T cells

(CCR7+CD45RA+). (E) Percentage of T cell subsets within CD4+ and CD8+ T cells. (F) Flow cytometric analysis of T cell

activation markers CD25, HLA-DR and CD38 within the CD4+ and CD8+ T cell compartment.

https://doi.org/10.1371/journal.ppat.1010206.g001
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Fig 2. Global and EBV-specific TCR repertoire of the T cell product. (A) Vβ usage. Left panel: Percentage of Vβ subgroup usage within

CD8+ T cells before (day 0) and after (day 9) peptide stimulation. Right panel: Vβ subgroup analysis of flow cytometry-sorted MHC multimer

binding T cells (EPL, RAK, and HPV) on day 9 after peptide stimulation. (B) Individual clonotype distribution within CD8+ T cells on day 0

and day 9 (left panel) and in multimer-sorted T cells on day 9 (right panel). Each dot represents the frequency (percentage of all sequencing

reads) of a single TCRβ clonotype. The 25 most frequent clonotypes of each sample are illustrated. (C) Left panel: Overlap of the number of
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one of the multimer-sorted cultures than in the other two (ternary exclusion criterion). This

analysis resulted in the identification of 40 EPL-, 28 RAK-, and 9 HPV-specific TCRs. (Fig 2C,

right panel, epitope-specific clonotype identification in S7 Fig, TCR overview in S2–S4 Tables).

Notably, the 77 epitope-specific clonotypes represented 74.7% of all TCRβ reads on day 9. This

finding confirmed that day 9 peptide-expanded T cells were dominated by EBV epitope-spe-

cific CD8+ T cells. Among these, the 9 HPV-specific clonotypes accounted for 29.5% of all

CD8+ clonotypes on day 9, which again reflects the steep distribution curve shown in Fig 2B

(right panel) and the high proportion of dominant clonotypes such as CASGTEAFF in the

HPV-sorted fraction.

To illustrate how EBV peptide-sorted T cell clonotypes expanded after peptide stimulation,

the 30 most common TCRβ clonotypes on day 0 and day 9 as well as the 10 most common clo-

notypes of EPL-, RAK-, and HPV-sorted T cells are listed in Table 2. Therein, the most domi-

nant TCRβ clonotype for 3 EBV peptides is color-coded according to the peptide. Peptide

stimulation resulted in a strong expansion of the dominant clonotypes for the three peptides.

The dominant HPV-sorted TCRβ clonotype (CASGTEAFF) was also the most dominant one

in day 9 CD8+ T cells and had been expanded 24-fold as compared to day 0. Within the multi-

mer-sorted T cell fraction, this specific clonotype accounted for 38.8% of sequencing reads.

Similar results were obtained for EPL and RAK dominant clonotypes. However, the HPV-spe-

cific TCRβ clonotype CASGTEAFF was found three times due to different DNA sequences

coding for the identical amino acid sequence. Overall, these three clonotypes accounted for

66.2% within the HPV-sorted fraction.

T cell expansion after adoptive T cell transfer

To follow the in vivo fate of adoptively transferred peptide-stimulated T cells, we analyzed the

peripheral blood of the patient before and after transfer. Fig 3A shows T cell immune reconsti-

tution in absolute T cell numbers after allo-SCT. Between day 34 and day 89, we observed mas-

sive expansion of CD4+ cells that was caused by the relapse of the underlying CD4+ AITL, as

confirmed on a molecular level by preponderance of a single T-cell clonotype in a lymph node

(S1 Fig). This hematologic relapse was accompanied by high fever and EBV reactivation

emerging on day 66 and peaking on day 89 with 140,000 copies per ml peripheral blood (Fig

3A). The patient received four Rituximab doses weekly, starting on day 68, and an unseparated

donor lymphocyte infusion (DLI) containing 5.0 Mio. CD3+ T cells/kg body weight on day 76

(S1 Table). No further therapy was given at that point. Over the course of the following 21

days, T cell counts strongly decreased. We therefore decided to generate an EBV-derived pep-

tide-stimulated T cell product from frozen DLI portions. This product was transferred at a

dose of 1.0 Mio CD3+ T cells/kg body weight on day 105 post-allo-SCT. As shown in Fig 3A,

CD8+ T cells expanded after adoptive transfer for 8 days (day 105 to 113), followed by a decline

over 13 days until day 126 and stable maintenance thereafter.

When the TCRβ repertoire within the donor’s PBMC fraction used as DLI (Fig 3B, day 0)

was analyzed, we obtained 2375 clonotypes within the CD4+ compartment and 1957 clono-

types within the CD8+ compartment, which is a typical degree of TCR diversity observed in

healthy donors with the assay used here [46]. Consistent with an expected narrowing of the

TCR repertoire following allo-SCT [48], our patient’s TCRβ repertoire was strongly reduced in

TCRβ clonotypes within CD8+ T cells on day 0 and day 9. The table shows the presence of the 276 shared TCRs from days 0 and 9 in total CD8+

T cells and in multimer-sorted CD8+ T cells from day 9, along with their cumulative percentage in total CD8+ T cells per day. Right panel:

Number of epitope-specific TCRβ clonotypes and their proportion of cumulative TCRβ sequence reads within the overall CD8+ T cell product

on day 9.

