
NeuroImage 187 (2019) 68–76
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage
Dual regression physiological modeling of resting-state EPI power spectra:
Effects of healthy aging

Olivia Viessmann a,*, Harald E. M€oller b, Peter Jezzard a

a Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
b Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
A R T I C L E I N F O

Keywords:
EPI
Dual regression
fMRI
Physiological noise
Cardiac pulsatility
Healthy aging
* Corresponding author.
E-mail addresses: oviessmann@mgh.harvard.edu (O. V

1 here, we refer to “pulsatility” as the fluctuation of a

https://doi.org/10.1016/j.neuroimage.2018.01.011
Received 12 September 2017; Received in revised form 1
Available online 3 February 2018
1053-8119/© 2018 The Author(s). Published by Elsevier
A B S T R A C T

Aging and disease-related changes in the arteriovasculature have been linked to elevated levels of cardiac cycle-
induced pulsatility in the cerebral microcirculation. Functional magnetic resonance imaging (fMRI), acquired fast
enough to unalias the cardiac frequency contributions, can be used to study these physiological signals in the
brain. Here, we propose an iterative dual regression analysis in the frequency domain to model single voxel power
spectra of echo planar imaging (EPI) data using external recordings of the cardiac and respiratory cycles as input.
We further show that a data-driven variant, without external physiological traces, produces comparable results.
We use this framework to map and quantify cardiac and respiratory contributions in healthy aging. We found a
significant increase in the spatial extent of cardiac modulated white matter voxels with age, whereas the overall
strength of cardiac-related EPI power did not show an age effect.
Introduction

Physiological noise in broadband rs-fMRI

Blood-oxygenation level dependent (BOLD) functional magnetic
resonance imaging (fMRI), in particular echo planar imaging (EPI), has
traditionally been used to study neuronal activity in the resting state (rs-
fMRI) or whilst performing a task. The fMRI time series is a composite of
neurovascular and additional noise contributions, the latter of which are
often regarded as unwanted and are removed from the data in post
processing (see (Bulte and Wartolowska, 2017; Murphy et al., 2013), and
(Birn, 2012) for a review). Noise is categorised into thermal and physi-
ological noise, where the former can be modelled as white noise but the
latter is a non-random signal. The most prominent physiological noise
sources are respiration- and cardiac cycle-induced signal fluctuations.
Cardiac cycle-related signals are more pronounced around major blood
vessels (Dagli et al., 1999), sulci and perivascular cerebrospinal fluid
(CSF) spaces, but are also measurable in grey and white matter (Shmueli
et al., 2007; Chang and Glover, 2009). Respiratory-related fluctuations
are dominantly spread across the peripheral areas (Tong and Frederick,
2014).

With the technical developments of in-plane (partial Fourier (Fein-
berg et al., 1986), GRAPPA (Griswold et al., 2002) and SENSE
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(Pruessmann et al., 1999)) and through-plane (simultaneous multi-slice
(SMS)/multiband (Moeller et al., 2010; Feinberg et al., 2010; Feinberg
and Setsompop, 2013)) acceleration, repetition times (TR) can be
reduced to a few hundreds of milliseconds whilst still achieving
reasonable coverage and spatial resolution. As such, EPI time courses can
be resolved beyond the cardiac frequency regime. The question of
whether vascular properties are reflected in the cardiac frequency band
turns what is usually regarded as a nuisance artifact into a signal in its
own right.

Cerebral cardiac pulsatility

Age-related wall stiffening of the major arteries impedes the trans-
formation of pulsatile arterial blood flow to a steady flow in the capillary
bed (see (O'Rourke and Hashimoto, 2007) for a review). The reduced
ability of the arteriovasculature to dilate and constrict is thought to in-
crease flow pulsatility1 in the cerebral microcirculation. Pulsatility
measures have further been linked to MRI-derived measures. Increased
middle-cerebral artery (MCA) flow pulsatility has been found in patients
with white matter hyperintensities (Webb et al., 2012). To specifically
measure effects in tissue, Makedonov et al. (2013). introduced a “cardiac
pulsatility metric” and a “physiological noise metric” based on EPI power
spectra. Both metrics showed significant differences in white matter with
. M€oller), peter.jezzard@ndcn.ox.ac.uk (P. Jezzard).
he course of the cardiac period.

