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Abstract: Fungi are considered terrestrial and oceans are a “fungal desert”. However, with the con-
siderable progress made over past decades, fungi have emerged as morphologically, phylogenetically,
and functionally diverse components of the marine water column. Although their communities are
influenced by a plethora of environmental factors, the most influential include salinity, temperature,
nutrients, and dissolved oxygen, suggesting that fungi respond to local environmental gradients. The
biomass carbon of planktonic fungi exhibits spatiotemporal dynamics and can reach up to 1 µg CL−1

of seawater, rivaling bacteria on some occasions, which suggests their active and important role in
the water column. In the nutrient-rich coastal water column, there is increasing evidence for their
contribution to biogeochemical cycling and food web dynamics on account of their saprotrophic,
parasitic, hyper-parasitic, and pathogenic attributes. Conversely, relatively little is known about their
function in the open-ocean water column. Interestingly, methodological advances in sequencing
and omics approach, the standardization of sequence data analysis tools, and integration of data
through network analyses are enhancing our current understanding of the ecological roles of these
multifarious and enigmatic members of the marine water column. This review summarizes the
current knowledge of the diversity and abundance of planktonic fungi in the world’s oceans and
provides an integrated and holistic view of their ecological roles.

Keywords: coastal; pelagic; water column; culturable fungi; metagenomics; biomass; mycoloop;
biogeochemical cycling; nutrient metabolism

1. Introduction

Fungi have long been known to be present in marine ecosystems [1], yet they are
understudied compared to their terrestrial counterparts [2]. Over the last few decades, they
have been formally accepted to form an ecological rather than a taxonomically defined
group [3]. However, this overly restrictive ecological definition excludes the facultative
marine fungi whose presence, growth, and survival in marine environments are well-
established [4]. In addition, several deep-sea explorations have repeatedly brought to light
the presence of a gamut of terrestrial fungi (Table 1) and also suggest their emergence
and diversification in the ocean before that on land [5]. Therefore, the need for redefining
marine fungi has been recently realized and emphasized. The development of a functional-
scale classification by combining the existing definition of marine fungi with a three-
level active and passive roles-based re-grouping was among the first to be suggested [6].
Thereafter, marine fungi have been defined either as those recovered repeatedly from
marine habitats [7] or individuals with a long-term presence and metabolic activities in
a marine habitat [8]. The former, currently the most complete definition, combines both
genetic and functional aspects without relying on taxonomy [9]. Contrastingly, the later
definition in an omics context seems user-friendly and simple and might be useful for
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revealing specific markers of fungal adaptation to marine environments. However, a
consensus is yet to be reached on the definition of marine fungi.

Table 1. List of fungi of terrestrial origin discovered through culture-based and molecular methods
from different oceanic regions.

Terrestrial Fungi Method Sampling Region References

Aspergillus, Penicillium, Cladosporium, Fusarium,
Sagenomella, Exophiala, Tilletiopsis, Culture-based Central India basin [10,11]

Fusarium, Aspergillus, Phoma, Cladosporium,
Mortierella, Sebacina, Alternaria 454 pyrosequencing Kongsfjorden (Svalbard,

High Arctic) [12]

Fusarium, Acremonium, Penicillium, Aspergillus
Cladosporium Rhodotorulla, Paecilomyces,
Exophiala, Meyerozyma

Culture-based Canterbury Basin
sediments, New Zealand [13]

Malassezia RNA- based clone library Peru [14]
Thelephoraceae, Trichophaea Illumina MiSeq sequencing Southwest India Ridge [15]
Mycorrhizal fungi (Ambispora, Claroideoglomus,
Diversispora, Glomus, Funneliformis)

Illumina HiSeq
sequencing East China Sea [16]

Malassezia, Nectria, Acremonium, Leptosphaeria,
Candida and Clavispora ITS-clone library Hawaiian waters [17]

Mortierellales Illumina HiSeq
sequencing Bohai Sea water column [18]

The recent application of molecular approaches has revealed far more diverse and
abundant marine fungi than those previously studied, with a growing body of evidence for
their biogeochemical and ecological functions [18–24]. Furthermore, fungi isolated from
marine or marine-related habitats are producers of several bioactive compounds [7,25–30],
which can open up a new era of drug research. Nevertheless, marine fungi remain one of
the most under-studied microbial groups, with 95% of the ocean remaining mycologically
unexplored [9]. Consequently, the abundance, diversity, ecological roles, and interactions of
marine fungi with other plankton remain mostly speculative and our current understanding
of marine fungi, particularly planktonic fungi, remains diffuse. In this review, we provide
a comprehensive summary of the diversity, abundance, and ecological roles of fungi in the
marine water column, and highlight the knowledge gaps, and current and future trends in
this topic. An integrated and holistic model illustrating the roles of fungi in the pelagic and
benthic realms of the oceans is also presented.

2. Culturable and Molecular Diversity of Marine Fungi
2.1. Current Consensus of Culturable Diversity

Traditionally, marine fungi included higher (i.e., filamentous fungi in Basidiomy-
cota and Ascomycota) and lower (i.e., zoosporic fungi in Chytridiomycota, Oomycetes,
and Labyrinthulomycetes) fungi [31]. However, the latest update on their phylogeny
has grouped them into evolved branches (Ascomycota, Basidiomycota, Blastocladiomy-
cota, and Chytridiomycota) and basal lineages (Cryptomycota, Microsporidia, and Aphe-
lida) [32]. The first inventory of cultured marine fungi described 209 species of higher
filamentous fungi, 177 species of marine-occurring yeasts, and less than 100 species of the
lower marine fungi [3]. This was followed by reports of 467 [33], 530 [34], 1112 [35], and
1257 [36] species of marine fungi. Currently, about 1900 marine fungal species, distributed
across seven phyla (Aphelidiomycota, Ascomycota, Basidiomycota, Blastocladiomycota,
Chytridiomycota, Mucoromycota, and Microsporidia), 22 classes, 88 orders, 226 fami-
lies, and 769 genera, are documented (www.marinefungi.org, accessed on 1 May 2022).
Halosphaeriaceae is the largest family of marine fungi, consisting of 141 species across 59 gen-
era, and the most specious genera are Candida (64 species), Aspergillus (47 species), and
Penicillium (39 species) [35]. The documented number (ca.1900 species) is much less than
the estimated 10,000 species [33], which suggests that the oceans harbor a high fungal
diversity, which is yet to be fully described.

