
RESEARCH ARTICLE

Visual habituation in deaf and hearing infants

Claire MonroyID
1,2☯*, Carissa Shafto3☯, Irina Castellanos1,2, Tonya Bergeson4,

Derek Houston1,2

1 Department of Otolaryngology—Head and Neck Surgery, Ohio State University Wexner Medical Center,

Columbus, Ohio, United States of America, 2 Nationwide Children’s Hospital, Columbus, Ohio, United States

of America, 3 Insight Data Science, New York City, New York, United States of America, 4 Department of

Communication Sciences and Disorders, Butler University, Indianapolis, Indiana, United States of America

☯ These authors contributed equally to this work.

* Claire.monroy@osumc.edu

Abstract

Early cognitive development relies on the sensory experiences that infants acquire as they

explore their environment. Atypical experience in one sensory modality from birth may result

in fundamental differences in general cognitive abilities. The primary aim of the current

study was to compare visual habituation in infants with profound hearing loss, prior to receiv-

ing cochlear implants (CIs), and age-matched peers with typical hearing. Two complemen-

tary measures of cognitive function and attention maintenance were assessed: the length

of time to habituate to a visual stimulus, and look-away rate during habituation. Findings

revealed that deaf infants were slower to habituate to a visual stimulus and demonstrated a

lower look-away rate than hearing infants. For deaf infants, habituation measures correlated

with language outcomes on standardized assessments before cochlear implantation. These

findings are consistent with prior evidence suggesting that habituation and look-away rates

reflect efficiency of information processing and may suggest that deaf infants take longer to

process visual stimuli relative to the hearing infants. Taken together, these findings are con-

sistent with the hypothesis that hearing loss early in infancy influences aspects of general

cognitive functioning.

Introduction

Infants learn about the world through their multimodal interactions with objects and other

people in their environment [1–3]. The atypical functioning of one sensory system may result

in widespread effects across multiple sensory modalities and cognitive domains [4,5]. The

auditory system, in particular, is thought to play a pivotal role in shaping the cognitive system

[6]. As a result, researchers have recently begun to investigate the impact of prelingual hearing

loss on cognition from a developmental perspective [7,8].

Several studies have shown that deaf children exhibit poorer performance in multiple non-

verbal cognitive skills compared to their hearing peers. These include visual controlled atten-

tion (e.g., [9]), sequence processing [10,11], and working memory [12]. Other studies have

also reported differences in motor abilities that require cognitive skills, such as in spatial coor-

dination [13] and visual-motor integration skills [14]. Together, these findings suggest that
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general cognitive abilities differ between deaf and hearing children. However, the underlying

sources of these differences are still unknown, as is when the differences emerge during

infancy.

Differences between deaf and hearing individuals may initially arise from cortical cross-

modal re-organization. In the absence of sound input, the auditory cortex responds to visual

and somatosensory input [7,15,16]. Visual cross-modal re-organization has also been demon-

strated in children as young as five years of age [17]. Cross-modal plasticity is thought to arise

via compensatory mechanisms of the remaining senses following a sensory loss. However, evi-

dence for poorer performance in deaf individuals has contributed to sensory deprivation

hypotheses, which stem from the assumption that our sensory systems are intrinsically multi-

modal [1]. Atypical functioning in one modality will therefore have cascading consequences

throughout other sensory modalities. Given the evidence that multimodal sensory processing

underlies cognition (e.g., embodied cognition theories), atypical sensory functioning should

also affect cognitive abilities.

One example, proposed by Smith and colleagues [18], is the hypothesis that hearing loss

causes poorer multimodal sensory integration, which, in turn, causes deficits in visual selective

attention and cognitive control. These authors suggest that multisensory integration is essen-

tial for the development of attentional skills in each individual sensory modality. In support of

this hypothesis, they report data showing that cognitive control and visual selective attention

in deaf children improves following cochlear implantation [18]. Another example of a sensory

deprivation hypothesis is the auditory scaffolding hypothesis, which emphasizes the impor-

tance of auditory input for typical development of cognitive functions [19]. According to this

hypothesis, sound provides experience with naturally sequential input that is vital for develop-

ing general sequence learning abilities. Sequence learning, in turn, influences a variety of other

domain-general cognitive abilities and can have widespread consequences on multiple aspects

of development.