https://doi.org/10.1371/journal.ppat.1010206.g002
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both compartments (CD4+: 236, CD8+: 108 clonotypes) on day 60 after allo-SCT (before DLI

and adoptive transfer of EBV peptide-stimulated T cells). In line with hematologic relapse, one

clone was predominant in the CD4+ fraction of peripheral blood (CSARDRTGSEKLFF). This

clone represented the CD4+ AITL, which was confirmed by analysis of DNA retrieved from a

lymph node biopsy at the time of initial diagnosis (S1 Fig). On day 120 (fifteen days after adop-

tive transfer of peptide-stimulated T cells), we observed an increase in T cell diversity, which

was higher in CD8+ T cells (645 clonotypes) than in CD4+ T cells (402 clonotypes). This sug-

gested that adoptive transfer on day 105 contributed to diversification of the patient’s TCR rep-

ertoire, in particular through transfer of EBV-specific CD8+ T cells.

Table 2. Expansion of distinct clonotypes after EBV-derived peptide stimulation.

CD8+ T cells day 0 CD8+ T cells day 9 HLA multimer-sorted T cell product

reads (%) CDR3 reads (%) CDR3 reads (%) CDR3 peptide

1.426 CASTTPGGRNEKLFF 14:464 CASGTEAFF 13.732 CASRDRVGSEAFF EPL

1.426 CATSRARGSGANVLTF 10.491 CASSSQRQGRTYEQYF 5.709 CASSDSGTTFNEQFF

1.271 CSAKGSLETEAFF 7.862 CASSTSRGAGNTIYF 3.672 CASSDSGIHNSPLHF

1.044 CASSYPGQLNEKLFF 7:020 CASGTEAFF 3.487 CASSDTSALNTEAFF

0.975 CASSQDPGNTEAFF 2:700 CASGTEAFF 3.425 CAISTGDSNQPQHF

0.757 CASSEGYSNQPQHF 2.407 CASTSSRGGGNTIYF 3.132 CASRGGQGQETQYF

0.629 CSASDTGISGANVLTF 2.359 CASGNEQYF 2.604 CASRTGEVNEQFF

0:605 CASGTEAFF 2.028 CASSQASYVQGDGYTF 2.081 CASSTGDSNQPQHF

0.572 CASSQDYAGHQPQHF 1.959 CASRDRVGSEAFF 1.817 CASGTFDSNQPQHF

0.454 CSAKGGYDTEAFF 1.929 CASGSEAFF 1.730 CASSDSGMTEAFF

0.440 CASSLNGEGTYEQYF 1.339 CAISTGDSNQPQHF 38:810 CASGTEAFF HPV

0.436 CSVRGRENSPLHF 1.170 CASSPGGGTEAFF 17.472 CASGTEAFF

0.356 CASSMALTATNEKLFF 1:144 CASSSLNTEAFF P2 9:966 CASGTEAFF
0.354 CASSPTGNTEAFF 0.984 CSARDRGDTYEQYF 7.303 CASGSEAFF

0.347 CASSTSRGAGNTIYF 0.940 CASRTGEVNEQFF 3.890 CASRPTGFDGYTF

0.326 CASSQESDYGYTF 0.925 CSAGQGEGYEQYF 1.998 CASGNEQFF

0.319 CASSQADSFSGNTIYF 0.863 CASRPPGPFYEQYF 1.383 CSAALRPVPRTGYTF

0.273 CASSQESGHLNTEAFF 0.862 CASSTGDVNQPQHF 1.130 CASSSRSGELFF

0.246 CASSAETGGGEKAFF 0.853 CASSQGLPLNTEAFF 1.019 CASIPRTKTEAFF

0.242 CASRDRVGSEAFF 0.827 CASSYGPYEQYF 0.636 CASGNEQFF

0.226 CASSQGPNYEQYF 0.746 CASSDSGIHNSPLHF 18.947 CASSTSRGAGNTIYF RAK

0.217 CASSIGQAYEQYF 0.729 CASRGGQGQETQYF 9.985 CASSSQRQGRTYEQYF

0.216 CASSESPAGEQYF 0.672 CASSDSGTTFNEQFF 5.449 CASSQGLPLNTEAFF

0.203 CSARDPGSSYEQYF 0:583 CASSSLNTEAFF P2 5.294 CASTSSRGGGNTIYF

0.202 CASSLAPGYLYYEQYF 0.479 CSARGASPQANYGYTF 2.834 CSAGQGEGYEQYF

0.195 CSARGGETEAFF 0.432 CASSDTSALNTEAFF 2:810 CASSSLNTEAFF P2
0.192 CASSEAGTGRSEQYF 0.427 CASSYSSFRGGNSPLHF 2:442 CASSSLNTEAFF P2
0.189 CASSKTMGMGTDTQYF 0.414 CASGNEQFF 2.330 CASSLIASGGYNEQFF