ry 2018

der the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:oviessmann@mgh.harvard.edu
mailto:moeller@cbs.mpg.de
mailto:peter.jezzard@ndcn.ox.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2018.01.011&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2018.01.011
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neuroimage.2018.01.011
https://doi.org/10.1016/j.neuroimage.2018.01.011


Fig. 1. Exemplar whole brain rs-EPI power spectrum (red) and the power spectra of the cardiac (blue) and respiratory trace (green) from external measurements
(pulse-ox at the finger and a pressure pad on the chest). The external physiological signals are sub-sampled to the EPI TR. Above the low-frequency neurovascular
range (≲0:1 Hz) the EPI spectrum closely matches the physiological spectra. The cardiac spectrum shows aliases of the second and third harmonics of the

dominant cardiac frequencies (according to falias ¼
���ftrue � n⋅fsample

���; n 2 ℕ).
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age, small vessel disease and the latter metric also in Alzheimer's disease
(Makedonov et al., 2016).

Methods to model cardiac signal contributions

Methods to identify physiological signal components can be classified
broadly into those that require external physiological recordings and
those that are data-driven. If external recordings are available it is most
common to perform RETROICOR (Glover et al., 2000). This method
synchronizes the acquisition timing of each fMRI volume to the phase of
the subject's cardiac and respiratory cycle to fit a Fourier series to each
voxel's time series. The Fourier coefficients subsequently serve as re-
gressor maps. This approach is insensitive to signal fluctuations where
there is a variation in cardio-respiratory frequencies, and requires an
accurate synchronisation of scanner triggers and physiological recording
(extra care is needed in the case of SMS/multiband). Data-driven ap-
proaches are dominated by independent component analysis (ICA),
where the 4D data set is decomposed into a set of components, each
consisting of a 3D spatial map of weights and an associated time course
(McKeown et al., 1998; Beckmann et al., 2005). These can subsequently
be sorted into signal with neuronally- or physiologically-related origin by
visual inspection or by using trained classifiers (Salimi-Khorshidi et al.,
2014; Griffanti et al., 2014). All of the above methods produce regressor
maps that could be used to quantify cardiac components. However, it is
not straightforward to decide on a set of components and how to
normalise within and across subjects.

Aim of this work

The availability of analysis frameworks to map and quantify cardiac-
related EPI signals is limited to date. To disentangle respiratory and
cardiac-driven physiological from neurovascular fluctuations, we ac-
quired high-temporal resolution rs-fMRI data with a TR of 328ms, cor-
responding to a Nyquist frequency for the power spectrum of 1.52 Hz.

Fig. 1 shows a representative average whole brain2 BOLD spectrum
from such a scan during the resting state. The externally measured car-
diac and respiratory power spectra (sub-sampled to TR) are displayed in
the same graph. In the low-frequency regime (≲0:1 Hz) the spectrum is
dominated by neurovascular BOLD fluctuations and other low-frequency
sources, most likely blood flow and volume changes due to end-tidal
2 average spectrum, derived from all voxels.
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changes in partial pressure of CO2 (PET-CO2) (Wise et al., 2004), bulk
motion and potentially vasomotor fluctuations (Kiviniemi et al., 2000).
Above this band, the EPI power spectrum appears highly correlated with
the external physiological spectra. Hence, we make the following
assumption: The BOLD power spectrum above 0.2 Hz in each voxel can
be modelled as a linear combination of a constant thermal noise baseline,
plus a cardiac and respiratory power spectrum in a general linear model
(GLM). We propose an iterative dual regression scheme to identify voxels
that exhibit significant cardiac and respiratory-related power. The spatial
extent and strength of these fluctuations can then be assessed. We used
externally recorded cardiac and respiratory traces as initial explanatory
variables. As this method is based on the power spectrum it does not
require slice-timing correction or scanner trigger synchronisation. Res-
piratory traces are usually recorded with a respiratory belt or pad that
measure pressure changes from chest movement during inhalation and
exhalation. These amplitude traces are, however, a sub-optimal repre-
sentation of the multiple factors that affect the EPI times series, from
susceptibility variations with respiratory volume and rate changes (Birn
et al., 2008; Chang and Glover, 2009) as well as related PET-CO2
changes. Similarly, the measurement of pulse-oximetry (pulse-ox) data
do not exactly resemble the cardiac cycle-induced power spectra in the
brain. Even within the brain, in particular between different tissues, we
expect differences in the physiologically-related EPI power contributions.
To approach the “true” cardio-respiratory spectra in each tissue we ran an
iterative dual regression, where the externally measured physiological
spectra serve as the initial “guess”. Additionally, we explore a data-driven
dual regression approach that solely recreates the cardio-respiratory
spectra from the EPI time series data themselves.