An alternate explanation is that deaf children’s performance on cognitive and attentional

tasks differs from that of hearing children because of their limited language experiences, rather

than general cognitive abilities [20–22]. Early language and communicative experiences are

critical for the typical development of social and cognitive skills [23]. However, the majority of

deaf infants experience mismatched communication exchanges with their hearing parents—

that is, the reciprocal communication pattern in typical parent-infant interactions is disrupted

when the infant’s hearing status does not match that of their parent—and therefore experience

difficulties in language development [24,25]. As a result, poor performance on attentional

tasks could arise from early language delays [21]. This hypothesis is supported by evidence

from Deaf children of Deaf parents (DOD)—children who are exposed to native American

Sign Language (ASL) from birth and achieve typical social and language milestones [26].

In sum, a growing body of work provides evidence for differences in nonverbal cognitive

abilities between deaf and hearing children, but the underlying sources remain unclear. Most

of the research described above targeted preschool or school-age children, but no study has yet

investigated the effects of hearing loss on cognitive abilities in young infants. As a result, little

is known about when these differences between deaf and hearing children emerge.

To address this gap, the current study aimed to compare visual habituation in infants with

prelingual hearing loss and infants with typical hearing. Habituation is one of the earliest cog-

nitive processes to emerge in development (for a review, see [27]). Visual habituation reflects a

basic form of learning: once a stimulus is fully encoded, the infant habituates to it and demon-

strates decreased attention to the stimulus. Researchers have found that the duration of time to

habituate in infancy accounts for up to 30 percent of the variance in cognitive ability at older

ages [28–31]. This indicates that visual habituation relates to the development of more
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complex cognitive abilities. In addition, evidence from prior studies suggests that ‘look-away

rate’—brief gaze shifts away from the target stimulus during habituation—reflects processing

efficiency and attentional control [32]. Higher look-away rates correspond to shorter look

durations, and prior research has found that infants who demonstrate shorter looks during

habituation are faster and more efficient at encoding information [33].

If hearing loss is associated with differences in the early development of general cognitive

abilities, we predicted that deaf infants may require more trials to reach habituation criteria,

have slower habituation rates (the amount of decrease in looking time from one trial to the

next) and have lower look-away rates than hearing infants. To test these predictions, we com-

pared the number of trials to reach the habituation criteria, growth slopes during habituation,

and look-away rate between deaf and hearing infants using a visual habituation-oddity

paradigm [34]. For the deaf infants, we also examined potential relations between visual habit-

uation and performance on standard language assessments before and after cochlear implanta-

tion. In doing so, we aimed to provide new evidence for the relations between hearing loss

and processing of non-auditory stimuli at earlier ages than previously investigated. By testing

young infants prior to the onset of advanced language development, we also aimed to shed

light on the discussion of whether performance differences in deaf children may be due to

domain-general processing or language experiences.

Method

Participants

Deaf infants. Deaf infants were diagnosed with bilateral severe-to-profound sensorineural

hearing loss. All were scheduled to receive a CI or had a CI activated within 24 hours of partici-

pation in this study (Table 1). All parents of deaf infants had self-reported typical hearing. Our

final sample consisted of 23 infants (11 female) who ranged in age from 7.8 to 21.8 months at

the time of testing (M = 13.4, SD = 4.4). This range reflects the typical age range in which con-

genital deafness was identified in our population at the time of testing. For 19 of the infants,

the etiology of hearing loss was unknown. The other four infants had a diagnosis of Mondini

syndrome. Twenty-one of the infants used bilateral hearing aids. Sixteen infants came from

families that used oral communication only and seven infants came from families that also

used a signed language. Two infants had already received a CI: one was activated on the day of

testing and one was activated one day prior to testing. Twenty-three additional deaf infants

were tested (16 female) but excluded from analyses because of fussiness (n = 8), they fell asleep

Table 1. Characteristics of the deaf infants.