www.marinefungi.org
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2.2. Mycoplankton Diversity
2.2.1. Microscopic Forms and Culturable Diversity

Fungi in the water column, commonly referred to as mycoplankton or planktonic
fungi, were microscopically detected as individual filaments or hyphal aggregates, yeast
forms, as well as picoeukaryote-associated and phytoplankton-associated zoosporic and
cryptomycota forms [17,37–40]. The size range of individual filamentous forms is generally
1–3 µm in diameter and 10–200 µm in length [17,38], but in aggregate, they could reach
up to 20 µm in diameter and >50 µm in length in coastal regions. The zoosporic forms
(chytrids) in the coastal waters show a typical spherical sporangium (1–10 µm diameter)
and rhizoid structure over 2 µm in length [41,42]. Some of these fungal forms with different
lifestyles have been found to co-exist in the coastal water column [17]. The most common
form of planktonic fungi encountered is yeast forms (size < 5 µm diameter), which have
been found in a wide range of oceanic regions [43–46]. On the other hand, filamentous
forms have been discovered mostly in coastal and coastal-upwelling regions [17,38,46].

Using culture-based methods, researchers characterized the culturable diversity of
marine fungi mostly in nutrient-rich sediments. Those studies provided evidence for the
presence of fungi in sediments, including subsurface, deep-sea, and anoxic sediments
of different oceanic regions (Table S1). Apart from the most common ascomycetous and
basidiomycetous fungi, several novel culturable fungi were also reported from marine
sediments (Figure S1). Nevertheless, a vast majority of the fungi sampled from sediments
are close to, or within, clades of terrestrial fungi (Table 1).

Most earlier studies revealed that a large proportion of culturable diversity in the water
column comprised of yeasts, including Rhodotorula, Rhodosporidium, Metchnikowia, Torulopsis,
Kluyveromyces, Aureobasidium, and Cryptococcus [43–47]. The common filamentous fungi
and molds cultured from seawaters were Aspergillus, Trichoderma, Arthrinium, Cladosporium,
Penicillium, Cystobasidium, Exophiala, Graphium, Lecanicillium, Purpureocillium, Acremonium,
Coniothyrium, Simplicillium, and Mucor [46,48–51]. Yeasts and filamentous fungi were even
reported from extreme habitats such as the hypersaline waters of Qatar, including the
halo- and psychro-tolerant, red-pigmented yeast Rhodotorula mucilaginosa, and melanized
filamentous fungi Cladosporium and Alternaria [52]. Filamentous fungi were also reported
from the oil-spill-contaminated marine site where the predominant genera were found to
be Penicillium, Aspergillus, and Trichoderma [53].

This review provides a comparative analysis of the ITS (internal transcribed spacer)
sequence diversity of the culturable fungi isolated from sediment and water samples of
different geographical regions. Our analysis revealed that Ascomycota and Basidiomycota
are the major phyla in both water (Figure 1) and sediment samples (Figure S1). The total
sequence diversity of water samples was lower than that of the sediment samples, which
could be a result of the poor availability of growth substrates in the water column or a low
sampling effort. Interestingly, both filamentous and yeast forms of fungi were found in the
global pool of culturable fungi isolated from the water column. The diversity of culturable
fungal sequences determined in this study illustrates the consensus that marine fungi in
the water column can range from yeast to filamentous forms.

Overall, culture-based studies indicate that mycoplankton diversity is limited to
filamentous fungi and ascomycetous and basidiomycetous yeasts. The probable reasons
for such a seemingly low diversity could be less sampling effort or nutrient-poor water
column. Moreover, culture-based studies are known for their inherent biases, including the
selective enrichment of a few phyla and difficulty in isolating host-associated fungi.
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pelagic) across the globe were retrieved from the NCBI Nucleotide database. Sequences in the tree 
were aligned with MUSCLE using default settings. Phylogenetic analysis was performed using 
FastTree2.1 software (version 2.1, developed by Morgan N. Price, Berkeley, CA, USA) for the con-
struction of the ML tree, which used the Shimodaira–Hasegawa test to estimate the reliability of 
each split in the tree. The sampling coordinates of the South Pacific Ocean off Chile [48], Inland Sea 
in Qatar [52], Delaware Bay [51], Pearl River Delta [49], and Antarctica Peninsula [50] are available 
in the corresponding publications. 
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Figure 1. Maximum-likelihood (ML) tree of culturable fungi isolated from representative marine
waters. A total of 192 ITS sequences of culturable fungi isolated from the water column (coastal
and pelagic) across the globe were retrieved from the NCBI Nucleotide database. Sequences in
the tree were aligned with MUSCLE using default settings. Phylogenetic analysis was performed
using FastTree2.1 software (version 2.1, developed by Morgan N. Price, Berkeley, CA, USA) for the
construction of the ML tree, which used the Shimodaira–Hasegawa test to estimate the reliability of
each split in the tree. The sampling coordinates of the South Pacific Ocean off Chile [48], Inland Sea
in Qatar [52], Delaware Bay [51], Pearl River Delta [49], and Antarctica Peninsula [50] are available in
the corresponding publications.

2.2.2. Molecular Diversity and Dynamics of Mycoplankton

Past culture-based studies have revealed the presence of yeasts and filamentous fungi.
However, they failed to discover the zoosporic fungi in the marine water column. On the
contrary, high-throughput sequencing (HTS) efforts revealed a lot more diversity, including
the prevalence of zoosporic fungi, in several marine habitats [18,19,21,42,46,54]. Moreover,
molecular surveys of marine eukaryotes detected fungi not only in the euphotic zone of
the global ocean [55] but also in the entire water column [56]. Unfortunately, molecular
surveys of eukaryotes could not provide any evidence for the extent of fungal diversity in
the coastal and open-ocean waters.