We then use this framework to test if the cardiac contributions to the
EPI power spectrum show an age effect in healthy adults. Specifically, we
compare the strength and spatial extent of those contributions in normal
ageing.

Methods

The spectral GLM

Let SðtiÞ be the BOLD time series in a voxel. The power spectrum P of
this signal is calculated as the amplitude of its Fourier-transform (FT)

sðf1…fNÞ ¼ FT ½Sðt1…tNÞ� (1)
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where N is the total number of sampled time points. PðfiÞ spans from f0 ¼
0 Hz to the Nyquist frequency fmax ¼ 1=ð2TRÞ. Above a neuronal regime
frequency threshold (here fmin ¼ 0:2 Hz) this can be represented as a
GLM of a thermal noise baseline, plus a respiratory, Xrðf Þ, and a cardiac
Xcðf Þ, power spectrum. In explicit matrix form this is
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with s ¼ fx; y; zg being the spatial dimensions and α; βr ; βc being the
parameter estimates (PEs) for the noise baseline, respiration and cardiac
spectral power contribution and ε is the residual error. Fig. 2 shows
exemplar PE maps from this GLM. The thermal noise baseline map covers
the entire brain, whereas cardiac and respiratory contributions are sig-
nificant in only a subset of voxels. Respiration is more pronounced in the
periphery of the brain and cardiac fluctuations are dominant in larger
arterial structures and narrow CSF spaces, as expected.

We normalise each voxel's power spectrum between the lower cut-off
frequency of 0.2 Hz and fmax to be independent of any neuronal activity-
Fig. 2. PE maps from an exemplar subject. The noise baseline map α in (a) fills the
map (b) is more pronounced in the periphery and the cardiac map (c) is more prev
displays the average residual error and (e) is a high resolution anatomical referen
olution EPI space).
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induced bias in the power spectra. Explanatory variables are normalised
too:

Xfmax

fmin¼0:2

PðfiÞ ¼
Xfmax

fmin¼0:2

XcðfiÞ ¼
Xfmax

fmin¼0:2

XrðfiÞ ¼ 1: (4)

As such the PEs are inter-dependent. A voxel with no significant
cardio-respiratory fluctuations will have a higher baseline α value than a
voxel with physiological signals. Similarly, two voxels with identical
respiratory-related fluctuations but different levels of cardiac-related
signal variations will not only differ in βc, but also in βr . This
normalisation-induced coupling effect needs to be accounted for in the
statistical tests. However, omitting the normalisation is not a viable op-
tion as it renders a comparison between voxels difficult, and between
subjects impossible, due to the variation in absolute signal levels.
Dual regression

The principle of dual regression has been introduced by Beckmann et
al. and Filippini et al (Beckmann et al., 2009; Filippini et al., 2009) in the
connectivity analysis of rs-fMRI time series using ICA. They used the
group-level derived maps of an ICA component as a set of spatial re-
gressors in a subject-specific GLM to solve for the subject-specific time
series associated with each particular map. The resulting time courses are
then used as explanatory variables in a re-run of the GLM to further refine
the subject-specific maps associated with the particular component.
Here, an equivalent strategy can be applied to the spectral data. Fig. 3
gives a schematic overview of the following steps involved:

1. Run a GLM according to the model in Eq. (3) with the externally
measured physiological spectra as the initial guess of the explanatory
variables.