M SD Range

Age at Amplification (n = 15�) 4.69 2.50 1.25–10.99

Age at Test 13.38 4.36 7.86–21.84

Age at CI Activation 15.72 4.25 9.87–24.21

Years of Maternal Education 13.96 2.06 12–20

Aided PTA thresholds 79.78 13.91 47–90

Unaided PTA thresholds 107.20 12.92 78.33–120

GDQ standard score 98.71 10.65 75–121

Mental Index composite score 95.77 6.75 82–110

Note: DAYC = General Developmental Quotient from the Developmental Assessment of Young Children.

�The age at amplification was only available for 15 of the 23 infants in our sample because the remaining 7 infants did

not use any form of amplification prior to cochlear implantation.

https://doi.org/10.1371/journal.pone.0209265.t001
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(n = 4), had known cognitive delays (n = 7), or did not meet the habituation criterion (n = 4;

see section 2.3). This study was approved by the IRB committee of Indiana University.

Prior to participation in the study, all deaf infants underwent the typical evaluation for a CI

at Riley Children’s Hospital in Indianapolis, Indiana. This included two standardized cognitive

measures: The General Developmental Quotient from the Developmental Assessment of

Young Children [35] and the Mental Index score from the Bayley Scales of Infant Develop-

ment [36]. Infants with scores below 70 (two standard deviations below the normative mean of

100) on either test were excluded from analyses (n = 7) because it may indicate significant

developmental, neurological, or cognitive delays in addition to hearing loss.

Hearing infants. Each infant in the deaf group was matched to a typically-developing

hearing infant based on chronological age (+/- 1 month). The hearing group consisted of 23

infants (14 female) who ranged in age from 7.6 to 22.7 months (M = 13.4, SD = 4.5) on the

day of testing. Seventeen additional infants were tested (eight female) whose data were not

included in the analyses because they did not complete testing (n = 15) or failed to habituate

(n = 2). All hearing infants passed a newborn hearing screening, had no history of recurrent

acute or chronic otitis media, and had no known developmental delays. Parents of all infants

(deaf and hearing) provided informed written consent prior to inclusion in the study.

Stimuli

The habituation stimuli were two images of unique and colorful unfamiliar objects (Fig 1).

Each infant saw one object during habituation and the other appeared as the novel stimulus

during the test phase. The stimuli were counterbalanced across infants.

We also used an attention-grabber and a pre/post-test stimulus. The attention-grabber was

a silent video of an infant laughing, which was presented in the center of the screen before

each trial to orient infants to the screen. The pre/post-test stimulus was a graphic animation

of a blue and white geometric shape that loomed back and forth. These were unrelated to the

experimental stimuli.

Procedure

The current experiment implemented a visual habituation-oddity paradigm [34]. Unlike stan-

dard habituation procedures, in which infants view equal numbers of novel and familiar sti-

muli following the habituation phase, the oddity paradigm is characterized by presenting four

novel and 10 familiar trials.

Infants were tested in a custom-designed double-walled sound booth. Infants sat on their

caregiver’s lap approximately five feet from a 55-inch wide-aspect screen. Stimuli were dis-

played in the center of the screen at approximate eye level to the infants. The experimenter

observed the infants from a separate room via a hidden, closed-circuit digital camera, and

controlled the experiment using the Habit software package [37] on a Macintosh computer.

Parents were instructed to keep their head down and refrain from interacting with their child

during testing. The experimenter was blind to the stimulus condition and pushed a button on

a computer keyboard whenever the infants’ eyes were oriented toward the stimulus on the

screen.

A pre-test and post-test were conducted immediately before and after the experiment.

Infants were presented with the geometric animation (see Stimuli) to measure their general

visual attention over the course of the experiment. This is a method used in habituation studies

to determine whether decreased looking times in infants are due to habituation to the stimuli

or to general fatigue [38,39].
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Deaf infants’ general cognitive and language skills were assessed using the Bayley Scales of

Infant and Toddler Development [36] and the Preschool Language Scales– 4th Edition (PLS-4;

[40]). These tests were administered by trained professionals at regular intervals following

cochlear implantation as part of their long-term clinical care.