Over the last decade, efforts were made to investigate the diversity of mycoplank-
ton in both coastal and open-ocean waters (Table 2). The spatial analyses of plank-
tonic fungi, based on DNA fingerprinting, could reveal the dynamics of positive fungal
genotypes [38,57] and the presence of only Dikarya [58]. Especially in Hawaiian coastal
waters, the exclusive presence of Dothideomycetes (four species) and dominance of Basid-
iomycota, including several novel phylotypes (42 species), were documented. The fungal
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communities displayed a noticeable spatial (lateral and vertical) diversity, with the vertical
diversity profile being different for coastal and open-ocean waters [58]. Similarly, in the
upwelling ecosystem off the coast of Central Chile, the fungal diversity was distinct, with
a higher richness at the near-shore site than that of the off-shore site and a tendency to
decrease with depth [57]. However, due to the inherent biases of fingerprinting techniques,
this could only provide a limited view of fungal diversity. With the application of HTS,
recent studies provide a deeper assessment of planktonic fungal communities and uncover
many OTUs, classified into a wide range of phyla and several unclassified and possibly
novel fungi from coastal waters (Table 2). Most of these studies documented the predom-
inance of Dikarya and the prevalence of Chytridiomycota in coastal waters. However, a
few studies also provided evidence for the occurrence of Cryptomycota (also known as
Rozellomycota), Mucoromycota, Glomeromycota, and Neocallimastigomycota. Overall,
the HTS approach provided evidence for the presence of zoosporic and basal phyla and
altered the earlier notion that Dikarya fungi are exclusive inhabitants of the ocean.

Apart from the spatial variations of mycoplankton discussed above, some studies
described the temporal dynamics of fungi in the coastal water column. For example,
a multi-year assessment study of coastal waters at Plymouth found that Dikarya and
Chytridiomycota were both dominant and dynamic, with several abundant and domi-
nant orders [19]. Similarly, another multi-year study of fungal diversity at Piver’s Island
Coastal Observatory (PICO), USA, a coastal mesotrophic ocean site, showed not only the
dominance of Ascomycota but also interannually indicated seasonal patterns of Basidiomy-
cota, Chytridiomycota, and Mucoromycotina [21]. Particularly, Chytridiomycota (order
Rhizophydiales) and Mucoromycotina were detected in winter and Glomeromycota in
early winter and spring. In addition, the highest richness and diversity of fungi during
winter and the lowest during summer were detected at PICO. Contrastingly, in the coastal
waters of the Bohai Sea, Chytridiomycota (order Rhizophydiales) dominated Ascomy-
cota and Basidiomycota in April, indicating a possible association with phytoplankton
bloom [18]. Temporal changes in the community composition of fungi were also evident
during different stages of algal bloom in the coastal waters of Shenzhen [59]. Several genera
prevailed in the pre-bloom stage; however, only Malassezia dominated the onset and the
peak bloom stages. Saitoella and Lipomyces gradually succeeded Malassezia and eventually,
Rozella dominated the terminal stage. Notably, the bloom decline stage exhibited a higher
diversity than the pre-and peak-bloom stages. Collectively, the above time series studies
suggest that fungi respond to seasonality and phytoplankton dynamics, which supports the
view that they are residents of the coastal water column and are most likely metabolically
active biomass.

Table 2. Application of high-throughput sequencing (HTS) methods in the assessment of fungal
diversity of marine water columns.

Method Target Region Primers Number
of OTUs Phyla Sampling

Region Reference

454 Pyrosequencing 18S (V4) TAReuk454FWD1
and TAReukREV3 71 Chytridiomycota

and Dikarya*
European

near-shore sites [40]

454 Pyrosequencing 18S (V4)
TAReuk454FWD1

and
TAReukREV3

23,263
seqs.

Chytridiomycota,
Dikarya,

and Cryptomycota

Arctic and
temperate biomes [60]

454 Pyrosequencing ITS ITS1F and
ITS4 -

Coastal water:
Chytrids (36%)

Open ocean:
Rhizophydiales (30%)

Tasman Sea,
and East

Australian Current
[61]

454 Pyrosequencing ITS1 ITS1F and ITS2 3468

Dikarya,
Chytridiomycota,
Mucroromycotina,
and Cryptomycota

Dongchong
Bay, China [59]
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Table 2. Cont.

Method Target Region Primers Number
of OTUs Phyla Sampling

Region Reference

Illumina HiSeq ITS1 ITS1F and ITS2 1483

Dikarya,
Chytridiomycota,
Mucoromycota,

and Cryptomycota

Bohai Sea [18]

Illumina Hiseq ITS 528F and 706R 91
Dikarya, Glomeromycota,

Chytridiomycota,
and Cryptomycota

Mariana Trench [62]

Illumina Hiseq ITS2 ITS3 and ITS4 8701

Dikarya,
Chytridiomycota,
Glomeromycota,

and Rozellomycota

East China Sea
water column
and sediments

[54]

Illumina Hiseq ITS2: ITS3 and ITS4 4028
Dikarya,

Chytridiomycota,
and Mucoromycota

Western Pacific
Ocean (Epi-

Abyssopelagic zone)
[23]

Illumina MiSeq ITS ITS1F and ITS4 582 Dikarya
and Chytridiomycota Plymouth, UK [19]

Illumina Miseq ITS ITS1F and ITS4 2796

Dikarya and
Chytridiomycota,

Glomeromycota, and
Neocallimastigomycota

Piver’s Island
Coastal

Observatory
(PICO), USA

[21]

Ion-Torrent LSU LR0R and EDF360R 2305
Ascomycota,

Basidiomycota,
and Chytridiomycota

Piver’s Island [63]

* Dikarya: Ascomycota and Basidiomycota.

Similar to the coastal water column, several lines of evidence indicated a high molec-
ular diversity of fungi, including several unidentified and potentially novel species, in
the open-ocean water column. For example, a high diversity of fungi, with the predomi-
nance of Dikarya, was reported for the first time in waters of the open-ocean transect from
the Hawaiian coast to Australia [64]. Within Ascomycota and Basidiomycota, the family
Nectriaceae and genus Malassezia, respectively, were the most common open-ocean fungi.
Unfortunately, only Dikarya were documented, probably due to the insufficient coverage
of the clone libraries. However, later studies that adopted HTS additionally uncovered
several basal phyla (Table 2). For example, a study of the epi- to abyssopelagic zone of
the Western Pacific Ocean documented OTUs that were assigned to Ascomycota, Basid-
iomycota, Chytridiomycota, and Mucoromycota, with Ascomycota as the most dominant
phylum [23]. Furthermore, the classes Sordariomycetes, Eurotiomycetes, Dothideomycetes,
Saccharomycetes, and the order Malasseziales were found to dominate the fungal commu-
nities. Compared to other zones, a higher OTU richness and distinct fungal community
were evident in the epipelagic zone. Yet, another study of the water column suggested an
increasing number of OTUs of the ascomycetous genus Aspergillus from coastal to open-
ocean waters [54]. Contrastingly, in the waters of the South Pacific Ocean, Chytridiomycota
(order Rhizophydiales) was reported as one of the dominant fungi. The occurrence of
chytrids in oceanic waters suggested that their ecological importance in open oceans was
similar to that in coastal water columns [61].