0:186 CASGTEAFF 0.403 CASSSLNTEAFF 2.025 CASSQGVTDYWNEQFF

0.175 CASSLSYEQYF 0.394 CASSQPGGLEQYF 1.946 CASSQGTGFNYGYTF

Ranking of the top 30 TCRβ clonotypes in donor-derived CD8+ T cells before peptide stimulation (day 0, left column), after peptide stimulation (day 9, middle column),

and after peptide stimulation with HLA multimer FACS sorting on day 9 (right column, top 10 clonotypes for each specificity). Clonotypes with identical CDR3 peptide

sequence are presented separately in case of a different underlying CDR3 DNA sequence and marked in red. The most dominant clonotype per multimer-sorted T cells

are color-coded regarding the peptide used for sorting. P2: public clonotypes previously published. [47]

https://doi.org/10.1371/journal.ppat.1010206.t002
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Fig 3. T cell and clonotype expansion after allogeneic stem cell transplantation and adoptive transfer of EBV-specific T cells. (A) Flow cytometric

monitoring of absolute numbers of CD4+ and CD8+ T cells and EBV DNA copy number in peripheral blood. Relapse of the CD4+ T cell lymphoma was

detected on day 56 in peripheral blood. Time points of Rituximab application are marked with an asterisk (�). ATCT = adoptive T cell transfer. (B) TCR

clonotype diversity in CD4+ and CD8+ T cells in peripheral blood of the patient. For comparison, the diversity in donor’s PBMC is shown. (C) Flow cytometric

monitoring of peripheral blood CD8+ T cells using HLA peptide-MHC multimers (EPL, RAK, HPV) on the day of ATCT (day 105) and thereafter. (D)

Cumulative frequency of TCR clonotypes specific for each of the epitopes EPL, RAK, and HPV in CD8+ T cell populations. Data points for donor’s PBMC, T

cell product after peptide stimulation, and peripheral blood of the patient before (day 60) and after ATCT (day 120, day 180, and day 230) are shown.

https://doi.org/10.1371/journal.ppat.1010206.g003
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Multimer staining was used to track EBV-specific T cells until day 232 after allo-SCT (Fig

3C). We observed a strong expansion of EPL- and RAK-specific CD8+ T cells, which were two

of the three dominant EBV specificities in the T cell product. On day 105, immediately before

adoptive transfer, a small fraction of HLA multimer-binding CD8+ T cells had been detectable

in peripheral blood. Over the course of 8 days after transfer, RAK- and EPL-multimer-binding

CD8+ T cells strongly expanded in vivo (from 14/μl to 55/μl and from 28/μl to 120/μl, respec-

tively). Analysis of the TCRβ repertoire (Fig 3D) before adoptive T cell transfer (ATCT) on

day 60 revealed that the patient had not mounted a significant T cell response against EPL,

RAK, and HPV epitopes: Only 6 of 77 epitope-specific clonotypes were detectable. This situa-

tion had changed 15 days after adoptive transfer of peptide-stimulated T cells (day 120), when

the total number of different multimer-binding clonotypes present had increased to 61. In

comparison to day 60, by day 120 EPL- and HPV-specific T cell read frequencies increased

significantly (EPL: from 3.67% to 15.43%, HPV: 0.00% to 2.37%), while RAK was relatively

stable (RAK: 4.78% to 5.06%), Thereafter, clonotype diversity in CD8+ T cells remained

rather constant (Fig 3B), while epitope-specific clonotypes gradually declined until day 232

but were detectable throughout the observation period (follow-up of epitope-specific TCRs in

S5 Table).

A complete frequency analysis of the 77 EBV epitope-specific clonotypes is shown in Fig 4A

as a heat map (comparison in the T cell product before and after multimer sort in S8 Fig). At

the beginning of the EBV peptide-stimulated T cell product manufacture (which at this point

represents the donor’s natural T cell repertoire on day 0), we found 55 EBV-specific clonotypes

to be present in the patient at this time. These clonotypes represent 5.43% of the CD8+ TCRβ
repertoire before peptide-stimulation on day 0 (S5 Table). 15 days after adoptive transfer (day

120), the 77 EBV epitope-specific clonotypes accounted for 22.86% of all TCR gene reads

found in the patient. On our last measurement (day 232), 45 EBV-specific clonotypes

remained detectable, representing 8.49% of all TCR reads. Thus, by adoptive transfer of pep-

tide-stimulated T cells, we reinstalled a large part of the donor’s specific T cell repertoire tar-

geting three EBV epitopes, which is especially reflected by the dominant clonotypes for each

epitope (Fig 4B upper panel and Table 2). EBV-specific T cell reconstitution in the patient

included two previously described (and thus public) clonotypes specific for EPL and RAK (Fig

4B, lower panel, and Table 2), but one of these became undetectable on day 232 [31,33]. It is

noteworthy that neither dominant nor proven public clonotypes were found among the 6

EBV-specific clonotypes on day 60 in the patient, when EBV began to reactivate in the period

before ATCT.

Discussion

Adoptive transfer of EBV-specific T cells for the treatment of EBV-associated lymphoma in

the immunocompromised host has been shown to effectively mediate virus control [50]. Fur-

thermore, it has been demonstrated that adoptively transferred EBV-specific T cells contribute

to long-term immunity [20]. However, although several dominant EBV-derived T cell epitopes

and their HLA restriction were identified over the past decades [30–43], it remains unclear

which and how many TCRs recognize those epitopes and are being expanded in vivo. Follow-

up in patients after primary infection with EBV suggests few clonotypes with high frequencies

dominate epitope-specific responses long-term [51]. Similar observations were made after

adoptive transfer of EBV-specific T cells [52,53], thus pointing towards TCR clonotypes of

potential clinical interest. Beyond single clonotypes, EBV-specific T cell frequencies, repertoire

diversity, and long-term survival of TCR clonotypes contribute to control active EBV infection

