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Abstract: A large number of people suffer from alopecia or hair loss worldwide. Drug-based
therapies using minoxidil and finasteride for the treatment of alopecia are available, but they have
shown various side effects in patients. Thus, the use of new therapeutic approaches using bioactive
products to reduce the risk of anti-hair-loss medications has been emphasized. Natural products have
been used since ancient times and have been proven safe, with few side effects. Several studies have
demonstrated the use of plants and their extracts to promote hair growth. Moreover, commercial
products based on these natural ingredients have been developed for the treatment of alopecia.
Several clinical, animal, and cell-based studies have been conducted to determine the anti-alopecia
effects of plant-derived biochemicals. This review is a collective study of phytochemicals with anti-
alopecia effects, focusing mainly on the mechanisms underlying their hair-growth-promoting effects.
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1. Introduction

Hair affects the impacts of thermoregulation, physical protection, and social inter-
action [1]. Hair disorders, which include alopecia, anagen effluvium, telogen effluvium,
hirsutism, hypertrichosis, and miniaturization, negatively affect health [2]. Alopecia is
defined as a decrease in hair density and can be considered a common symptom of several
pathologies, such as inflammation and infection [3]. Alopecia can be a sign of a systemic
disease, including thyroid dysfunction, systemic lupus erythematosus, trichotillomania,
or infection [3]. Although alopecia is a non-life-threatening condition, it can affect the
esthetics, social activities, and quality of life of individuals [4]. Hair growth is the result of
the growth and differentiation of hair follicles (HFs) comprising dermal papilla cells (DPCs)
and epithelial cells. The formation of HF involves four cycles: anagen (growth), catagen
(regression), telogen (rest), and exogen (shedding). The hair cycle transition is controlled
by several growth stimulatory or inhibitory factors [5]. Alopecia can be categorized into
several classes. Androgenetic alopecia, the most common form of alopecia, is a male or
female pattern hair loss that is characterized by a progressive loss of hair diameter, length,
and pigmentation. It is caused by genetic factors and inadequate androgen signaling [6].
Androgenetic alopecia also worsens conditions such as drug side effects, acute stressors,
and weight loss [6]. Alopecia areata is an autoimmune disorder (similar disorders include
thyroid disease, celiac disease, vitiligo, and atopy) caused by lymphocytes that attack the
bulb of HFs in the anagen phase [7]. This disease affects up to 2% of the population and
commonly occurs during childhood or adolescence [7]. Patients with alopecia areata may
experience sudden hair loss [8]. Telogen effluvium refers to the loss of telogen hair due to
abnormal hair circulation, and generally 100–200 telogen hairs are lost every day [9]. The
causes of acute telogen effluvium (in which hair loss lasts less than six months) includes
systemic disease, drugs, fever, psychological/emotional stress, weight loss, childbirth, iron
and vitamin D deficiency, inflammatory scalp disorders, interruption of oral contraceptives,
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and iron deficiency [10]. Primary cicatricial alopecia, known as scarring alopecia, encom-
passes hair loss disorders in which the hair follicle is irreversibly destroyed [11]. Secondary
cicatricial alopecia occurs from irreversible loss of hair follicles due to thermal burns,
metastatic cancer, trauma, or radiation [11]. To date, the US Food and Drug Administration
(FDA)-approved non-surgical treatment alternatives for hair loss include drugs such as
minoxidil and finasteride. Minoxidil is converted to minoxidil sulfate by sulfotransferase
present in the scalp, which promotes the growth of hair follicular cells and reduces hair
loss [12]. Finasteride is a 5α-reductase inhibitor that blocks the conversion of testosterone
to dihydrotestosterone (DHT), which causes androgenetic alopecia [13]. However, these
drugs have side effects in patients. Thus, it is necessary to identify new, safe, and effective
drugs to treat hair loss.

Recently, interest in hair loss prevention using natural products or their extracts has
increased. Products currently marketed as using natural ingredients include those used
to prevent hair loss in the form of hair tonics, hair growth promoters, hair conditioners,
and hair cleansers [14]. Plants and their extracts contain multiple components, such
as polyphenols, flavonoids, terpenoids, carotenoids, and fatty acids, which support the
maintenance of HF health [15]. Plant-based formulations have the advantage of being easy
to acquire from low-cost materials, and their non-toxic effects have been noted since ancient
times. Although natural products are widely used to prevent hair loss, little is known
about their exact mechanisms of action. The present study is a review of the molecular
mechanisms underlying the hair-promoting effects of various herbs and their constituents.