Habituation phase. During the habituation phase, infants observed either Object A or B

over multiple trials. Each habituation trial began with the attention-grabber to orient the

infants to the center of the screen, followed by the object. Trials lasted for a minimum of one

second and a maximum of 20 seconds. A baseline looking time for each infant was calculated

as the mean looking time during the first three habituation trials. The habituation criterion

was defined as three consecutive trials in which the mean looking time to the stimulus was less

than or equal to 50% of the baseline. Mean looking time for sets of three trials were calculated

using a moving window of analysis (e.g., trials 1–3, 2–4, 3–5) rather than a fixed window of

analysis (e.g., trials 1–3, 4–6, 7–9) to maximize the opportunity for infants to reach the habitu-

ation criteria. Stimuli presentation continued until the infant reached the habituation criterion

or up to a maximum of 18 trials [34].

Dishabituation phase. The dishabituation phase began immediately after the habituation

criterion was reached. The experimenter was blind to when the experiment transitioned from

habituation to the dishabituation phase. Like the habituation trials, each trial in this phase

lasted for a minimum of one second and a maximum of 20 seconds. The dishabituation phase

consisted of 14 trials: four novel trials and 10 familiar trials, which were presented in four con-

tinuous blocks. Following the procedure of [34], Block 1 consisted of one novel and one famil-

iar trial, and Blocks 2–4 each consisted of one novel trial and three familiar trials. The familiar

trials were identical to the habituation trials. During the novel trials, infants observed the

object that they had not seen during the habituation phase. To control for spontaneous post-

habituation recovery effects, half of the infants observed the novel object first and the other

half observed the familiar object first.

Data analysis

Habituation measures

Throughout all phases of the experiment, looking time on each trial was calculated as the total

time in seconds that infants were fixated on the visual stimulus. During the habituation phase,

look-away rate was calculated by offline coding of each videotaped session by two independent

coders who were blind to the infant’s hearing status. A look-away was defined as a gaze shift

away from the visual stimuli during a trial that did not end that trial. Because trials only ended

Fig 1. The stimuli used in the habituation task. Object A [left] served as the habituation stimulus for half of the

infants and Object B [right] served as the habituation stimulus for the other half. The remaining object served as the

novel stimulus.

https://doi.org/10.1371/journal.pone.0209265.g001
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when infants looked away for more than one second (or until the 20s maximum) infants could

make brief gaze shifts away from the screen (<1s) which did not end the trial. Look-away rate

per minute was calculated as the total number of looks away from the stimulus during habitua-

tion, divided by the total looking time, and multiplied by 60s [32]. Lastly, we calculated the

difference in mean looking time between familiar and novel trials during the dishabituation

phase to yield a score that reflects infants’ preference for the novel items.

Habituation measures included the number of trials to reach criterion, growth slope over

the first four trials, look-away rate, and dishabituation score. In the literature, the number of

trials to reach habituation and dishabituation—i.e., novelty preference—has been shown to

predict IQ later in development (for a meta-analysis, see [41]). Look-away rate has been shown

to increase across age and to be significantly negatively correlated with habituation length, sug-

gesting that these two indices of attention are tightly coupled during infancy [32,33]. Next, to

examine potential differences in the habituation slopes (i.e., the change in looking time from

one trial to the next), we conducted a growth curve analysis [42] of the first four habituation

trials. We selected only the first four trials because four was the fewest number of trials in

which an infant could reach the habituation criterion. Therefore, all infants experienced at

least four trials, while not all infants experienced five or more trials.

Outcome measures

Receptive and expressive language skills were assessed using the Auditory Comprehension and

Expressive Communication subscales of the PLS-4, which were combined to yield a composite

Total Language score. The PLS-4 measures sound awareness and vocalizations for infants

younger than 12 months, and additionally includes items that measure word production and

object knowledge for infants between 13 and 23 months of age. The Cognitive Scale of the Bay-

ley Scales of Infant and Toddler Development [36] was used to as a measure of general cogni-

tive skills. Because not all infants were assessed at identical post-implantation intervals, scores

were aggregated from each assessment over the first year post-CI. For example, scores from

assessments conducted at 10- and 12-months post-implantation would be averaged together to

yield one post-CI score.