[54], latency [55], and EBV-associated malignancies [56–58].
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Fig 4. Frequencies of specific TCRβ clonotypes before and after adoptive T cell transfer. (A) Frequency heatmap of individual

epitope-specific TCR clonotypes in donor PBMC, T cell product, and four time points after transplantation in the patient (day 60, day

120, day 180, and day 232). Clonotype frequency is displayed as a percentage from 0.01% (limit of detection) to 14.4637 by increasing

colour depth. Each row represents one specific TCR clonotype. Identified public TCR sequences (P1 and P2) previously published

[47,49] are shown in grey boxes. The most dominant clones (D1-3) within each specificity are shown in pink boxes. ATCT: adoptive

T cell transfer. (B) Frequencies of public clonotypes (P) and dominant clonotypes (D) in different samples.

https://doi.org/10.1371/journal.ppat.1010206.g004
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In this study, we manufactured and extensively analyzed at a molecular level the fate of

adoptively transferred T cells enriched for specificity against multiple EBV-derived epitopes.

In vitro stimulation with defined EBV latent and lytic epitopes resulted in a strong expansion

of three EBV epitope-specific CD8+ T cell populations (two lytic antigen epitopes and one

latent antigen epitope). Each of the three specificities were reconstituted in vivo and T cells

were maintained in the patient for at least five months. Furthermore, we comprehensively

characterized the T cell clonotype repertoire for each of the epitope specificities by combining

flow cytometry and high-throughput sequencing of TCRβ rearrangements.

This study was carried out in an EBV-seropositive patient who, after chemotherapy and

allo-SCT for a CD4+ AITL, suffered from relapse and simultaneous increase of peripheral

blood EBV load, most likely associated with the leukemic relapse of the lymphoma. EBV-

encoded RNA (EBER) in situ hybridization (IsH) analysis of AITL in the lymph node at diag-

nosis revealed the AITL tumor to be EBV negative (S2 Fig). This suggests that high EBV titers

derived from an active infection site other than the AITL. However, simultaneous high EBV

viremia and AITL relapse suggests a strong association between AITL and EBV infection,

including a possible role in its pathogenesis [2] and increased aggressiveness [4].

Despite DLI and Rituximab treatment, adoptive transfer of T cells enriched for EBV epi-

topes was provided due to persistence of severe B-symptoms and increasing levels of EBV viral

DNA in the peripheral blood. In addition, on day 60 post allo-SCT, we observed a complete

lack of EBV peptide-MHC multimer-binding T cells for the six known HLA-relevant epitopes.

Owing to the risk of recurrent EBV reactivation [59] and its concomitant occurrence with

AITL relapse, we believe adoptive transfer of EBV-specific T cell products hold promise to sup-

port the treatment of AITL by controlling EBV infection [60,61].

We cannot exclude at this point that the conventional DLI may indeed have contributed to

the surviving EBV memory T cell pool; nonetheless, we were able to track EBV-specific T cell

clonotypes coming from the adoptive transfer that persisted long-term in the patient. In con-

trast to the conventional DLI, EBV-specific T cells immediately expanded after adoptive trans-

fer, resulting in a profound cytokine release syndrome (S4 Fig).

Variance between ex vivo and in vivo expansion of epitope-specific cells, especially against

antigens of latency and lytic phases, may arise from differences in differentiation phenotype

and epitope availability at both stages. Although T cells in the cellular product mostly lacked

CCR7 expression (CCR7-CD45RA-), both lytic BZLF-1 EPL- and RAK-specific T cells had

stronger CD62L expression than latent EBNA1 HPV-specific T cells (S5 Fig). CD62L expres-

sion facilitates homing into lymph nodes through adhesion to high endothelial venules (HEV)

[62], with a closer association to central memory phenotype (CD62L-CD45RA-) [63]. This dif-

ference may indicate a higher proliferative strength, a stronger expansion (as seen in Fig 3C),

less exhaustion, and better homing ability of the lytic antigen-specific T cells. An alternative

hypothesis to the difference in expansion between lytic and latent antigen-specific T cells is the

availability of their target epitope: The strong expansion of EPL- and RAK-specific T cells in

peripheral blood and cytokine release (S4 Fig) happened directly after transfer, when ongoing

EBV viremia (suggestive for lytic cycle) may have provided profound lytic epitope presenta-

tion. EBV viremia decrease over time and lesser epitope availability would explain why few clo-

notypes remained and survived long-term, which is expected as a natural modulation of the

immune T cell response. On the other hand, HPV-specific T cells (latent antigen EBNA1)

strongly expanded ex vivo but not in peripheral blood in vivo, either due to its homing to an

active infection site, such as a lymph node, or the unavailability of their target antigen. In either

case, we demonstrated that in vitro T cell stimulation with a defined set of peptides results in

broad spectrum TCRβ repertoire expansion of various dominant clonotypes for relevant latent

and lytic epitope specificities, which then get further selected in vivo based on need during the
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course of viral reactivation. They might therefore contribute to reinstallation of a natural

occurring immunity similar to the one observed in the donor.