2. Biochemical Action of Herbs and Their Extracts

Various phytochemicals and their active constituents have been shown to promote
hair growth in vivo and in vitro. Table 1 provides an overview of bioactive components
from plants. A summary of the potential mechanisms of action on hair growth using plants
is presented in Figure 1 and Table 2.

Table 1. Bioactive components from plants with hair-growth-promoting therapeutic effects.

Botanical Name Parts Used Bioactive Components Type of Extract Ref

Citrus limon L., Fragaria
ananassa L., Secale cereale L. - Sinapic acid - [16]

Epimedium spp. Leaves Icariin - [17]

Geranium sibiricum L. Whole plant Corilagin, gallic acid Methanolic extract [18]

Olea europaea L. Unprocessed olive
fruit and leaves Oleuropein - [19]

Camellia sinensis, Coffea ara
bica - Caffeine - [20]

Carthamus tinctorius L. Floret Hydroxysafflor yellow A Ethanolic extract [21]

Panax ginseng Mayer Whole plant Linoleic acid, β-sitosterol,
bicyclo(10.1.0)tridec-1-ene

Supercritical fluid
extraction system [22]

Hottuynia cordata Thunb. - Quercitrin - [23]

Sophora flavescens Aiton Roots L-maackiain, medicarpin Methanolic extract [24]

Illicium anisatum L., Illicium
verum Hook. f. - Shikimic acid - [25]

Hordeum vulgare L. var.
distichon Alefeld Seed Procyanidin B-3 Aceton extract [26]

Panax ginseng Mayer - Ginsenoside Rb1 - [27]

Nelumbinis semen Whole plant Anthraquinone, flavonoids, tannin,
saponins Ethanolic extract [28]
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Table 1. Cont.

Botanical Name Parts Used Bioactive Components Type of Extract Ref

Chamaecyparis obtusa - α-Terpinyl acetate, sabinene, isobornyl
acetate, limonene Oil [29]

Polygonum multiflorum Roots 2,3,5,4′-Tetrahydroxystilbene2-O-β-
D-glucoside, emodin Ethanolic extract [30]

Alnus sibirica Fisch. ex Turcz Whole plant Oregonin Ethanolic extract [31]

Malva verticillate Seed Myristoleic acid Ethanolic extract [32]

Malva verticillate Seed Linoleic acid Ethanolic extract [33]

Magnolia officinalis - Liposomal honokiol - [34]

Angelica gigas Nakai Roots Decursin Ethanolic extract [35]

Caesalpinia sappan L. - 3-Deoxysappanchalcone - [36]

Broussonetia papyrifera Whole plant
7-hydroxycoumarin, protocatechuate
acid, ferulic acid, protocatechuic acid

and epicatechin
Ethanolic extract [37]

Panax ginseng Mayer Whole plant Linoleic acid, β-sitosterol Supercritical fluid
extraction system [38]

Thuja orientalis Leaves Kaempferol, isoquercetin Hot water extract [39]

Ipomoea batatas L. - 3,4,5-tri-O-caffeoylquinic acid - [40]

Ishige sinicola Whole plant Octaphlorethol A Ethanolic extract [41]

Prunus mira Koehne Nut oil α-tocopherol, vitamin E β-sitosterol,
linoleic acid, oleic acid Pressing the seeds [42]

Saussurea lappa Clarke - Costunolide - [43]

Cornus officinalis - Morroniside - [44]

Anemarrhena asphodeloides - Timosaponin BII - [45]

Salvia plebeia R. Br. Whole plant
Flavonoids, monoterpenoids,

sesquiterpenoids, diterpenoids,
triterpenes, phenolic acids

Methanolic extract [46]

Undariopsis peterseniana Whole plant Apo-9′-fucoxanthinone Ethanolic extract [47]

Pueraria thomsonii Whole plant Soyasaponin I, kaikasaponin III Ethanolic extract [48]

Platycladus orientalis (L.) Franco Leaves

Myricitrin, isoquercitrin, quercitrin,
myricetin, afzelin, quercetin,
kaempferol, amentoflavone,

hinokiflavone

Ethanolic extract,
aqueous extract [49]

Panax ginseng Rhizome Ginsenoside Ro Ethanolic extract [50]

Polygonum multiforum
Thunb. Leaves Physcion - [51]

Rosmarinus officinalis Leaves 12-methoxycarnosic acid Ethanolic extract [52]

Avicennia marina Heartwood Avicequinone C Methanolic extract [53]

Ecklonia cava Whole plant Dieckol Enzymatic hydrolysis
reaction [54]

Camellia sinensis L. Ktze. - Epigallocatechin-3-Gallate - [55]

Panax ginseng Mayer Roots Ginsenosides Ethanolic extract [56]

Sabal serrulatum - Fatty acids, phytosterols - [57]
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Figure 1. Interactions between herbs and their mechanisms for hair-growth-promoting efficacies.