To examine relations between outcome measures and infant habituation behavior, we con-

ducted Pearson bivariate correlations between the raw scores at each assessment year (pre-

and post-CI) and habituation measures. Based on prior research, we hypothesized that longer

time to habituate and lower look-away rates would reflect slower encoding of visual stimuli

and would correspond to more protracted language and cognitive growth. We therefore pre-

dicted that time to habituate and look-away rate during habituation would correlate with

scores on the Bayley Cognitive subscale at the pre-CI assessment, and that they would correlate

with PLS-4 total language scores at pre- and/or post-CI assessments. We adopted a Bonfer-

roni-adjusted alpha level of 0.01 (.05/4) in the evaluation of statistical significance. For thor-

oughness, we report the results of correlations between all habituation measures and outcome

measures at both pre- and post-CI time points.

Results

We conducted a series of linear regression analyses to examine the effects of maternal

education, unaided pure tone averages (PTA), and communication mode at time of test on

habituation measures for the deaf infants. There were no effects of maternal education, com-

munication mode, or unaided PTAs on any variable, ps> .34. Because our sample featured a

large age range that extends beyond the typical range for habituation studies, we first examined

whether results for the habituation measures differed for younger vs. older infants. To do so,
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we created a binary variable ‘Age’, to differentiate infants younger than 12 months vs. infants

older than 12 months. Separate univariate analyses of variance (ANOVAs) were conducted for

each habituation measure, with Hearing status (deaf vs. hearing) and Age (younger than 12

months vs. older than 12 months) as between-group factors. These analyses revealed no signif-

icant main effects or interactions with Age (ps> .18) for the number of habituation trials,

mean habituation trial length, growth slopes, or dishabituation scores (ps> .15). Therefore, we

collapsed across Age in subsequent analyses.

Baseline visual attention

There were no differences in overall looking time between pre- and post- test looking times

within each infant group separately (ps> .25), although some infants did show decreased look-

ing during the post-test compared to the pre-test (n = 8 in the deaf group and n = 8 in the hear-

ing group). There were also no differences between groups on the post-test, p = .46. However,

deaf infants showed significantly longer looking times during the pre-test than hearing infants,

F(1, 45) = 4.91, p = .03, d = .66. See Table 2 for descriptive statistics.

Habituation phase

Deaf infants required a greater number of trials to reach the habituation criterion, F(1, 45) =

4.40, p = .04, d = .63 (Fig 2A), and demonstrated a lower look-away rate than hearing infants,

F(1, 32) = 4.22, p< .05, d = .65 (Fig 2B). Total looking time and look-away rate during habitua-

tion were significantly negatively correlated across groups, r = -.49, p< .01, indicating that

infants with longer looking times during habituation demonstrated lower look-away rates,

consistent with previous studies [30]. The growth curve analysis revealed that the looking time

slopes across the first four habituation trials significantly differed between groups, β11 = -.86,

p = .02 (Fig 2C). Together, these findings suggest the deaf infants habituated more slowly to

the novel object relative to the hearing infants. There were no differences in the proportion of

infants (deaf vs. hearing) who did not habituate to the stimuli, X2 (1, n = 52) = 0.59, p = .44.

Dishabituation phase

During the dishabituation phase, both groups of infants demonstrated a significant novelty

preference, looking longer to the novel stimulus relative to the familiar stimulus across trials:

deaf t(22) = 3.99, p< .01, d = 1.18, hearing t(22) = 2.49, p = .02; d = .73. Thus, although the

deaf infants took longer to habituate to the stimuli, there were no group differences in subse-

quent responsiveness to a novel visual stimulus.

Differences in looking times extended throughout the dishabituation phase. Deaf infants

continued to look significantly longer than the hearing infants did across the novel and famil-

iar trials, F(1, 45) = 4.75, p = .04, d = .65. Together, these findings reveal that deaf infants are

slower to habituate to a visual stimulus and show lower look-away rates during habituation

Table 2. Descriptive statistics.