2. Separate the resulting α; βc and βr maps along the spatial dimension.
Run a second GLM along the frequency dimension (as opposed to the
entire brain as every voxel has a constant thermal noise level. The respiratory
alent around arterial structures and narrow CSF-filled perivascular spaces. (d)
ce T1w image (manually chosen to match the PE maps that are in lower res-



Fig. 3. Iterative dual regression scheme to find brain-specific refined spectra and spatial maps of cardio-respiratory fluctuations.
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spatial dimension in step 1) to find the “brain-specific”, refined
physiological spectra Xc and Xr and noise baseline constant 1. Written
out explicitly this is

2 3
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3. Iterate over steps 1 and 2 using the refined spectra from step 2 until a
convergence criterion is met.

4. The final outputs are the refined spectra and associated refined spatial
maps

n n n n n n
P½s;f � ¼ α½s;1�1½1;f � þ βc½s;1�Xc½1;f � þ βr½s;1�Xr½1;f � þ ε½s;f �
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Data-driven dual regression
Data-driven reconstruction of physiologically-induced fMRI signal

components is a common approach in physiological noise cleaning
methods (CORSICA (Perlbarg et al., 2007), CompCor (Behzadi et al.,
2007), HighCor (Curtis and Menon, 2014) and PHYCAA (Churchill et al.,
2012)). Their obvious advantage is the avoidance of external recordings
as required by informed methods, such as RETROICOR. The dual
regression scheme also allows the reconstruction of the power spectra in
a data-driven manner. A first estimate of the explanatory variables can be
made from the spectrally separable regimes of cardio-respiratory fluc-
tuations. To do this we assign the voxel's EPI spectrum between 0.2 and
0.6 Hz as our initial guess for the respiratory spectrum and above 0.6 Hz
for the cardiac spectrum. The subsequent dual regression iteration allows
any frequency range to be taken up by the refined spectra. Any
higher-order harmonics of respiration-induced signals above 0.6 Hz, as
well as aliases and lower frequency cardiac-induced signals between fmin

and 0.6 Hz, can reappear in the iterated spectra. The ability of the dual
regression approach, in particular the data-driven variant, to detect real
signals was tested through simulations described in the Supplementary
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Material S1. A MATLAB example script with our dual regression function
is available for download here.3

Data and post-processing

MR data

21 subjects, between the ages of 19 and 77, were scanned on a 7T
whole-body scanner (MAGNETOM 7T, Siemens, Erlangen, Germany)
using a 1 channel Tx/32 channel Rx head coil (Nova Medical, Wil-
mington, MA, USA) under institutional ethics approval. Subjects were
recruited from an existing volunteer pool. When included into this pool,
each volunteer received an initial brain MRI at 3T comprising at least a
3D T1-weighted scan and a FLAIR scan, which were screened for acci-
dental findings by an experienced physician. Additional exclusion
criteria were any form of known neurological condition and hyperten-
sion. Subjects had their blood pressure measured on the day of the scan to
confirm their systolic pressure to be below 140mmHg, which we used as
the upper limit for normal blood pressure. Physiological traces were
recorded at 1 kHz throughout the scans using a respiratory pad and a
pulse-ox that was attached to the index finger (BioPac Systems, Goleta,
CA, USA). The traces were later sub-sampled to the TR of the rs-fMRI
scan.