2.1. Growth Factors

Numerous growth factors were expressed in the HFs. Fibroblast growth factor (FGF),
vascular endothelial growth factor (VEGF), keratinocyte growth factor (KGF), insulin-like
growth factor (IGF), epidermal growth factor (EGF), and hepatocyte growth factor (HGF)
act as hair growth stimulators, and transforming growth factor-β1 (TGF-β1) is a hair
growth suppressor [6]. VEGF is secreted by DPCs and is involved in hair growth through
the formation of new blood vessels around follicles [58,59]. VEGF expression is decreased
in HFs during alopecia compared to that in normal follicles [59]. IGF-1 signaling has been
reported to influence HF development and tissue renewal [60]. IGF-1 prevents HFs from
entering the catagen phase [61,62]. The FGF family consists of 22 members and regulates
a variety of biological functions [63]. Basic FGF (FGF-2) and KGF-2 (FGF-10) stimulate
HF growth [64]. KGF mediates growth, development, and differentiation of HF [6]. HGF
is involved in the stimulation of mouse follicle growth and HF elongation in vitro and
in vivo [65,66]. TGF-β1 and its receptors are involved in the catagen phase of the hair cycle
and promote tissue remodeling and apoptosis [67].
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Table 2. Studies of hair-growth-promoting effects using natural products or their extracts.

Natural Products Experimental Model Treatment Effects Ref

Sinapic acid Human
hair-follicle-derived papilla cells 10, 50, and 100 µM Induction of cell proliferation and cell cycle progression; activation of Akt and

GSK-3β/β-catenin signaling; increased expression of VEGF and IGF-1 [16]

Icariin

Cultured
vibrissae follicles 10 and 20 µM Induction of hair shaft elongation and prolonged anagen phase; increase of IGF-1

production and expression

[17]

Cultured
dermal papilla cells 10 and 20 µM

C57BL/6 mice 0.01

Geranium sibiricum
extract

Human
dermal papilla cells 9.8–156.3 ppm Induction of cell proliferation and migration; induced expression of Ki-67 protein,

HGF, and VEGF in vitro; reduced number of mast cells and the expression of
TGF-β1 in mouse skin

[18]

C57BL/6 mice 1000 ppm

Oleuropein

Human follicle
dermal papilla cells 10, 20, and 50 µM

Induction of cell proliferation; increase of LEF1 and cyclin D1 mRNA expression
and β-catenin protein expression in vitro; induction of anagenic hair growth and

Wnt/β-catenin pathway in vivo; upregulation of IGF-1, KGF, HGF, and VEGF
gene expression in mice

[19]

C57BL/6 mice 0.4 mg/mouse/day

Caffeine

Cultured
hair follicles

Human
hair-follicle-derived outer root
sheath keratinocytes (ORSKs)

0.0005%
0.00001, 0.0001, 0.001%

Increase of hair shaft elongation, anagen duration; increase of hair matrix
keratinocyte proliferation and IGF-1 expression in hair follicles; increase of cell
proliferation and IGF-1 expression in RSKs; inhibited apoptosis/necrosis and

TGF-β2 protein secretion in RSKs

[20]

Carthamus
Tinctorius

Floret extract

Human
keratinocytes

(HaCaT)
0.005–1.250 mg/mL Induction of cell proliferation in dermal papilla

cells and HaCaT increase of VEGF, KGF; de
crease of TGF-β1; increase of length of

cultured hair follicles and stimulated the
growth of hair in mice

[21]

Human hair
follicle-derived

papilla cells
0.005-1.250 mg/mL

Cultured hair follicles 50, 100 and 200 µg/mL

Red Ginseng Oil C57BL/6 mice 10%
Increase of hair growth; upregulated β-catenin, Lef-1, Sonic hedgehog,

Smoothened, Gli-1, Cyclin D1, and Cyclin E expression; reduced the protein level
of TGF-β; enhanced the expression of Bcl-2

[22]

Quercitrin
Human dermal

papilla cells
Cultured hair follicles

0.1, 1, 10, 100 nM and
1 µM

5 and 10 µM

Enhanced the cell viability and cellular energy metabolism; increase of expression
of Bcl-2 and Ki67; upregulation of bFGF, KGF, PDGF-AA and VEGF; stimulated

hair shaft growth in cultured hair follicles
[23]
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Table 2. Cont.