# Habituation

Trials

Look-away Rate Mean Looking Time

All Habituation Trials Novel Test Trials Familiar Test Trials All Test Trials

M SD range M SD range M SD range M SD range M SD range M SD range

Deaf infants 8.52 3.13 5–17 6.19 4.22 .7–13.68 69.63 47.80 31.7–200.3 7.79 3.60 2.9–16.0 5.92 3.23 1.7–13.6 90.37 44.51 36.8–193.6

Hearing infants 6.78 2.37 4–15 9.93 6.70 0–26.32 41.68 26.02 16–104.4 5.57 4.25 0.9–15.6 4.15 2.17 1.2–8.1 63.78 36.98 15.3–140.4

F statistic 4.40 4.22 6.06 1.91 2.18 2.20

p value .04 .05 .02 .06 .03 .03

https://doi.org/10.1371/journal.pone.0209265.t002
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Fig 2. Visual habituation in deaf and hearing infants. [A] Deaf infants required more trials to reach the habituation

criterion and [B] demonstrated lower look-away rates across habituation trials than their age-matched hearing peers.

[C] Deaf infants demonstrated a shallower slope on the first four habituation trials. Note that data points after the

fourth habituation trial are based on increasingly fewer infants and a different number of infants per group and should

thus be interpreted with caution.

https://doi.org/10.1371/journal.pone.0209265.g002
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than hearing infants, suggesting that hearing loss may be associated with differences in basic

cognitive processing of visual stimuli during infancy.

Outcome measures

Bivariate correlations between habituation measures and scores on the cognitive and language

outcome measures for the deaf group are summarized in Table 3. The number of trials to

habituate was significantly correlated with raw scores on the PLS-4 Total Language scale at the

pre-implantation time point, r = -.45, p = .011, n = 20. Deaf infants who habituated faster to a

visual stimulus displayed higher language scores (Fig 3). Look-away rate, growth slopes, and

dishabituation scores did not correlate with any outcome measures pre- or post-implantation,

ps> .29. There were no other significant correlations between habituation looking time or

look-away rate and outcome measures, ps> .12 (Table 3).

Table 3. Pearson correlations between deaf infants’ visual habituation, cognitive, and language scores.

Outcome measure Habituation Measure

N # Trials to Reach Habituation Growth Slopes Look Away Rate Dishabituation Score

Bayley Pre-CI 18 -0.34 0.11 0.10 0.18

Bayley Post-CI Year 1 18 -0.32 -0.01 0.17 0.02

PLS-4 Pre-CI Total Language Score 20 -0.56�� -0.46 0.25 0.25

PLS-4 Post-CI Year 1 Total Language Score 18 -0.27 -0.09 0.05 0.21

Note:

��p < 0.01 level. Outcome data were not available for all participants at every time point. This is common in clinical assessment batteries as children are subjected to

extensive testing and sometimes cannot complete all assessments.

https://doi.org/10.1371/journal.pone.0209265.t003

Fig 3. Relations between the number of trials to habituate and language scores prior to cochlear implantation.

https://doi.org/10.1371/journal.pone.0209265.g003
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Discussion

In the current study, we examined visual habituation and look-away rates in deaf and hearing

infants to investigate whether the atypical sensory environment resulting from deafness is

related to general processing of visual stimuli. Our data are the first to demonstrate differences

in responses to visual stimuli between prelingually deaf infants and hearing infants. Specifi-

cally, deaf infants required more trials to habituate, showed a slower habituation rate, and

demonstrated lower look-away rates during habituation to a visual stimulus than hearing

infants. Deaf infants did not simply look longer overall throughout the experiment, as there

were no differences in looking times during the first habituation trial or the dishabituation

phase trials. These differences were also not likely to be due to additional impairments, as

infants with a known condition that could affect cognitive development (e.g., microcephaly)

were excluded from the current study. For the deaf infants, we also found that time to habitu-

ate correlated with language scores at the time of testing, indicating that infants who habitu-

ated more slowly had lower language levels. Together, these findings reveal differences in

general processing of non-auditory visual information between deaf and hearing infants, at a

younger age than has previously been tested. They also illustrate that prelingual hearing loss

results in consequences that extend beyond the auditory system.