In summary, most molecular surveys of planktonic fungi report the dominance of
Dikarya and suggest that many fungal OTUs in both coastal and open-ocean waters are yet
to be described. Furthermore, by reprocessing more than 600 HTS datasets and analyzing
4.9 × 109 sequences (4.8 × 109 shotgun metagenomic reads and 1.0 × 108 amplicon se-
quences), a recent study found that every fungal phylum is represented in the global marine
planktonic mycobiome [65]. However, the global marine mycobiome is generally predomi-
nated by Ascomycota, Basidiomycota, and Chytridiomycota. Particularly, the coastal and
open-ocean fungal communities show the dominance of ascomycetous classes, such as
Sordariomycetes, Eurotiomycetes, Dothideomycetes, Saccharomycetes, and Pezizomycetes.
These findings corroborate previous culture-based studies, which report the prevalence
of members of classes Dothideomycetes and Sordariomycetes in mangroves and coastal
waters [66,67]. These classes of fungi are suggested to have adaptations (dispersal and at-
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tachment) for sustenance in marine environments [36,68]. Contrary to ascomycetous fungi,
basidiomycetous fungi appear scarce, with Ustilaginomycetes, Agaricomycetes, Exoba-
sidiomycetes, Wallemiomycetes, and Tremellomycetes being generally detected [18–20].
Interestingly, molecular surveys uncover a richer diversity of basidiomycetous classes
than culture-based methods, where only Exobasidiomycetes, Agaricomycetes, and Usti-
laginomycetes are described [36]. Furthermore, only Pleosporales, Dothideales, Capnodiales,
Eurotiales, Malasseziales, Hypocreales, and Rhizophydiales appear ubiquitous from molecular
surveys, despite the 74 known orders of culturable marine fungi [36]. The diverse and
dynamic patterns of fungi in oceanic waters similar to nutrient-rich coastal waters, which
emerged from molecular surveys, raise questions about their modes of nutrition and roles in
oligotrophic conditions. More importantly, the differences in the abundances evident across
space and time support the proposition that planktonic fungi are viable and responsive to
environmental changes.

2.3. Environmental Drivers of Mycoplankton Diversity

Environmental factors are known to play an important role in regulating microbial
community structure and diversity [69,70]. In terrestrial realms, fungi have unique require-
ments, and species segregate along environmental gradients [71,72]. Likewise, several
lines of evidence suggest the role of environmental factors in shaping the fungal diver-
sity of the water column (Table 3). For example, phytoplankton and primary production,
nutrients, salinity, organic matter, seasonality, DO, and temperature have been reported
as the key factors that govern mycoplankton diversity. In parallel, it has been suggested
that riverine inputs of fungi might be responsible for a higher fungal richness in coastal
sites than that in off-shore sites [57]. The other less-reported environmental factors such
as ocean currents, hydrographic conditions, depth, DO, COD, nitrate, flow, conductiv-
ity, insolation, pH, DIC, oxygen concentration, riverine inputs, tidal actions, dispersal,
and biological interactions were also shown to influence fungal communities of seawa-
ter columns [17,20,21,54,59,61,73,74]. These environmental associations of mycoplankton
can potentially have several ecological implications, including spatiotemporal variations,
organic matter decomposition, niche differentiation, host–parasite interactions, and the
regulation of phytoplankton bloom (Table 3), which are yet to be fully established. Un-
doubtedly, the associations of fungi with a multitude of environmental factors, evident
from the above studies, suggest that fungi respond to environmental gradients, and their
communities can be shaped by local conditions. Although significant differences among
oceanographic regions were identified, latitudinal gradients of the richness and diversity of
marine fungi were not observed [65]. This was unlike the pattern observed for planktonic
marine bacteria [75]. Perhaps with the availability of more HTS datasets, it would be
essential to expand the collection of reference loci and genomes to determine the typical
environmental drivers of planktonic fungi [65].

Table 3. Factors affecting fungal assemblages in water columns of different marine habitats and their
ecological implication.

Strongly Correlated Factors Region Ecological Implication Reference

Chlorophyll a, temperature,
phytoplankton biomass Hawaiian coast Spatial variations [58]

Phytoplankton, nutrients (nitrate, phosphate,
nitrite), and location West Pacific Warm Pool Organic matter decomposition [64]

Chlorophyll a, organic matter, and
warm conditions

Upwelling ecosystem off the coast
of Central Chile Organic matter decomposition [38]

High nitrogen availability, reduced salinity,
temperature, phytoplankton, organic matter Coastal station off Plymouth

Temporal variations, niche
differentiation, and

host–parasite interactions
[19]
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Table 3. Cont.

Strongly Correlated Factors Region Ecological Implication Reference

Salinity, temperature, oxygen, and nutrients Tasman Sea, East Tasman Sea, and
East Australian Current

Biogeochemical cycling and
spatial variations [61]

Depth, dissolved oxygen, and nitrate Across the globe
Local environmental

conditions
govern assemblages

[73]

Temperature, salinity, nitrate, nitrite,
ammonium, and phosphate Coastal region Dongchong Bay Fungi regulate

phytoplankton bloom [59]

Temperature, depth, salinity, riverine
input, location

Upwelling ecosystem off the coast
of Central Chile Organic matter decomposition [57]

Dissolved nitrogen, particulate phosphorous
silicate, pH, salinity, chlorophyll a Coastal water column Spatial variations [18]

Dissolved oxygen and depth East China Sea water
and sediments

Ocean currents
govern assemblages [54]

Temperature, pH, insolation, dissolved
inorganic carbon

Waters of Piver’s Island Coastal
Observatory (PICO) Temporal variations [21]

Depth, temperature, and dissolved oxygen Epi- to abyssopelagic zones of the
Western Pacific Ocean

Distinct zonation of
assemblages in the

water column
[23]

Salinity Baltic Sea Salinity threshold
separates assemblages [76]

3. Abundance of Mycoplankton

A typical milliliter of seawater is known to contain about 1000 fungal cells [77]. The
abundance of fungi has been often estimated by researchers using culturable, microscopic,
or molecular methods. However, due to ‘great plate anomaly’ and other biases, the densities
of culturable fungi in the ocean are several orders of magnitude lower than that of fungi de-
tected either by direct detection or molecular techniques. The culturable fungal abundance
(CFU L−1) was found to be three orders of magnitude [78,79], while the abundance (gene
copies L−1) based on the qPCR method was five to eight orders of magnitude [18,19,80,81].
Fungal enumeration by culturing has been criticized because a colony can arise out of
single spores, groups of spores, single cells, or mycelial fragments. Therefore, methods
based on direct detection of fungal hyphae or ergosterol and qPCR have been developed
(Table 4). Even though these alternative methods have their own biases, they are much
less time-consuming and labor-intensive and provide reasonably reliable estimates of
fungal abundance.