Anatomical scanning for tissue segmentation
An MP2RAGE (Marques et al., 2010) dataset was acquired to create a

T1-weighted (T1w) image. TR ¼ 8250 ms, echo time; TE ¼ 2:46 ms,
inversion times; TI1/TI2 ¼ 1000=3300 ms (non-selective inversion re-
covery), flip angles; FA1/FA2 ¼ 7∘=5∘, nominal resolution¼ 0.8mm
isotropic, field of view; FOVread ¼ 210 mm, FOVphase ¼ 100%, phase
partial Fourier ¼ 6=8, 208 slices, acceleration factor; GRAPPA ¼ 2 (24
reference lines), bandwidth; BW ¼ 240 Hz/px, scan time � 14:5 mins.

rs-fMR
A multiband EPI scan (Moeller et al., 2010; Feinberg et al., 2010) was

acquired with TR ¼ 328 ms, TE ¼ 26 ms, FA ¼ 33∘, nominal resolu-
tion¼ 3.0mm isotropic, FOVread ¼ 200 mm, FOVphase ¼ 100%, phase
partial Fourier ¼ 7=8, 28 slices, multiband factor ¼ 3, GRAPPA ¼ 3 (24
reference lines), BW ¼ 1994 Hz/px, inter-echo spacing; ESP ¼ 0:68 ms,
2200 vol, scan time � 12 mins. The ratio of physiological to thermal
noise increases with field strength and increases approximately linearly
with voxel volume in grey matter (Triantafyllou et al., 2005). Therefore
we chose a rather “low” voxel resolution for 7T of 3mm isotropic.
However, the higher voxel volume leads to greater partial volume effects.
A subsequent age bias, expected from normal aging atrophy, needs to be
accounted for in the statistical analysis (see Analysis section). A separate
field map was acquired for distortion correction.

Post-processing

Tissue segmentation
The T1w scan was run through FSL's fsl_anat pipeline. It performs skull

stripping, bias field correction and calculates partial volume estimate
(PVE) maps for tissue segmentation (Smith et al., 2004). The EPI scan was
registered to the T1w image and the inverse transformation was then
applied to the PVE maps for analysis in functional space. Grey and white
matter masks were created from binarising at a minimum PVE value of
0.7 to reduce partial volume effects.

rs-fMRI
The data were processed through FSL FEAT pipelines (Jenkinson et

al., 2012), including skull stripping, motion correction, field map
correction, registration to the T1w image and MNI standard space and
3 https://github.com/OliviaViessmann/Dual_Regression.
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de-meaning. The data were not spatially smoothed.

Analysis

Dual regression
The post-processed data were read into MATLAB, R2016a (Math-

works, Nattick, USA) to perform the subsequent analysis.4 Dual re-
gressions were run separately in the grey and white matter masks. The
dual regression iteration was stopped once the sum of absolute differ-
ences between two iterated refined spectra was below 0.01

ðPfmax
fi¼0:2

�����XnðfiÞ � Xnþ1ðfiÞ
����� < 0:01Þ. The difference in the spectral ampli-

tudes at the dominant5 cardiac frequency was calculated for the different
approaches: to compare the external and the informed dual-regressed
spectra i.e. Xc;info;WMðfcÞ � Xc;extðfcÞ; to compare the informed and data-
driven dual regressed spectra i.e. Xc;info;WMðfcÞ � Xc;dd;WMðfcÞ; and to
compare between grey and white matter Xc;info;GMðfcÞ � Xc;info;WMðfcÞ. The
analogue calculation was done for the dominant respiratory component
fr . A student's paired t-test was performed for all comparisons. Further we
calculated the overlap of the informed and data-driven PE maps.

Age effects of physiological contributions to EPI power
We calculated the average PE-values in each subject and tissue. To

ensure that we only calculate the average from voxels that indeed show
significant modulation by the cardiac cycle and respiration we thresh-
olded PE maps at a maximum p-value of 0.01. To account for age-related
differences in partial volume effects we included a voxel-wise PVE
weighting in the calculation of the PE averages. Putting this together, the
tissue-specific average PE was calculated as

hβi ¼
X

PVE>0:7

pβ<0:01

β⋅PVE

, X
PVE>0:7

pβ<0:01

PVE; (5)

With β¼ α; βc; βr :
We further calculated the spatial extent, defined as the ratio of

significantly modulated tissue mask volume to total tissue mask volume

R ¼
X

PVE>0:7

pβ<0:01

PVE

, X
PVE>0:7

PVE (6)