Visual habituation in deaf infants

Our findings suggest that deaf infants’ visual processing is slower or less efficient than that of

hearing infants. Habituation is thought to reflect memory and the speed at which infants

encode a stimulus, which are predictive of later cognitive and language skills [27]. Look-away

rates are a complementary measure of visual processing abilities, and have been demonstrated

to increase across age in hearing infants as their processing efficiency increases [32]. It is

important to note that all the deaf infants in our study did eventually habituate (and that there

were no differences between groups in the number of infants who did not habituate) and dis-

played recognition of the novel stimulus during the dishabituation phase. This indicates that

their visual habituation abilities are intact but are slower relative to the hearing infants.

Another possible interpretation of our results is that longer looking times and lower look-

away rates reflect differences in sustained attention, rather than efficiency of information pro-

cessing. In Quittner et a. (2012), deaf children with CIs showed faster improvement in visual

attention skills—specifically, perceptual sensitivity and attentional control—over the course of

a year relative to deaf children who used hearing aids [43]. The authors proposed that, in the

absence of sound, deaf children learn to distribute their visual attention to their surroundings

more than hearing children do. This may be because deaf individuals rely on vision to simulta-

neously focus on specific tasks and to monitor the environment (e.g., the ‘division of labor

hypothesis’ [18]). In the current study, the stimuli presented to infants were complex objects

with multiple features and colors. In accordance with this hypothesis, deaf infants may have

displayed longer looking and slower habituate rates as a result of greater sustained attention to

the objects.

The ability to sustain visual attention could be an advantage for the deaf infants rather than

a deficit, as they may be acquiring richer representations of the visual stimuli than their hear-

ing peers may. However, our data show that infants with fewer trials to habituate scored higher

on standardized language assessments, suggesting that longer habituation times do not corre-

spond to better spoken communication abilities. Given the established links between the

development of attention and oral communication skills, our findings do not support the

hypothesis that slower habituation reflects enhanced attention to the stimuli. Moreover, a

review of the past 30 years of research on the visual abilities of deaf individuals suggests that
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their superior performance on visual tasks is best characterized by enhanced reactivity to visual

events, rather than enhanced perceptual representations [44]. However, response speed advan-

tages have only been reported in older children and adults; to our knowledge, there have been

no reports of such evidence in infants or young children. On the contrary, studies on visual

attention in infancy provide consistent evidence that younger deaf children exhibit lower per-

formance levels on standard tasks of visual attention [9,45,46]. Our findings add to this body

of work by suggesting that deaf infants exhibit less attentional control (lower look-away rates;

[33]) and slower encoding [27] than their hearing counterparts.

Our findings are also consistent with prior evidence that habituation length and look-away

rates during habituation are complimentary measures of processing efficiency [32]. Research

has shown that typically-developing hearing infants who are slower to habituate to visual sti-

muli also demonstrate poorer cognitive outcomes [29–31,47]. In the current study, deaf infants

who required more trials to habituate and had lower look-away rates scored lower on spoken

language assessments than infants who took fewer trials to habituate and had higher look-

away rates. Together, these findings suggest that slower habituation and lower look-away rates

reflect less efficient visual processing.

Possible mechanisms

One explanation for slower visual processing in the deaf infants is their limited auditory expe-

riences. Limited exposure to auditory input from birth has been proposed to result in delays in

general cognitive development [19]. According to the auditory scaffolding hypothesis, a possi-

ble underlying reason is that the acoustic signal provides exposure to temporal sequences of

events, which is vital for the development of general processing abilities. Consistent with this

hypothesis, our findings suggest that deaf infants’ processing of visual stimuli is altered relative

to their hearing peers, possibly due to their limited acoustic experiences.