Table 4. Abundance of planktonic fungi in various oceanic regions estimated by different methods
and their comparison with bacterial abundance.

Estimation Method
for Fungi

Sampling
Region

Fungal
Abundance Bacterial Abundance Reference

Biomass carbon Coastal Chile 0.03–6 µg C L−1 - [38]
Biomass carbon Coastal Chile 0.01–40 µg C L−1 10–44 µg C L−1 [82]

Fatty Acid (18:2ω6) Coastal Chile 0.1–3 µg L−1 10–44 µg C L−1 [82]
Ergosterol Arctic waters 1.02 µg C L−1 5 to >25 µg C L−1 [24,83]

qPCR
(DNA concentration) West Pacific Warm Pool

Basidiomycota (max. 10 ng µL−1,
open-ocean station) Ascomycota (max.

14 pg µL−1, coastal station)
~10 ng µL−1 [64]

qPCR (18S rRNA gene
copy number)

Coastal Plymouth, Western
English Channel 5.1 × 105 to 9.9 × 107 copies L−1 0.2 × 106–1.6 × 106 cells mL−1 [19,84]

qPCR (18S rRNA gene
copy number) Coastal region, Bohai Sea 4.28 × 106 to 1.13 × 107 copies L−1 ~ 2 × 106 cells L−1 [18]

qPCR (18S rRNA gene
copy number) PICO 1.0 × 107 to 7.54 × 108

copies L−1 - [21]

“-” = data not available.
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Fungal filaments, ranging from 1–3 µm in diameter and 10–200 µm in length were
detected as individual filaments or aggregates in the coastal upwelling ecosystem off the
coast of Central Chile using the Calcofluor White staining method. This aggregate formation
was associated with the efficient remineralization of organic matter in seawater [38]. The
vertical profile of fungal biomass showed higher values at the surface compared to greater
depths and agreed with those of phytoplankton biomass and physicochemical parameters,
suggesting higher fungal activity during high organic matter availability in a coastal
upwelling ecosystem off the coast of Chile [82]. In the same study, the fungal biomass
determined by the abundance of hyphae positively correlated with phospholipid fatty acid
(18:2ω6), a fungal biomarker, and reflected the degradation of protein and carbohydrate
polymers. Of interest, the fungal biomass (0.04 µgCL−1 to 40 µgCL−1) was comparable to
prokaryotic biomass (10 µgCL−1 to 44 µgCL−1) and both biomasses peaked upon a decline
in phytoplankton biomass, suggesting that the availability of detritus determined their
abundances. Such an association of fungal abundance was also evident from studies that
were based on molecular techniques [19,21].

The analysis of the abundances of major planktonic fungi (Ascomycota and Basid-
iomycota) in a transect from the Hawaiian coast to Australia revealed that Ascomycota
had a high abundance only in coastal stations, whereas Basidiomycota was high in both
oceanic and coastal stations [64]. The abundance of Basidiomycota (maximum 10 ng/µL,
open-ocean station) was much higher than that of Ascomycota (maximum 14 pg/µL,
coastal station) and similar to that of bacterioplankton in all the stations. The abundance of
mycoplankton was highest at the surface, a pattern similar to that exhibited by bacterio-
plankton in most stations. In a high-resolution time-series study at PICO, an abundance
of up to eight orders of magnitude was observed with two peaks each year, one each in
summer and fall. The abundance was found to exhibit a dynamic pattern and was linked
to chlorophyll a, SiO4, and oxygen saturation. As PICO is a site with a high salinity, no
correlation was observed between abundance and salinity [21]. Conversely, mycoplankton
abundance was shown to positively correlate with particulate organic carbon, ammonia,
total particulate nitrogen, and particulate organic nitrogen, while negatively with salinity
at the coastal Plymouth site [19]. The negative correlation with salinity was attributed to an
increased abundance due to riverine inputs. Whereas the factors with a positive correlation
were the growth substrates that increase with autochthonous production or allochthonous
inputs [19]. Sites that experience river inflows are generally reported to contain fungal and
nutritional inputs from terrestrial sources [38,51,85].

Taken together, these studies reveal the ubiquitous presence and high abundance
of mycoplankton within marine environments. Evidence of mycoplankton abundance
similar to that of bacterioplankton in nutrient-rich habitats emphasizes that mycoplankton
are an important component of coastal realms. The association of mycoplankton with
environmental factors suggests their important role in detrital processing and nutrient
cycling. The paucity of knowledge on mycoplankton abundance patterns in the pelagic
realm warrants future investigations.

4. Ecological Roles of Mycoplankton

Fungi in the transition zones of salt marshes and mangroves were found to play the
roles of saprobes, symbionts, pathogens, and parasites, similar to their terrestrial counter-
parts [36]. Currently, their roles are yet to be established, especially in the open-ocean water
column, even though they have been detected in the entire marine water column. Arguably,
a reliance on osmotrophy determines the ecology of fungi in marine ecosystems similar to
terrestrial, and therefore nutrient-rich environments have both abundant and diverse fungi.
In addition, the ability to attach to detritus or particulate organic matter enables fungi to
grow in the flowing and turbulent water of the oceans. Thus, owing to these two important
aspects of fungal feeding strategies (i.e., osmotrophy and attachment to the substrate),
marine fungi are generally considered to play the roles of decomposers, parasites, and
denitrifiers [12,86]. Unfortunately, only a few studies provide direct evidence of their