Natural Products Experimental Model Treatment Effects Ref

Sophora
flavescens

extract

Cultured
dermal papilla cells 10−6, 10−5 and 10−4% Induction of hair growth in vivo; increase of IGF-1 and KGF in vitro; decrease of

5a-reductase activity in vivo

[24]

Sprague-Dawley rats 0.001, 0.01 and 0.01%
C57BL/6 mice 1%

Shikimic acid

Human follicle
dermal papilla cells

Human outer root sheath
keratinocytes
C57BL/6 mice

Cultured
hair follicles

0.1, 1, 10, 100 µM and 1 mM
1 and 10 µM

10 and 100 mM
1 and 10 µM

Induction of hair growth in vivo; increase of
Cell proliferation in hDPCs and hORSCs; en
hanced hair shaft elongation in cultured hair
follicles; increased c-myc, HGF, KGF, VEGF,

p38 MAPK and CREB

[25]

Procyanidin B-3
Cultured hair epithelial cells from

C3H/HeNCrj mice 0.1–100 µg/mL Increased hair-growing activity in vitro and anagen-inducing activity in vivo;
potential inhibitory effect of TGF-β1

[26]

C3H mice 200 µL/day/mouse

Ginsenoside Rb1
Cultured mink hair follicles 5 and 10 µg/mL Increase of the growth of hair follicles; upregulated the expression levels of

VEGF-A and VEGF-R2, while attenuated the TGF-β1 expression; activation of
PI3K/AKT/GSK-3β signaling pathway in hair follicles and DPCs.

[27]
Cultured dermal

papilla cells 10 µg/mL

Nelumbinis Semen
extract

Human follicle
dermal papilla cells 15.63–125 ppm Enhanced cell proliferation and migration; high

mRNA expression of VEGF and IGF-1; low TGF-
β1 mRNA expression

[28]

C57BL/6 mice 1000 ppm

Chamaecyparisobtusa
oil

C57BL/6 mice 3%
Increase of ALP and γ-GT activities in the skin tissue; increase of IGF-1 mRNA
expression; increase of VEGF and decrease of EGF expression in the skin tissue;

increase of SCF expression

[29]

Polygonum
multiflorum

extract

Human follicle
dermal papilla cells

Cultured hair follicles

10 and 100 µg/mL
2, 20, and 50 µg/mL

Increased cell viability and mitochondrial activity; increase of Bcl-2 and decrease of
BAD and DKK-1; increase of IGFBP2, PDGF and VEGF; prolonged the anagen of

human hair follicles
[30]

Alnus
sibirica Fisch.

ex Turcz

Human follicle
dermal papilla cells 22, 66 and 200 µg/mL Inhibition of apoptosis; increased IGF-1 and decreased TGF-β1 expression;

decreased DHT production [31]

Malva verticillata
seed extracts

Human follicle
dermal papilla cells 10–100 µg/mL Increased Wnt reporter activity; increased β-catenin level; increased IGF-1, KGF,

VEGF and HGF [32]
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Table 2. Cont.

Natural Products Experimental Model Treatment Effects Ref

Linoleic acid in
Malva verticillate

seed

Human follicle
dermal papilla cells 3, 10 and 30 µg/mL Activated Wnt/β-catenin signaling; induced cell growth by increasing the

expression of cyclin D1 and CDK2; increased VEGF, IGF-1, HGF and KGF;
inhibited DKK-1

[33]

Liposomal
honokiol

C57BL/6 mice 20 mg/mL

Promoted hair regrowth; accelerated the hair
growth cycle by up regulating the Wnt3a/β-

catenin signaling pathway; inhibited the
TGF-β1/p-smad2 signaling pathway during the anagen stage

[34]

Decursin,
Angelica

Gigas Nakai
root extract

C57BL/6 mice 2% Induction of hair growth; decrease of TNF-and
IL-1β; increase of IL-4 and IL-13

[35]

3-Deoxysappanchalcone
Human follicle

dermal papilla cells
C57BL/6 mice

0.1–10 µM
Increased cell proliferation; increase of β-catenin and Tcf; increase of IL-6-induced
phosphorylation and subsequent transactivation of STAT3, thereby increasing the
expression of Cdk4, FGF and VEGF; promoted the anagen phase of hair growth in

C57BL/6 mice

[36]