With R ¼ Rr ;Rc: (7)

We ran partial correlations between age and hβci; hβri;Rc; and Rr

within both grey and white matter masks using different sets of cova-
riates. To remove the coupling effect between βc and βr (as mentioned in
the Methods section) we included the complementary parameter as a
covariate of no interest. We further used the dominant cardiac frequency
(i.e. cardiac rate) as a covariate for the mean cardiac PE, hβci, and for the
spatial extent, Rc. Similarly, we used the dominant respiratory frequency
as a covariate for the mean respiratory PE, hβri, and for the spatial extent,
Rr . Finally, we included the absolute displacement (calculated by
MCFLIRT as the mean of the root-mean-squared difference between the
transformation matrix of each volume to the reference volume) as a co-
variate for all statistical tests. All of the above analyses were performed
for both approaches - the informed and the data-driven dual regression.
We further split the subjects into a “younger” (19� 29 yrs) and “older”
(46� 77 yrs) group to calculate group averaged cardiac maps in MNI
standard space. Each subject's cardiac map was transformed to MNI space
4 A MATLAB test script with our dual regression function is available for download at
https://github.com/OliviaViessmann/Dual_Regression.

5 the component with the highest power amplitude. i.e. at the cardiac rate.

https://github.com/OliviaViessmann/Dual_Regression
https://github.com/OliviaViessmann/Dual_Regression
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using FSL's applywarp and maps were subsequently averaged.
Comparison with cardiac pulsatility metric

For a comparison with the previous literature we calculated the car-
diac pulsatility metric as proposed by Makedonov et al. (2013). This
metric is defined as the average power in a 0.04 Hz window, centred at
the maximum power component that is taken from the externally
measured cardiac spectrum. We calculated the cardiac pulsatility metric
in all tissue masks twice, once including all voxels that counted towards
the mask (as done in the original paper by Makedonov et al.) and once
only including the voxels that showed a significant cardiac modulation in
the dual regression (p < 0:01). Partial correlation with age, while con-
trolling for the absolute displacement from the motion correction step
and cardiac rate were performed subsequently.

Results

One subject (65 years old) exhibited multiple absolute head dis-
placements of about the voxel dimension (3mm) during the scan and was
therefore excluded from the results.
Dual regression

Fig. 4 shows the percentage differences at the dominant cardio-
respiratory frequencies for the different spectra. The external cardiac
spectrum has systematically lower power at the dominant cardiac fre-
quency compared to the informed dual regressed spectrum in white
matter (p ¼ 1:5⋅10�14, see Fig. 4a). The data-driven dual-regressed car-
diac frequency power is larger compared to the informed dual regressed
one (p ¼ 0:0002, see Fig. 4b). The grey matter spectrum shows a higher
power amplitude than the white matter spectrum (p ¼ 0:01, see Fig. 4c).
The deviation in the respiratory spectra shows a strong inter-subject as
well as within-tissue variability (see Fig. 4d) and f)) and showed no
systematic difference. The spatial overlap between the cardiac PE masks
from the informed and data-driven dual regression was high with 99:6�
0:3% in white matter and 99:7� 0:4% in grey matter, respectively. The
respiratory PE masks overlapped by 98:7� 3:2% in white matter and by
99:8� 0:3% in grey matter.
Fig. 4. Box plots of the percentage power deviation at the dominant frequencies. T
cardiac spectrum and the external pulse-ox spectrum; b) the informed and data-
regressed cardiac spectra in grey and white matter; d) the informed dual-regress
e) the informed and data-driven dual regressed respiratory spectra in white matter
Box plot properties: the red line is the median, the blue box marks the 25%� 75%
values refer to Student's paired t-test.
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Age effects of cardiac frequency contributions to EPI power

We found a significant increase of the spatial extent of the cardiac
cycle-induced fluctuations, Rc, with age in white matter with p-values of
0.002 for both the informed and data-driven dual regression. The scatter
plots for white matter are provided in Fig. 5 (as suggested by the similar
p-values the informed and dual-regressed results are almost identical).
The same statistical test did not reach a significant level in greymatter (p-
values of 0.096 and 0.092).