J. Fungi 2022, 8, 491 10 of 20

ecological roles; thus, fungi are often neglected in the ocean ecosystem models [64,87].
Nevertheless, with the piling evidence of their contribution to the marine ecosystems,
marine microbiologists have started to realize their importance in nutrient cycling and the
food web. For example, laboratory-based physiological studies [88], biomass [89], direct
detection of fungal mycelia [10,82], zoospores and rhizoid structures on host cells [41,42],
metabolic potential/physiological diversity analysis [90], the high copy number of rRNA
gene [19,64,81], live fungal biomass (ergosterol) [20,24] provide indications of their viability
and possible ecological roles in the water column. The following sub-sections discuss
the predicted ecological roles of fungi in marine environments, which are illustrated in
Figure 2.
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Figure 2. Schematic representation of the overview of possible roles of fungi in the marine
food web and biogeochemical cycling. OM = organic matter; DOM = dissolved organic matter;
MS = marine snow; POM = particulate organic matter; HPF = hyper parasitic fungi; SD = suboxic
denitrification; AA = anaerobic ammonification; GHG = greenhouse gas; MA = macroaggregate;
MA-SC = macroaggregate-sequestered carbon; ON = organic nitrogen. Black dotted arrows indicate
feeding and white curved arrows indicate fungal involvement in the conversion.

4.1. Biogeochemical Cycling
4.1.1. Role in Organic Matter Decomposition and Aggregation

Marine ecosystems receive and process a large amount of bio-recalcitrant, terrigenous
organic matter (particulate) often in the form of lignocellulosic substrates. In addition,
a large pool of bio-labile organic matter (dissolved and particulate) in the ocean is pro-
duced from algal detritus. These forms of organic matter in the ocean are mainly recycled
by microbial decomposers such as bacteria and fungi. Compared to bacteria, fungi can
more efficiently mineralize lignocellulosic substrates due to their lower metabolic nutrient
demand and wider enzymatic capabilities [91]. The decomposer role of fungi in aquatic
ecosystems is mainly known from lotic systems, mangroves, and wetlands [92–94]. How-
ever, the frequent isolation of marine fungi from floating, sunken woody substrates, and
plant detritus [95,96] also suggests such a role in coastal and pelagic ecosystems.
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The colonization of lignocellulosic substrates by marine fungi is extensively stud-
ied [97]. However, there are fewer studies on their ability to utilize the lignocellulosic
materials in the environment. In vitro studies suggest that marine fungi have the potential
to degrade lignocellulosic components by their ability to produce hydrolytic enzymes,
such as laccase, cellulase, amylase, alginase, laminarinase, peroxidase, pectinase, and xy-
lanase [98–102]. Marine ascomycetes and basidiomycetes were demonstrated to solubilize
significant amounts of lignin from wood in vitro, suggesting that they can carry out a
‘white-rot like’ role in the marine environment [103–106]. For example, the basidiomycetes
Nia vibrissa, which were isolated from wood submerged in the sea, caused a pattern of wood
decay characteristic of the white-rot type when cultured on different wood species [104].
Historically, the morphological decay features observed in woody biomass colonized by
marine fungi were indicative of soft-rot and white-rot decay [107]. The soft-rot strategy is
efficient in marine systems compared to white rot, which suffers from the leaching of ligno-
cellulolytic enzymes into the surroundings [97,100,108,109]. Typically, the soft-rot strategy
involves extensive cellulose and hemicellulose degradation with limited lignin degrada-
tion, and such a strategy is key to the survival of ascomycetes in oceanic waters [109]. The
prevalence of the soft-rot strategy in oceanic waters was evident from the dominance of
ascomycetes and disappearance of basidiomycetes with the prolonged submersion of the
woody substrate (driftwood) in the Arctic Ocean [109]. The above findings perhaps advo-
cate that these marine fungi, armored with lignocellulolytic activity, are most likely capable
of degrading lignocellulosic substrates in both coastal and oceanic waters by colonization.

Apart from lignocellulosic substrates, marine fungi are also capable of processing algal
polymeric substrates by secreting a plethora of hydrolytic enzymes in vitro [101]. It has
been shown that the hydrolytic activity of fungi increases in presence of phytoplankton-
derived biopolymers, and such activity can process about 30% photosynthetic carbon in a
coastal upwelling system [82]. Moreover, in the coastal water column, fungi are found to
grow during productive periods of high substrate availability and feature high hydrolytic
activity [82]. Later experiments demonstrated the assimilation of 13C-labeled algal transpar-
ent exopolysaccharides (TEP) and the accumulation of 13C in Cladosporium (Ascomycota)
and Malassezia (Basidiomycota), which provide direct evidence for the utilization of algal
polysaccharides by saprotrophic planktonic fungi [110].

Some studies show that fungi in marine environments produce macroaggregates from
DOM without the need for nucleation, where the presence of fungal hyphae makes the
macroaggregates stable and renders them less easily degradable [89]. Such evidence of
macroaggregates in deep-sea regions is predicted to lead to long-term carbon sequestration,
ultimately affecting the carbon biogeochemical cycling and global weather change [89].
A similar aggregate formation was also observed in the coastal water column, and it
was suggested that the combined action of fungi and bacteria could result in a highly
efficient microbioreactor able to process particulate organic matter (POM) and DOM during
sedimentation [38]. Furthermore, it is speculated that fungi contribute to organic matter
degradation in the deep sea owing to their dominance in the overall biomass within marine
aggregates (snow) [111]. These findings suggest that planktonic fungi play a role in the
formation and stabilization of the marine aggregates and their simultaneous degradation
to DOM. Interestingly, such a contribution highlights their possible link to the POM-DOM
cycling in the ocean (Figure 2). Thus, fungi might play a much more important role in
biological carbon pumps or ocean carbon storage than what is currently perceived.

As fungi are known to produce a variety of enzymes that have the potential to break
down the chemical bonds of plastic polymers, they might have a role in the degradation
of marine plastics [112]. Seminal works on plastic deterioration by marine fungi have
suggested that polyurethanes are more susceptible to fungal attacks [113]. Interestingly, a
recent study reported that fungi (e.g., Aspergillus flavus, A. terreus, A. niger, A. fumigatus,
and Penicillium sp.) isolated from seawater are potential degraders of polyethylene [114].
These reports highlight the underestimated role of planktonic fungi as degraders of marine
plastic wastes.
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Considering earlier studies, it is not surprising that marine fungi can carry out the
role of saprotrophs in the coastal and ocean waters. With their unique ability to produce
a myriad of hydrolytic enzymes and the colonization of lignocellulosic substrates, algal
biopolymers, marine snow, and plastics, marine fungi might contribute to the process of
microbial carbon sequestration in the ocean. Their role in long-term carbon sequestration,
however, remains speculative and needs further investigation.