Approximately 10 days after adoptive transfer of EBV-specific T cells and approximately 40

days after conventional DLI, the patient developed a skin rash, high bilirubin and liver enzyme

elevation in the sense of acute GvHD (see S9 Fig). We cannot clearly attribute this to either

DLI or the T cell product. The conventional DLI contained approximately 53.6% naïve T cells

(equivalent to day 0 analysis for the manufacturing, see Fig 1D). In total 201 Mio. naïve T cells

were infused with the conventional DLI (5.0 Mio. CD3+ T cells/kg). In contrast, a total of only

11.55 Mio. naïve T cells were infused along with the EBV-specific T cell product (1 Mio. CD3+

T cells/kg). We would speculate retrospectively that GvHD was mainly due to the conventional

DLI, and that the cytokine release syndrome induced by the EBV-specific T cell product aug-

mented the naïve T cell response. The patient received 1mg/kg Prednisone and responded

very quickly to this treatment, which is also reflected in the rapid decline of CD8+ T cells in the

peripheral blood. However, despite the high dose of steroids, the patient did not reactivate

EBV again and EBV-specific T cells persisted at a lower level demonstrating steroid resistance.

Our TCR high-throughput sequencing approach is based on samples of 100 ng cellular

DNA and therefore has a limited resolution of 14,500 T cells, with a frequency cut-off of 0.01%

(approximately 100 reads per T cell). This is suitable to obtain insights into clonotype diversity

but will not detect every virus-specific TCR clonotype in patient samples or T cell products.

High-throughput sequencing was able to reveal multiple EBV-specific clonotypes even in the

complex T cell repertoire of the healthy donor, whose cells were used to manufacture EBV-

specific T cells for adoptive transfer.

Expansion of EPL-, RAK-, and HPV-MHC multimer-binding T cells after peptide stimula-

tion correlated with the expansion of distinct clonotypes, as shown by flow cytometry and

TCRβ high throughput sequencing. However, we found TCRs in the MHC multimer-sorted

CD8+ population that were not enriched (as compared with unsorted populations) but were

still detectable, presumably due to unspecific MHC multimer-binding. Nonetheless, this frac-

tion represented the purest pool of T cells for a defined specificity (sorting purity above 98%)

and was used to for multimer ternary exclusion.

Of note, the use of peptide-MHC multimer binding introduces a bias for TCRs with higher

affinities because the affinity threshold required for multimer binding is higher than the one

for T cell activation [64]. Therefore, we would conclude both BZLF1- and EBNA1-specific clo-

notypes identified in this study to have relatively higher affinity levels.

We mapped TCR sequences from peptide-MHC multimer-binding T cells back to the

unsorted T cell pools before (d0) and after (d9) peptide stimulation. Using this strategy, we

were able to identify previously described TCRβ sequences [31,32] and numerous new and

naturally occurring clonotypes with relatively high frequencies in the normal donor. For

example, three sequences with three distinct specificities found in the donor (Table 2,

highlighted) accounted for 1.1% of the donor’s repertoire. These were among the donor’s 30

clonotypes with the highest frequencies and persisted long term after adoptive transfer in the

patient. The presence of dominant clonotypes for single peptide specificities is reinforced by

the fact that three different DNA sequences coded for HPV-specific TCRβ clonotype

CASGTEAFF.

TCR clonotypes complying with both inclusion criteria (frequency above 0.1% before and

after multimer sort in T cell product and multimer ternary analysis) were identified as EBV

epitope-specific. The frequency cutoff of 0.1% was selected to reduce noise, while ternary anal-

ysis allows us to exclude unspecific multimer-binding clonotypes. Using both criteria com-

bined, we were able to identify EBV epitope-specific T cells which clearly dominate the T cell
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product (77 of 471 clonotypes account for 74.8% of reads) and persist long-term after adoptive

transfer.

It is relevant that such few EBV-specific clonotypes were detectable on day 60, while the

patient’s EBV viral load in peripheral blood was increasing. In contrast, EBV epitope-specific

clonotypes from the unsorted and MHC multimer-sorted CD8+ populations on day 9 were

found 15 days after adoptive transfer (day 120) with a significant increase in frequencies and

diversity of TCR clonotypes (Fig 4A). Therefore, we could see an association between the pres-

ence of several EBV epitope-specific clonotypes on day 120 and the absence of EBV DNA in

the peripheral blood thereafter. Due to the association of EBV infection and AITL relapse,

EBV control could have positively influenced AITL regression, as has been observed in PTLD

[65].

Success of ATCT after allo-SCT depends on restoring immunity against viruses without

viral reactivation, in the absence of Graft versus Host Disease (GvHD) [66]. Several indicators

of restored EBV-specific T cell immunity are: (i) the persistence of adoptively transferred,

functional virus-specific T cells [20,67–69], (ii) absence and regression of EBV-associated lym-

phomas [65,70–72], and (iii) control of virus reactivation and viremia in vivo [69,73–76]. We

would therefore argue that the presence of EBV epitope-specific, expanded clonotypes in the T

cell product, their long-term persistence in the patient, and lack of further EBV reactivation or

relapse point to an important role of these clonotypes in controlling EBV, AITL, and other

EBV-associated malignancies.

In conclusion, we were able to confirm the long-term presence of expanded, EBV epitope-

specific CD8+ T cell clonotypes following adoptive transfer in the patient, thereby restoring

anti-EBV T cell immunity. To further validate these findings, a recently closed multicenter

phase I/IIa clinical study (NCT02227641, EudraCT: 2012-004240-30) used this manufacture

technique to generate T cell products with double specificity against CMV and EBV for

patients after allo-SCT. The results of this study will further increase our knowledge on poten-

tially protective virus-specific TCR repertoires after allo-SCT.