Initial analysis suggested a decrease of the mean cardiac PE hβci with
age in white matter. This correlation (controlled for hβri, cardiac rate and
absolute motion displacement) has a p-value of 0.026 (informed dual
regression). There was no effect in grey matter (p-values of 0.27 and
0.71). Nevertheless, we suspect that the decrease in white matter is
explained by the age-related increase in the volume of white matter, Rc,
showing significant cardiac modulation. Indeed, a repetition of the par-
tial correlation between hβci and age, whilst further including Rc as a
covariate, led to p-values of 0.59 (informed dual regression). To visualise
the effect of how the increased cardiacmodulation in white matter affects
the average PE, we plotted the group-averaged distributions of cardiac
regressors βc of the younger and older groups in Fig. 6. The plot reveals
how the younger βc distribution (red) forms a subset of the older distri-
bution (green) and βc counts increase towards smaller values for the older
group. Fig. 7 shows three example slices of the group-averaged white
matter cardiac maps in MNI space. In line with the distribution plots in
Fig. 6 the older group shows a wider extent of cardiac modulated voxels
in the white matter tissue.

We did not find any age effect for the respiratory component. Any
correlation between the hβri or Rr and age vanished when the covariates
of no interest (hβci, respiratory rate, absolute displacement) were
controlled for. Similarly, there was no age effect for the thermal noise
baseline, as would be expected.
Comparison with cardiac pulsatility metric

The results of the cardiac pulsatility metric, when calculated from
voxels in a tissue mask, showed an increase in cardiac pulsatility in white
matter with age (p < 0:02). Results in grey matter were not significant.
Within white matter the cardiac pulsatility metric lost significance with a
hese are the differences between a) the informed dual-regressed white matter
driven dual regressed cardiac spectra in white matter; c) the informed dual-
ed white matter respiratory spectrum and the external respiratory spectrum;
; f) the informed dual-regressed respiratory spectra in grey and white matter.
quantiles, the whiskers span the �2:7σ range and red crosses mark outliers. P-



Fig. 5. Rc, the ratio of significantly cardiac modu-
lated white matter volume, against age. Results from
the informed dual regression are in a) and from the
data-driven approach in b). The scatter plots are
almost identical and both regressions yield compa-
rable results The p-values refer to a partial correlation
with age, controlled for the cardiac rate and the
displacement. The r-value is Pearson's correlation
coefficient.

Fig. 6. Average distribution of cardiac PE hβci in the younger (19� 29 ys, red
plot) and older (46� 77 ys, green plot) subjects in white matter. The younger
subjects' distribution is almost a complete subset of the older subject's distri-
bution (the overlap is coloured in brown). The standard error of the mean is
plotted in shaded colour on top of the distributions.
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p-value of 0.08 when the metric was calculated from the voxels that
showed significant cardiac modulation only. Similarly, the metric, when
calculated from all voxels, became non-significant (p¼ 0.37), when the
ratio of significantly cardiac modulated voxels Rc was included in the
statistical test as a covariate.

Discussion

Dual regression analysis

The GLM approach allows the identification of voxels with significant
power contributions from physiological sources and the disentanglement
of the high frequency spectrum into its thermal noise, cardiac and
respiratory-related contributions. The iterative dual regression further
refines this analysis and can be used to create tissue-specific cardiac and
respiratory power spectra. Indeed, we found that these tissue-specific
cardiac spectra differ substantially from the external pulse-ox spec-
trum. Specifically, we found that the dominant cardiac frequency carries
more power than the pulse-ox spectrum. Cardiac cycle-induced fluctua-
tions in the EPI time series are caused by multiple mechanisms, from
inflow effects, partial volume fluctuations to non-rigid brain motion
(Poncelet et al., 1992; Zhong et al., 2009; Soellinger et al., 2009; Viess-
mann et al., 2017). As such, the non-ideal representation of the brain's
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BOLD response to the pulse-ox waveform at the index finger is expected.
Comparing the tissue-specific cardiac spectra we found that the grey
matter spectrum carries more power at the dominant frequency
compared to white matter. There was a substantial mismatch between
the respiratory pad and dual regression spectra. However, this mismatch
was not systematic and showed a strong variability between subjects.
There was also a strong variability between grey and white
matter-specific spectra. In contrast to the cardiac component the respi-
ratory component arises from more diverse sources. These include the
susceptibility changes with air volume changes and respiratory rate,
PET-CO2 fluctuations that alter blood flow velocities and modify the
haemodynamic BOLD response, thoracic pressure changes that influence
venous return flow velocities and further bulk motion. Another expla-
nation for the variability observed is high-frequency resting-state
network activity above 0.1 Hz (Chen and Glover, 2015; Gohel and
Biswal, 2015).