4.1.2. Role in Nutrient Metabolism

With the recent application of omics and microarray techniques, our ability to un-
derstand the mechanisms underpinning the function of marine fungi in biogeochemical
cycling is accelerating. Particularly, studies based on metagenomics and metatranscrip-
tomics provided evidence for the fungi-associated metabolic processes in the marine and
water columns. Metagenomic studies discovered genes involved in amino acid metabolism,
the aerobic carboxylation of glucose, anaerobic decarboxylation of pyruvate, urea, sulfur
metabolism, etc. [6,22]. Fungal genes involved in complex C and fatty acid metabolism
have been found across all depths and regions, and it is suggested that fungi might replace
phytoplankton for vitamin supplies in deep waters [22]. Similarly, metatranscriptomics
also revealed fungal transcripts that were assigned to protein, carbohydrate, and lipid
metabolism [115]. Some studies based on metatranscriptomics prove the presence of only
fungal carbohydrate-active enzymes (CAZymes) and carbohydrate-binding modules in
the secreted proteome, suggesting active carbohydrate (microbial cell envelopes, plant,
and algal detritus) degradation by fungi and their involvement in carbon cycling in the
ecosystems [116]. Metagenome prediction using the PICRUSt2 tool suggests that fun-
gal communities in marine waters are primarily aerobic and acquire energy through the
oxidation of fatty acids [117]. This study also suggested that the metabolism of amino
acids, carbohydrates and energy, fatty acids and lipids, nitrogen, sulfur, and other com-
pounds, such as vitamins, octane, methyl ketone, heme, and secondary metabolite, possibly
represent the core metabolism of marine mycoplankton in marine habitats ranging from
estuarine to open ocean. In addition, high CAZymes per gene suggested that pelagic fungi
are active in carbohydrate degradation [118].

A few earlier studies have shown the presence of fungi of known and new taxonomic
groups in methane hydrates [119], suggesting their possible role in carbon flux fueled by
methane, similar to the methanotrophic prokaryotes [120]. Although, methane-utilizing
yeasts were reported much earlier [121], a more recent study revealed the significant correla-
tion of the members of marine yeast, Cryptococcus curvatus, with methane and ethane [122].
This suggests the involvement of fungi in methane cycling in the ocean and their prob-
able interactions with methanogenic or ethanogenic prokaryotes. In addition, fungi are
proposed to be H2 producers that help in the growth and survival of sulfate-reducing
bacteria in the deep ocean, indicating their possible involvement in the anaerobic oxidation
of methane [123]. A few studies also suggested the role of fungi in nitrogen cycling in
the ocean. Marine fungi were found to be associated with nitrate reduction, nitrite accu-
mulation, and ammonia formation in the anoxic region of the ocean [88], denitrification,
co-denitrification, ammonification [124], and nitrite reduction in the deep biosphere [115].
Using GeoChip, several fungal genes were detected that catalyze ammonification from ni-
trite and urea, ammonia assimilation, and denitrification in marine sediment [24]. Another
line of evidence suggests that endolithic fungi were involved in at least two processes of
the nitrogen cycle within corals: (1) reduction of nitrate and/or nitrite to ammonia, and
(2) ammonia assimilation for biosynthesis [125]. As marine fungi are capable of anaero-
bic denitrification with the formation of greenhouse gases (NO and N2O) and nitrogen
(N2) [126], their impact on global climate should be further explored.

Overall, these findings suggest fungi as an important component of nutrient cycling
(both carbon and nitrogen) in the ocean and warrant their inclusion in marine microbial
ecosystem models involving biogeochemical cycling.
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4.2. Fungal Contribution to the Marine Food Web and Biotic Interactions

Mycoplankton are known to play an important role within the marine microbial food
web as diatom parasites [17,19,41]. Particularly, chytrids found in the coastal water column,
open ocean, and Arctic regions are reported to channel organic matter and energy to higher
trophic levels converting inedible phytoplankton to zoospores (high in polyunsaturated
fatty acids and cholesterol) that serve as food for zooplankton [42,127,128]. This mechanism,
known as the mycoloop, provides nutrients to the food web through the zoospores of either
parasitic fungi or saprotrophic fungi. Fungi feed on substrates inedible for zooplankton, and
in turn, produce zoospores rich in nutrients that are palatable to zooplankton [94]. These
zoospores become a major food source, especially when inedible food sources predominate,
thus making fungi responsible for the growth and reproduction of zooplankton [110,129].
The non-grazed zoospores, in turn, might contribute to the DOM and the detritus pool [128].
In addition, the fungi that are diatom parasites might prove to be successful competitors
against zooplankton by controlling energy flow and food web dynamics [130]. Thus, the
fungus–zooplankton association may alter the food web dynamics by either increasing
the population of zooplankton or decreasing it. Furthermore, fungi may also serve as
hosts for hyper-parasites, thereby reducing the parasitic load on the phytoplankton, and
owing to their smaller size, hyperparasites, in turn, are grazed by zooplankton [131]. A
tripartite interaction between Cryptomycota (hyperparasite), Chytridiomycota (parasite,
saprotroph), and phytoplankton [18], and the niche separation between Cryptomycota
(algal parasite) and Chytridiomycota have been speculated [132]. A recent study also
revealed that Rozellomycota fungi, which are dominant during pre- and early bloom stages,
have the potential to fuel a marine mycoloop [133]. Direct evidence of fungal parasitism in
the marine water column, especially in the oceanic water column, is scarce, and thus would
be an interesting topic of further exploration.