3 mM

Broussonetia
papyrifera

Human follicle
dermal papilla cells

NIH3T3 cells
Clinical Study

1.25–40 µg/mL
1–40 µg/mL

Korean males and females

Promoted cell proliferation; enhanced TCF/LEF-luciferase activity and increased
the level of β-catenin protein; inhibited IL4-induced STAT6 phosphorylation;

increased hair count after using the hair tonic for 12 weeks
[37]

Red Ginseng Oil C57BL/6 mice
SKH-1 hairless mice

50%
1%

Induction of hair growth; upregulated expression of β-catenin, phospho-GSK3β,
Lef-1, Gli-1, Smoothened, Cyclin D1, Cyclin E, IGF-1 and VEGF; protective effect

against UVC-induced skin damage in SKH-1 hairless mice by inhibiting
inflammation and apoptosis

[38]

Thuja orientalis C57BL/6 mice 5.05 mg/cm2/day
Induction of hair growth including hair number and size of hair follicles; induction

of β-catenin and Shh protein expression [39]

3,4,5-tri-O-
caffeoylquinic

acid

Human follicle
dermal papilla cells

C3H mice

5, 10, 15 and 25 µM
1%

Increase of β-catenin in vitro and in vivo; upregulation in hair growth-associated
genes using microarray [40]

Ishige sinicola

Cultured rat
vibrissa follicles
C57BL/6 mice

Sprague-Dawley rats

1, 10, and 100 µg/mL
0.1, 1, and 10 µg/mL
0.1, 1, and 10 µg/mL

Induction of anagen progression of the hair
shaft; inhibition of 5α-reductase activity; in
crease of cell proliferation; increase of phos
pho-GSK3β, β-catenin, Cyclin E, and CDK2,

and decrease of p27kip1

[41]
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Table 2. Cont.

Natural Products Experimental Model Treatment Effects Ref

Prunus
mira Koehne

C57BL/6 mice 15.06, 30.13, and 60.26 mg/cm2/day Increase of hair growth; increase of Wnt 10b, β-catenin, and GSK-3β [42]
KM mice 0.47–60.26 mg/cm2/day

Costunolide
Human follicle

dermal papilla cells
C57BL/6 mice

0.1, 0.3, 1, and 3 µM
0.3 µM

Increase of cell proliferation in vitro; inhibited
the 5a-reductase activity in hHFDPCs; in

creased the level of β-catenin and Gli1 and de
creased TGF-β1; increase of hair length in vivo

[43]

Morroniside Cultured outer root sheath cells
C57BL/6 mice

1 and 10µM
100µM

Enhanced outer root sheath cell proliferation
and migration in vitro; upregulation of

Wnt10b, β-catenin, and LEF1; accelerated the
onset of anagen and delayed hair follicle cat

agen

[44]

Timosaponin BII C57BL/6 mice 0.5% Induced hair growth; increased expression of
β-catenin and Wnt10b [45]

Salvia
plebeian
extract

Human follicle
dermal papilla cells

C57BL/6 mice

7.8, 15.6, and 31.3 µg/mL
1,000µg/mL

Increased cell proliferation; increased HGF
and decreased TGF-β1 and SMAD2/3; inhibi
tion of apoptosis by increasing the Bcl-2/Bax

ratio; enhanced hair growth in mice

[46]

Undariopsis
peterseniana

C57BL/6 mice
Cultured rat

vibrissa follicles
Sprague-Dawley rats
NIH3T3 fibroblasts
Dermal papilla cells

0.1, 1, and 10 µg/mL
1, 10, and 100 µg/mL

0.1, 1, 10, and 100 µg/mL
0.1, 1, 10, and 100 µg/mL

0.1, 1, and 10 µg/mL

Increase of the hair-fiber lengths and anagen
initiation in vivo; decreased 5α-reductase ac
tivity and increased cell proliferation in vitro;

increased the levels of Cyclin D1, phos
pho(ser780)-pRB, Cyclin E, phospho-CDK2,
and CDK2; increase of phosphorylation of

ERK and the levels of Wnt/β-catenin signaling
proteins

[47]

Puerariae Flos
Wistar/ST rats

C57BL/6NCrSlc mice
C3H/He mice

50, 200, and 500 µg/mL
2 and 5 mg/mouse/day
2 and 5 mg/mouse/day

Increase of hair re-growth effect in testos
terone-treated C57BL/6NCrSlc and C3H/He

mice; inhibitory activity of against testos
terone 5a-reductase

[48]

Cacumen
platycladi

Sprague-Dawley rats
C57BL/6NCrSlc(C57) mice

0.02–2.5 µmol/L
2 and 5 mg/mouse/day Increase of hair growth; increase of Wnt 10b, β-catenin, and GSK-3β [49]
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Table 2. Cont.