Informed vs. data-driven dual regression

The broadband spectra offered enough degrees of freedom to reach
comparable results for a data-driven dual regression. The data-driven
cardiac spectrum had smaller power at the dominant frequencies,
whereas the respiratory spectra were negligibly different. Spatial PE
maps were in good agreement. The data-driven approach thus offers an
alternative for this power spectrum analysis where external recordings
are not available.

Age effects of cardiac frequency contributions to EPI power

Here, we only found a significant age effect in the white matter mask,
with an increase in the spatial extent of cardiac cycle-related EPI signal
fluctuations with age. The most prominent source of these signal fluc-
tuations is the inflow effect of arterial blood, but further intra-voxel
partial volume exchanges contribute to the signal pulsatility (Viess-
mann et al., 2017). The latter is the more likely effect in white matter,
where blood flow velocities are too slow to produce an inflow effect, but
intra-voxel partial volume fluctuations between tissue, blood and inter-
stitial fluid likely alters the EPI time course over the cardiac cycle. Flow
pulsatility has been reported to increase with age in the larger cerebral
arteries (Tarumi et al., 2014) and it is suspected that the transformation
of the pulsatile flow to a steady blood flow in the microcirculation de-
clines with age-related arterial wall stiffening (O'Rourke and Hashimoto,
2007), which potentially causes more volume pulsatility deeper in the
white matter tissue.

We further calculated the recently proposed cardiac pulsatility metric
by Makedonov et al. (2013). Similar to their report we found an increase
of the metric with age in white matter. However, this effect was



Fig. 7. White matter cardiac βc maps in MNI space. The left
column shows the MNI space slices, the middle column are
the group-averaged cardiac maps for the older group and the
right column are the younger group. Similar to the distribu-
tion of cardiac PEs in Fig. 6, this MNI overlay visualises how
the older group has an increased spatial extent of cardiac
pulsatility in the white matter.
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explained by the age-related spatial increase of voxels that showed sig-
nificant cardiac power modulation. As such, our findings do not support
the theory of an elevated cardiac contribution to the EPI power with age
in white matter, but only an enhancement in the spatial extent of the
effect. Additionally, a cardiac pulsatility metric, based on a fixed spectral
window width, is likely biased to heart rate variability and also to the
shape of the cardiac spectrum. Heart rate variability is thought to
decrease with age (O'Brien et al., 1986) and the cardiac spectral width
should subsequently decrease (i.e. more power is likely transmitted via
fewer frequency components in the older subjects). Our proposed dual
regression analysis is independent of the spectral shape. Further, it ex-
cludes voxels from statistical analysis that do not show significant
physiological EPI power.

Conclusion

We introduced an iterative dual regression methodology that maps
and quantifies physiological contributions to the EPI spectrum. Using this
analysis framework we found a spatial increase of cardiac cycle-induced
power in white matter with age. Changes in cardiac pulsatility in white
matter with healthy aging, small vessel disease and Alzheimer's disease
have been suggested in the literature. However, the number of reports is
small, and here we only studied a small number of subjects. The data-
75
driven dual regression approach might offer the ability to apply similar
analysis on already existing fast rs-fMRI data sets, even when external
physiological recordings are missing.
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