The organic detritus and its associated microbes are important to the marine food
web. Fungi can convert the detritus into palatable forms for detritivores owing to their
lignocellulose degradation capability, and are thus suggested to play an important role
in the coastal water column and/or open-ocean detrital dynamics [82,95]. Fungi and
bacteria occupy different functional niches in the decomposition of POM, wherein fungi
act as primary degraders of particulate, and bacteria act as rapid recyclers of nutrient-rich
organic matter compounds (e.g., algal biopolymers) [93]. Towards the decaying stages of a
diatomic bloom, diatom secretes a large amount of mucus that forms aggregates (marine
snow) in the water column, which are likely to act as chemical cues for colonization by
fungal zoospores. These aggregates contribute to pelagic detritus, and upon sedimentation,
they are transported along with the attached fungi to the deep sea [82]. Similarly, the
colonization of transparent, exopolymeric particles (TEPs) by fungal hyphae was also
observed, suggesting the possible transportation of the fungal mycelia-bound TEPs to
the ocean’s sediment [10]. Marine snow or TEP-associated fungi possibly re-mineralize
the polysaccharides therein and contribute to the bulk of DOM in the deep sea [95]. As
marine snow aggregates are recalcitrant to bacterial degradation, the saprotrophic action
of fungi supports bacterial metabolism by making DOM available to bacteria. Another
piece of evidence for the fungal utilization of algal TEPs suggests the possible interactions
(e.g., competition and syntropy) between bacteria and planktonic fungi [110,134]. Although
fungi and bacteria were found to co-exist in the water column and serve as food sources
for zooplankton, the role of fungi might be more significant than bacteria as they prevent
decoupling between primary and secondary production and transfer carbon up the marine
food web [135].

Marine fungi were acknowledged for their great importance under ocean acidifica-
tion [79]. In fact, under ocean acidification, a reduction in Chytridiomycetes and Cryp-
tomycota was reported [136]. It was further suggested that a decrease in the number of
these parasitic members might lead to a subsequent increase in large phytoplankton and a
decrease in small phytoplankton. This would alter the food web structure and may lead to
a decrease in zooplankton. Moreover, an increase in the abundance of pathogenic fungi was
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also observed with acidification [136]. Several lines of evidence gathered from culturable
and molecular studies of water columns suggest the presence of fungi that are known
pathogens of plants, vertebrates, and invertebrates [23,50,59,136]. Thus, there might be
an increase in pathogenic fungal abundance with progress in ocean acidification, leading
to the breakdown of ecosystems. Planktonic fungi are also susceptible to viral infection,
and because viruses are abundant (107–108 particles/mL) in marine environments, their
lysis of planktonic fungi might also contribute to food web dynamics [137]. A few studies
report the presence of mycoviruses in marine ecosystems and that the viral lysis of fungi
might contribute to another pathway of carbon flow into the DOM pool [24,138]. However,
further investigations are needed to clearly understand the interactions between fungi and
viruses in the water column.

Marine fungi are the components of a complex matrix of multipartite interactions and
play an important role in the food web as both saprotroph (consumer) and progenitor of
zoospores (secondary producer). Further studies involving empirical dynamic modeling
approaches, such as linear (multiple autoregressive models) and non-linear (convergent
cross-mapping) models, can shed light on food web dynamics by generating data for a
network analysis of such chaotic systems [137]. Currently, network analyses have mainly
been used to understand the spatial distribution of marine fungal OTUs among sampling
sites [12], sea regions and temperatures [139], and competitive and cooperative relationships
within OTUs [18]. Additionally, network models could decipher the relationships within
fungal taxa, and between fungi and other eukaryotes (primary producers, fungal predators)
cohabiting a freshwater lake [140]. Nevertheless, the modeling approaches mentioned
above can also contribute to the understanding of the host–parasite relationship and
its consequences on the food web, estimation of energy and matter transfer in the food
web, and co-occurrence of fungal groups and their correlation with physicochemical and
biological variables [12,128,137,139].

5. Future Perspectives

This review summarizes our current knowledge of planktonic fungi and provides
valuable insights into their ecological importance in coastal and pelagic realms. Currently,
the research on diversity, abundance, and the role of planktonic fungi is still in its infancy
and limited to very specific geographical regions. So far, studies are confined mostly to the
coastal water column and only a few have addressed the open-ocean water column. To
this end, global explorations, especially for open-ocean waters, are needed to shed new
light on the ubiquitous (generalist) and localized (specialist) planktonic fungi. From a
methodological point of view, the study of fungi in the ocean is witnessing a paradigm
shift from culture-based to molecular surveys with the ITS region as the fungal barcode.
However, the choice of fungal markers is known to limit the extent of diversity in molecular
surveys, suggesting that primer specificity, coverage, and bias should be addressed before
their application. Furthermore, DNA surveys have been criticized for their overestimation
of diversity due to the inclusion of relic DNA. Conversely, the RNA surveys that provide
information on the active fungi are seemingly more appropriate. Considering the above bi-
ases, a polyphasic approach is expected to provide an accurate estimate and comprehensive
view of planktonic fungal diversity.

Planktonic fungi are presumed to play a significant role in organic matter transforma-
tion, prevent the decoupling of primary and secondary production, and transfer carbon to
higher trophic levels. Particularly, the discovery of fungal parasitism and mycoloop amidst
issues such as polar ice melting, global warming, and ocean acidification possibly indicates
the potential of fungi to restructure the marine food web by modulating carbon flow. This
further suggests the importance of the effect of fungal parasitism and warrants its inclusion
in ocean ecosystem models. To this end, studies that focus on (1) molecular detection
and the enumeration of both parasitic and hyper-parasitic fungi, (2) life-table experiments
to study trophic flow, and (3) carbon transfer among phytoplankton, saprotrophic and
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parasitic fungi can provide a deeper understanding of fungal parasitism and its effects on
the marine food web.

Currently, the questions that remain to be fully answered are: (1) what is the extent of
planktonic fungal diversity? (2) What roles do undescribed fungi play in the coastal and
oceanic waters? (3) Are there any keystone species in the planktonic fungal community?
(4) How do planktonic fungi interact with other components of the food web? (5) How
much carbon do they recycle, and (6) how would they affect the global climate and vice
versa? Future studies involving genomics, metagenomics, transcriptomics, and metatran-
scriptomics would help to answer these key questions. Interestingly, the discussions in
recent reviews on the adaptation of marine fungi in the marine environment might help
to reduce the impacts of climate change on marine organisms and environments [141,142].
With the inflow of new information, the haze would clear around planktonic fungi, pro-
viding insights into the black box of their cryptic presence, role, and significance in the
marine water column. This review is expected to provide a holistic view of planktonic
fungal ecology and a framework for future research in this area.
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sediments across the globe were retrieved from the NCBI Nucleotide database. Sequences in the
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FastTree2.1 software for the construction of the ML tree, which uses the Shimodaira–Hasegawa
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