Material and methods

Ethics statement

The patient gave written informed consent prior to transplantation for extended immunomo-

nitoring using standard flow cytometry, multimer analysis, and TCR HTS. The ethics commit-

tee of Friedrich-Alexander-University Erlangen-Nürnberg gave approval for this study

(approval No.: 4388). In addition, the patient gave written consent for the attempt to cure

using donor-derived EBV-specific T cells.

EBV viral load analysis

EBV viral load measurement was carried out with whole blood EDTA as part of regular fol-

low-up in the hospital for all allo-SCT patients. The QiaSymphony DSP Virus/Pathogen Mini

Kit (QIAGEN, Hilden, Germany) was used for viral nucleic acid purification, while real-time

PCR was established in-house and adapted from literature [77].

in situ hybridization

EBER in situ hybridization was carried out on an AITL lymph node sample at time of

diagnosis.
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Generation of EBV-specific T cells

EBV–specific peptides were generated in a GMP-conform fashion as described previously

[68]. Peptides used for stimulation are shown in Table 1. In brief: frozen donor lymphocytes

were obtained and thawed for Ficoll density centrifugation, yielding 826 x 106 PBMC. PBMC

were frozen until use. 600 million PBMC were incubated with peptide mix for 2h. After subse-

quent washing steps, cells were incubated in a closed bag system for 9 days. Medium was

added according to the manufacturing protocol on day 5. Quality assessment of the product

included bacterial culture and eubacterial PCR, flow cytometric analysis, and trypan blue

method for viability.

Flow cytometry analysis of cultivated cells and peripheral blood

To quantify cell types, peripheral blood (50 μl per sample) was stained in TruCount tubes

containing fluorescent beads (BD Biosciences) with the following antibodies: anti-CD8

FITC (clone SK1), anti-CD25 PE (clone 2A3), anti-CD14 PerCP (clone MφP9), anti-CD56

APC (clone B159), anti-CD19 PE-Cy7 (clone SJ25C1), anti-CD4 APC-Cy7 (clone

RPA-T4), anti-CD3 V450 (clone UCHT1), and anti-CD45 V500 (clone HI30, all clones

from BD Bioscience). After incubation at room temperature for 15 min, 450 μl of red cell

lysis buffer (BD Biosciences) was added and samples were incubated for further 20 min.

Cells were analyzed subsequently after staining using a FACS Canto II flow cytometer

(Becton Dickinson). Leukocytes were gated as CD45+ and lymphocytes as CD45highCD14-

cells. Within the lymphocyte population, T cells were determined as CD3+, B cells as

CD19+, NK cells as CD56+ cell populations. T cell subpopulations were analyzed for CD4

and CD8 expression. Cell counts/μl were calculated based on bead count and sample vol-

ume in TruCount tubes (BD Bioscience). Cultivated cells were stained with the same

panel but without cell quantification by TruCount tubes.

For analysis of T cells with multimer staining, 1x106 cells either PBMC isolated from

peripheral blood by Ficoll density centrifugation or taken from cultivated cells on day 0 and

day 9, were stained with HLA-matched peptide-MHC pentamers (ProImmune, Oxford, UK),

and subsequently counterstained with PE-fluorotag (Proimmune), anti-CCR7 FITC (clone

150503, R&D Systems, Minneapolis, MN, USA), anti-CD8 PerCP (clone SK1), anti-CD62L

APC (clone DREG-56), anti-CD45RA PE-Cy7 (clone HI100), anti-CD4 APC-Cy7 (clone

RPA-T4), and anti-CD3 V450 (clone UCHT1, all clones BD Biosciences). Cells were analyzed

using a FACS Canto II flow cytometry analyzer (Becton Dickinson). Vital lymphocytes were

gated in FSC vs. SSC. T cells were identified by their CD3 expression. T cell subpopulations

were identified by CD4 and CD8 expression. T cells binding an EBV peptide-MHC multimer

were analyzed within the CD8+ T cell population.

Cultivated cells after harvest were further analyzed for IFN-γ production upon antigen-spe-

cific restimulation. Therefore, day 9 cells were restimulated with the epitopes RLR, RAK,

QAK, EPL, HPV, or YPL (each peptide 0.5μg/ml), or PMA-ionomycin for positive control. To

inhibit IFN-γ secretion, GolgiStop (BD Biosciences) was added for the time of restimulation (5

hours). Afterwards, cells were harvested and stained with the following surface markers: anti-

CD3 PerCP (clone SK7), anti-CD8 PE-Cy7 (SK1), and anti-CD4 APC-Cy7 (clone RPA-T4).