Natural Products Experimental Model Treatment Effects Ref

Ginseng
rhizome,

Ginsenoside Ro

Wistar rats
C57BL/6 mice

Ginseng rhizome
(200, 500, and 1,000

µg/mL)
Ginseng rhizomes

(2 mg/mouse), and
ginsenoside Ro
(0.2 mg/mouse)

Induced hair re-growth in vivo; inhibitory
effects against 5αR [50]

Physcion Sprague-Dawley ratsC57BL/6 mice 12.5–100 µM5 mg/mouse/day Inhibited the 5a-reductase activity; hair
-growth-promoting activity [51]

Rosmarinus
officinalis

leaf extract

Wistar rats
C3H/He mice
C57BL/6 mice
LNCaP cells

50, 200, and 500 µg/mL
2 mg/mouse/day
2 mg/mouse/day

1–5 µM

Improved hair regrowth in C57BL/6NCrSlc
mice; increased hair growth in C3H/He mice
that had their dorsal areas shaved; decreased
5a-reductase activity; inhibited androgen-de

pendent proliferation of LNCaP cells

[52]

Avicequinone C Human hair dermal papilla cells 5 and 10 µg/mL Decreased 5a-reductase activity [53]

Ecklonia cava
enzymatic

extract, dieckol

Cultured rat
vibrissa follicles

Sprague-Dawley rats
C57BL/6 miceRat vibrissa,

immortalized dermal papilla cell,
NIH3T3 cells

0.01–10 µg/mL
0.5%
0.5%

0.001–10 µg/mL
0.05 and 10 µg/mL

Increased hair-fiber length and anagen pro
gression of the hair-shaf after E. cava enzy

matic extract; decreased 5a-reductase activity
in the presence of dieckol

[54]

Epigallocatechin-3-
Gallate

Cultured mink
hair follicles

Cultured dermal
papilla cells

Cultured outer root sheath cells

0.1–5 µM
0.25–4 µM
0.25–4 µM

Promoted hair follicle growth in DPCs and
ORSCs; activated Shh and Akt signaling; in

creased the expression of cyclin D1 and cyclin
E1

[55]

Panax
ginseng extract

Cultured outer root sheath
keratinocytes

20 ppm

20 ppm

Increased proliferation and inhibited apopto
sis in ORS keratinocytes; abrogated DKK-1-in
duced growth inhibition of cultured HFs ex

vivo

[56]

Serenoa repens
extracts

Human keratinocyte cells
C57BL/6 mice

1, 5, 25, and 100 µg/ mL
50%

Increased cell viabilities; stimulated hair folli
cle growth; decreased inflammatory response;
decreased TGF-β2 and cleaved caspase-3 ex