An alternative explanation is that deaf infants’ cognitive development may be protracted

because of delayed language development. Language and cognitive skills develop interdepen-

dently and likely share common underlying mechanisms in both deaf and hearing children

[48,49]. Consistent with this view, our findings show that visual habituation and language

scores are correlated at the time of testing, suggesting that these abilities are already coupled

in our sample of infants. Recent evidence has shown that early parent-child interactions

between deaf infants and their hearing parents are influenced by their mismatch in commu-

nication modes, typically with negative consequences [50,51]. The early language environ-

ment of the deaf infants in our study was likely to be impoverished relative to that of their

hearing peers, possibly reducing the opportunities for cognitive abilities to develop. Interest-

ingly, we did not find any effects of communication mode on habituation measures, suggest-

ing that those infants with ASL experience (who presumably have more language exposure

than infants from oral-only families prior to cochlear implantation) did not demonstrate

shorter habituation times than infants with no sign experience. However, given that there

were only seven infants with sign experience in our sample, this should be a target for future

research.

It remains difficult to untangle whether differences in visual processing in deaf infants

and children result from delays in cognitive function, language exposure, or both. In prior

research, one potential confound is that some of the tasks used to examine cognitive perfor-

mance in deaf and hearing individuals may rely on verbal rehearsal strategies, therefore creat-

ing a natural disadvantage for the deaf group [52]. The current study is therefore unique, in

that visual habituation requires no verbal rehearsal strategies. Therefore, differences in perfor-

mance between deaf and hearing groups cannot be attributed to the task requirements.
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To isolate the contribution of auditory experience to visual attention, independent of lan-

guage, Dye & Hauser [21] conducted a study using the ‘continuous performance test’ with

DOD children and hearing children. Their findings revealed that younger deaf children (6–8

years old) performed poorly on this selective attention task, but there were no differences

between older (9–13 years) deaf and hearing children. All deaf children exhibited weaker cog-

nitive control: their performance was more likely to be classified as abnormal based on pub-

lished age norms. This finding suggests that the deaf children—who had all experienced a

natural language from birth—still show differences in cognitive control relative to hearing chil-

dren. These cognitive differences, when combined with additional language delays experi-

enced by deaf infants born to hearing parents, may explain the wide range of nonverbal skills

in which deaf children underperform compared to their hearing peers. Longitudinal research

that addresses the early effects of communicative interactions and the development of early

cognitive abilities has the potential to shed light on the complex interactions between language

and cognition in this population.

One additional possibility to consider is that structural-functional changes in the brain

could underlie differences in processing speed or efficiency. As described in the introduction,

deprivation in one sensory modality results in cross-modal plasticity throughout the brain. In

the case of hearing loss, there is evidence to suggest that these cross-modal changes—in which

the auditory cortex assumes some of the functions of visual cortices—can result in both adap-

tive gains but also maladaptive outcomes [4]. For instance, speech performance outcomes in

deaf CI recipients are poorer when they exhibit a greater degree of cross-modal cortical reorga-

nization [53,54]. In deaf infants, patterns of increased connectivity between auditory and

visual cortical regions could result in a more distributed functional network, which could ini-

tially delay processing speed. This interpretation is speculative, though it is consistent with cur-

rent evidence and represents an interesting avenue for future research.

One limitation of the current study is the relatively wide age range of our sample, which is a

common characteristic of conducting research with deaf infants prior to cochlear implanta-

tion. Because of this wide age range, the mechanisms driving visual habituation behaviors

could potentially shift. However, our aim was to examine the difference in behavioral

responses to unimodal visual stimuli between deaf and hearing infants, rather than to make

claims about the potential physiological mechanisms underlying visual habituation. Future

work should replicate these findings with a narrower age range.

Conclusion

This study reveals differences in visual habituation, a building block of cognitive develop-

ment, between deaf and hearing infants. Deaf infants required a greater number of trials

to habituate, showed slower rates of habituation, and had lower look-away rates during

habituation than age-matched hearing infants. These data provide converging evidence for

slower or less efficient processing of the visual stimuli than their hearing counterparts. In

addition, these measures of visual habituation correlated with the deaf infants’ performance

on standardized tests of language skills. Together, our findings provide the first evidence

to suggest that differences in processing visual stimuli between deaf and hearing children

emerge early in infancy, prior to advanced language acquisition. Our findings also support

the notion that early differences in visual information processing may explain some of the

variability in deaf children’s neurocognitive development. Given the predictive relationship

between habituation behaviors in infancy and later cognitive development [29,47], it is espe-

cially important for future research to investigate the effects of hearing loss on cognitive

development.
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