Then, cells were washed and treated with 250μl CellFix /Perm buffer (BD Biosciences) for 20

minutes, 4˚C. Cells were then washed with Perm-/Wash buffer (BD Biosciences) and subse-

quently intracellularly stained with anti-IFN-γ-FITC (clone B27) for 30 minutes at 4˚C. After-

wards, cells were once washed with Perm-/Wash-buffer and once with PBS. After cell fixation,

samples could be analyzed by flow cytometry.
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Cell sorting

Whole blood samples (EDTA) were processed by density gradient centrifugation (Ficoll) to

obtain mononuclear blood cells (PBMC). For flow cytometry sorting, PBMC were stained

with anti-CD4 FITC (clone SK3), anti-CD8 PE (clone SK1), anti-CD14 PerCP (clone MφP9,

all clones BD Biosciences, Franklin Lakes, NJ, USA), and anti-TCRαβ (clone BW242/412, Mil-

tenyi Biotec, Bergisch Gladbach, Germany). Cells were gated on (i) vital lymphocytes in for-

ward/side scatter, (ii) exclusion of doublets, and (iii) TCRαβ+ CD14- T cells. Within the T cell

population, CD4+ and CD8+ T cells were sorted into separate tubes (MoFlow, Beckman Coul-

ter, Brea, CA, USA). A purity of> 98.0% was achieved as monitored by reanalysis of the sorted

samples.

Multimer cell sorting was performed using HLA-matched peptide-MHC pentamers

obtained from ProImmune. Of the EBV-specific expanded T cells (day 9), 40x106cells were

incubated with RAK-HLA-B�08:01-, 40x106cells with HPV-HLA�B35:01-, and 18x106cells

with EPL-HLA�B35:01-multimers, according to manufacturer’s recommendation. Afterwards

cells were washed and stained with PE-fluorotag (ProImmune) binding to the peptide loaded

HLA multimers, anti-CD8 FITC (clone SK1, BD Biosciences), anti-CD14 PerCP (clone MφP9,

BD Biosciences), and anti-TCRαβ (clone BW242/412, Miltenyi Biotec, Bergisch Gladbach,

Germany). Cells were gated on (i) vital lymphocytes in forward/side scatter, (ii) exclusion of

doublets, and (iii) TCRαβ+ CD14- T cells. Then, the CD8+ multimer-binding population was

sorted out and used for further analysis by TCRβ sequencing.

DNA isolation

DNA was extracted from flow cytometry-sorted T cells using the Qiagen AllPrep DNA/RNA

Mini Kit (Qiagen) according to the manufacturer’s instructions. Quantification of the

extracted DNA was done employing a Qubit 1.0 Fluorometer (Invitrogen, Carlsbad, CA,

USA).

Capillary electrophoresis

CDR3 length repertoires of TCRβ sequences were generated by using the BIOMED-2 primer

sets for PCR-based clonality analysis [78]. The fluorescence-labeled amplicons were size-sepa-

rated and detected via automated laser scanning by a 3130 Genetic Analyzer (Applied Biosys-

tems; Darmstadt, Germany).

High-throughput sequencing of TCRβ gene clonotypes

Amplification of TCRβ from 100 ng of cellular DNA (approximately 14,500 T cells) with mul-

tiplex PCR, sequencing of amplified TCRβ gene libraries (HiSeq2000), and data processing

were performed as previously described [46]. Employing a two-step PCR strategy, the TCRβ
amplicons were tagged with universal Illumina adapter sequences, including an additional bar-

code during a second amplification step, allowing parallel sequencing of several samples on

Illumina HiSeq2000 (Illumina, San Diego, CA). Our amplicon sequences covered the entire

CDR3 length and Vβ and Jβ segments in parts and using the Illumina paired-end technology

(2x 100 bp) provided a high sequence accuracy.

The multiplex primers used contain a universal adapter sequence as a tail at the 5’ end com-

plementary to the 3’ ends of second amplification adaptor primers. The adaptor PCR primers

contained universal sequences that permitted solid-phase PCR on the Illumina Genome Ana-

lyzer (HiSeq 2000 Sequencing System). Primary amplification (final volume: 50 μL) was pro-

cessed, including 100 ng DNA, 1.0 μM equimolar Vβ and Jβ primer pools, PCR buffer, 3mM
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MgCl2, 0.2mM of each dNTP and 1U AmpliTaq Gold DNA Polymerase (Applied Biosystems,

Foster City, CA). The amplification was performed on a DNA thermal cycler (GeneAmp1

PCR System 9700, Applied Biosystems) for 34 cycles at 62˚C annealing temperature. All PCR

products were purified using the QIAquick PCR Purification Kit (Qiagen) and diluted (final

amount: 500 pg) for further amplifications. Adapter PCRs were set up with Phusion HF Buffer,

1.0 μM forward and reverse adapter primers, 0.05mM of each dNTP and 1U Phusion High-

Fidelity DNA Polymerase (Finnzymes, Espoo, Finland). Secondary amplification was per-

formed for 12 cycles at 58˚C annealing temperature. Products were isolated from a 2% agarose

gel using the Wizard1 SV Gel and PCR Clean-Up System (Promega, Mannheim, Germany).

DNA concentration was determined via the Qubit1 1.0 Fluorometer (Invitrogen) [46]. Clono-

types were defined as TCRβ clonotypes with a percentage of reads equal to or above a 0.01%

cut-off. Reads with frameshift or stop codon were considered as non-functional TCRβ rear-

rangements and excluded from analysis.

Peptides

The manufacturing process involved stimulation of peripheral mononuclear cells by a fixed

pool of peptides derived from various EBV proteins. The sequence of selected peptides, their

HLA restriction, and reference is shown in Table 1. Peptides were synthesized by JPT Peptides

Berlin (Germany) at a purity of 95%. All raw materials used for peptide synthesis were CE cer-

tified and all materials were fully synthetic. 5% contamination of the peptide product is consid-

ered to be smaller oligomers of the original design, due to inefficient elongation.