pression of hair loss mouse; inhibited apoptosis

[57]
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Sinapic acid exhibits various biological activities, including antioxidant, anti-inflammatory,
anticancer, anti-hyperglycemic, and neuroprotective effects [68–73]. Sinapic acid treatment
has been reported to increase VEGF and IGF-1 expression and increase the proliferation of
human HF-derived dermal papilla cells (hHFDPCs) [16]. Icariin is a bioactive compound from
Epimedium brevicornum Maxim extract, which possesses testosterone mimetic properties and
anti-osteoporotic and antidepressant-like effects [74–76]. Treatment with icariin increased IGF-1
secretion in vibrissae follicles and upregulated IGF-1 mRNA and protein levels in DPCs [17].
Geranium sibiricum L., belonging to the family Geraniaceae, has been used globally as an an-
tioxidant and anti-inflammatory substance [77–79]. Geranium sibiricum extract increased HGF
and VEGF expression, and decreased TGF-β1 expression in vitro and in vivo [18]. Oleuropein,
an olive constituent, is a phenolic glycoside that possesses several pharmacological proper-
ties, including antioxidant, antimicrobial, anticancer, cardioprotective, and neuroprotective
effects [80–82]. Topical administration of oleuropein (0.4 mg/day) significantly upregulated
IGF-1, KGF, HGF, and VEGF mRNA expression in mouse skin tissue compared with control
mice [19]. Caffeine is a well-known stimulant that is widely consumed in common bever-
ages [83]. It acts as a phosphodiesterase inhibitor and possesses biological activities, including
antioxidant and cancer preventive effects [83–86]. Treatment with caffeine (0.001%) and testos-
terone (5 µg/mL) significantly increased IGF-1 expression but decreased TGF-β2 expression in
human outer sheath keratinocytes [20]. Carthamus tinctorius L., known as Safflower, has been
used in various medical conditions [87,88]. Carthamus tinctorius L. extract (CTE) decreased
5α-reductase activity and promoted hair growth in mice [89]. CTE increased VEGF and KGF
mRNA expression and decreased TGF-β1 expression in vitro [21]. Red ginseng oil (RGO) ex-
tracted from red ginseng possesses antioxidant [90] and anti-inflammatory [91,92] effects, and
its major constituents include linoleic acid (LA), β-sitosterol (SITOS), and bicyclo(10.1.0)tridec-
1-ene (BICYCLO) [93]. Truong et al., revealed that RGO (10%) exhibited hair regeneration
capacity in a testosterone-induced androgenic alopecia C57BL/6 mouse model [22]. RGO
and its main compounds decreased the expression of TGF-β1 compared with testosterone
treatment [22]. Quercitrin (quercetin-3-O-rhamnoside) is a flavonoid found in various plants
and has been shown to protect against cisplatin-induced hair damage [94]. Quercitrin treat-
ment resulted in an increase in bFGF, KGF, platelet-derived growth factor (PDGF)-AA, and
VEGF mRNA and protein levels in hDPCs [23]. Sophora flavescens possesses various pharmaco-
logical properties, including anti-inflammatory, anti-arthritic, and antioxidant effects [95,96].
It has been demonstrated that Sophora flavescens extract promoted hair growth by inducing
mRNA expression of IGF-1 and KGF in cultured DP cells [24]. Shikimic acid is commercially
used in cosmetics and has been shown to possess antibacterial, anti-inflammatory, antifungal,
anti-aging, and whitening effects [97]. A recent study revealed that shikimic acid upregulated
the mRNA expression of HGF, KGF, and VEGF in hDPCs [25]. Procyanidin (PC)-B3 is a
procyanidin dimer that has been studied for its hair-growth-promoting effect [98,99]. The
study showed increased hair-growing activity in vitro and anagen-inducing activity in vivo,
as well as a potential inhibitory effect of TGF-β1 [26]. Ginsenosides present in Ginseng Radix
et Rhizoma are Rb1, Rb2, Rb3, Rd, Re, Rg1, Rg3, and Rh2, and ginsenoside Rb1 is one of the
active compounds present in ginseng [100]. Studies have reported the hair-promoting effects
of ginseng extract and ginsenosides in vitro and in vivo [100]. Ginsenoside Rb1 treatment
induced VEGF-A and VEGF receptor 2 and attenuated TGF-β1 expression [27]. Nelumbi-
nis Semen (NS) is a widely used functional food that contains nutritional compounds with
therapeutic benefits [101,102]. NS improved oxidative stress on the scalp of hair loss pa-
tients due to its high content of total polyphenols and flavonoids [103]. Park et al. also
showed that NS extract possessed a strong antioxidant capacity and may reduce the ox-
idative damage that causes hair loss [28]. NS-extract-treated mice showed increased VEGF
and IGF-1 mRNA expression [28]. However, TGF-β1 mRNA expression was decreased af-
ter NS extract treatment compared to that after dimethyl sulfoxide (DMSO) treatment [28].
Chamaecyparis obtusa (CO), belonging to the family Cupressaceae, has alpha-terpinyl acetate,
sabinene, isobornyl acetate, and limonene as major constituents [104]. An essential oil from
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CO has shown anti-inflammatory and antimicrobial activities in previous studies [104–107].
In the CO-treated mice group, IGF-1 mRNA expression was increased compared with that
in the group treated with 3% minoxidil for 4 weeks. VEGF expression was also upregulated
in the skin of mice after CO treatment [29]. Polygonum multiflorum (PM) has been used
in Chinese medical practices [108] and reported to have various actions, including antioxi-
dant [109], anti-human-immunodeficiency-virus (HIV) [110], neuroprotective [111,112], and
hepatoprotective effects [113]. 2,3,5,4-Tetrahydroxystilbene-2-O-D-glucoside (TSG), a major
component of PM, induces new hair growth in C57BL/6J mice [113]. Additionally, Shin et al.,
observed that PM extract (20 µg/mL) increased IGFBP2, PDGF, and VEGF expression in
cultured hDPCs [30]. Alnus sibirica Fisch. ex Turcz (AS), belonging to the family Betulaceae,
is rich in flavonoids [114], tannins [115,116], and diarylheptanoids [117]. AS or oregonin
(active substance in AS) treatment increased IGF-1 levels and decreased TGF-β1 levels in
H2O2-induced stressed hDPCs [31]. Malva verticillate (MV) is an edible plant widely used in
East Asia [118]. MV is a rich source of phenolic compounds that possess antioxidants [119],
anti-complementary, hypoglycemic [120], and antidiabetic effects by activating AMP-activated
protein kinase [121]. MV seed extract treatment upregulated the mRNA expression of growth
factors, including IGF-1, KGF, VEGF, and HGF [32]. In another study, LA in MV seeds also
elevated IGF-1, KGF, VEGF, and HGF mRNA expression in cultured hDPCs [33]. Liposomal
honokiol is a natural extract from Magnolia officinalis [122,123] and mainly possesses anticancer
effects [124,125]. Li et al. demonstrated that it has a hair-promoting effect, including increased
thickness of the dermis and the number of HF in C57BL/6N mice [34]. Liposomal honokiol
treatment inhibited TGF-β1 protein expression and phosphorylated SMAD2 expression in the
outer root sheath (ORS), as determined using immunohistochemistry analysis [34].