Identification of EBV epitope-specific TCR clonotypes

We applied two criteria to TCR clonotypes found in the T cell product, either before or after

multimer sort, to consider them as epitope-specific: First, we used a cutoff of 0.1%, represent-

ing approximately 10 T cells, to reduce noise. Then, we applied a ternary exclusion criterion

based on the multimer enrichment ratio, defined as frequency after multimer sort / frequency

before multimer sort. The enrichment factor for a given multimer must be at least ten times

bigger than for the other two multimers to be considered epitope-specific.

Supporting information

S1 Fig. Lymphoma diagnosis and relapse. (A) GeneScan analysis of T cell receptor gamma

(TRG) and beta (TRB) demonstrated clonal T cell populations in the lymph node biopsy (day

166 before transplant). (B) HTS of TCRβ rearrangements of the lymph node permit identifica-

tion of the lymphoma-specific TCRβ sequence (in bold). (C) The lymphoma-specific TCRβ
sequence could be identified again in the recipient on day 60 after transplantation in peripheral

blood.

(TIF)

S2 Fig. No presence of EBV in the AITL. (A) EBER in situ hybridization (IsH) of the lymph

node at diagnosis. An infectious mononucleosis sample was used as positive control. (B) Stain-

ing of the lymph node at diagnosis. H&E: Hematoxylin and eosin.

(TIF)

S3 Fig. Timeline of patient clinical history. dpt: days post transplantation; ECOG: Eastern

Cooperative Oncology Group; R-ICE: Rituximab, Ifosfamide, Carboplatin, and Etoposide

Phosphate; GvHD: Graft-versus-Host Disease.

(TIF)
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S4 Fig. Serum cytokine levels after adoptive transfer of EBV-specific T cells (ATCT)

(TIF)

S5 Fig. T cell differentiation markers in the cellular product. Multimer binding T cells were

gated on CD8+ T cells. Plots were gated on multimer-binding T cells. Numbers indicate per-

centages.

(TIF)

S6 Fig. Sorting of peptide-MHC multimer-binding T cells. (A) Flow cytometric analysis gat-

ing for peptide-MHC multimer sorting. (B) Re-analysis of peptide-MHC multimer-sorted

cells. Numbers indicate percentages.

(TIF)

S7 Fig. Identification of epitope-specific T cells. Scatter plots show frequency before and

after multimer sort of the T cell product on day 9 of T cell clonotypes with a frequency above

0.1% in both populations. Each dot represents a single TCR clonotype. Red dots symbolize

TCR clonotypes that pass a ternary exclusion criterion of at least ten times the multimer

enrichment ratio for one multimer as compared with the other two and were, therefore, identi-

fied as epitope-specific.

(TIF)

S8 Fig. Enrichment of epitope-specific clonotypes after sorting on day 9. Frequencies of epi-

tope-specific clonotypes (77 TCRs) is shown in unsorted CD8+ T cell product and MHC multi-

mer-sorted sample. Clonotype frequency is displayed as a percentage from 0.01 (limit of

detection) to 14.4637 by increasing colour depth. Each row represents one specific TCR rear-

rangement. Identified public TCR sequences (P1 and P2) published [28,30] are highlighted in

grey boxes. The most dominant clones (D 1–3) within each specificity are highlighted in pink

boxes.

(TIF)

S9 Fig. GvHD monitoring. (A) Enzyme levels in blood and (B) biomarker levels in plasma

were used to monitor GvHD progress. GOT: glutamic oxaloacetic transaminase, AST: aspar-

tate transaminase, GLDH: glutamate dehydrogenase, LDH: Lactate dehydrogenase, gGT:

gamma-glutamyltransferase, CRP: C-reactive protein.

(TIF)

S1 Table. Patient characteristics and treatment. AITL: angioimmunoblastic T cell lym-

phoma; IgG: Immunoglobulin G; IgM: Immunoglobulin M; pos.: positive; neg.: negative;

R-CHOP: Rituximab, Cyclophosphamide, Hydroxydaunomycin, Oncovin, and Prednisone;

R-ICE: Rituximab, Ifosfamide, Carboplatin, and Etoposide; Fc: fragment crystallizable region;

PD: progressive disease; SD: stable disease; allo-SCT: allogeneic stem cell transplantation;

ATG: antithymocyte globulin; HLA: human leukocyte antigen; CMV: Cytomegalovirus; EBV:

Epstein-Barr Virus; DLI: donor lymphocyte infusion; ATCT: adoptive T cell transfer; GvHD:

Graft-versus-Host Disease; CsA: cyclosporin; HSV-1: Herpes-Simplex Virus-1.

(PDF)

S2 Table. EPL-specific T cells. TCRβ VJ ID: identification number for TCRβ variable-joining

rearrangement, AA: amino acid.

(PDF)

S3 Table. RAK-specific T cells. TCRβ VJ ID: identification number for TCRβ variable-joining

rearrangement, AA: amino acid.

(PDF)
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S4 Table. HPV-specific T cells. TCRβ VJ ID: identification number for TCRβ variable-joining

rearrangement, AA: amino acid.

(PDF)

S5 Table. Presence of EPL-, RAK-, and HPV-specific T cells in different samples.

(PDF)
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