2.2. Cytokines

Cytokines such as interleukin (IL)-1α, IL-1β, tumor necrosis factor-α (TNF-α), interferon-
γ (IFN-γ), IL-2, IL-4, and IL-5 can influence the hair cycle [126]. IL-1α, IL-1β, and TNF-α are
potent inducers of hair loss [127,128]. These cytokines exhibit similar patterns in alopecia
areata, which involves abnormal keratinization of the hair matrix [129]. Overexpression of
IL-lα in transgenic mice led to the development of inflammatory skin diseases, such as hair
loss [130]. C57BL/6 mice overexpressing TNF-α, IL-1β, and IFN-γ promote keratinocyte
apoptosis associated with hair loss [131]. Clinical data revealed elevated serum levels of
IL-4 in patients with localized alopecia areata [132]. Angelica gigas Nakai (AGN) has been
extensively studied as a medicinal plant [133]. In particular, the roots of AGN showed
antinociceptive activity in pain models [134], and neuroprotective [135] and beneficial
effects in treating ischemia [136]. A recent study demonstrated that treatment with de-
cursin (0.15%), a major component isolated from AGN root, or AGN root extract (2%)
for 17 days stimulated hair growth in vivo [35]. These treatments reduced the protein
levels of pro-inflammatory cytokines (TNF-α and IL-1β) and increased anti-inflammatory
cytokines (IL-4 and IL-13) in the dorsal skin of mice [35]. 3-Deoxysappanchalcone (DSC) is
a biologically active compound from Caesalpinia sappan L., which has been suggested to
have anti-inflammatory, anticancer, and anti-allergic effects [137–139]. 3-DSC treatment
(0.1–3 µM) increased IL-6-mediated signal transducer and activator of transcription (STAT)
3 expression in hDPCs [36]. 3-DSC also inhibits the phosphorylation of STAT6 mediated by
IL-4 [36]. Another study reported that subjects with androgenic alopecia treated with sham-
poo containing Inula helenium and Caesalpinia Sappan extract (3-DSC) showed increased
hair density and hair count [140]. Broussonetia papyrifera (BP), also known as paper
mulberry, is a medicinal herb that utilizes leaves, fruits, and bark [141]. The polysaccharide
extract from the fruits of BP showed antioxidant and antibacterial activities [142]. The BP
root extract contains flavonoids, which results in inhibitory effects on nitric oxide, inducible
nitric oxide synthase, TNF-α, and IL-6 [143]. Treatment with BP eliminated IL-4-induced
STAT6 phosphorylation in hDPCs [37].
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2.3. Wnt/β-Catenin

Wnt/β-catenin signaling is broadly utilized and plays a crucial role in HF morpho-
genesis [144]. In canonical Wnt/β-catenin signaling, Wnt proteins bind to Frizzled (FZD)
receptors and low-density lipoprotein receptor-related protein 5/6 (LRP5/6) co-receptors.
Once activated, the β-catenin complex with APC and Axin is phosphorylated by casein
kinase Iα (CKIα) and glycogen synthase kinase-3β (GSK-3β). Therefore, β-catenin ac-
cumulates in the cytoplasm and binds to the transcription factor T-cell factor/lymphoid
enhancing factor (TCF/LEF) in the nucleus [145]. The study reported that Wnt/β-catenin
activation promotes hair regeneration by inhibiting GSK-3β in hDPCs [146]. Sinapic acid
treatment increased the protein level of β-catenin by upregulating phosphorylated GSK-3β
and Akt [16]. Oleuropein elevated nuclear β-catenin protein expression and increased
LEF1 and cyclin D1 mRNA expression in DPCs [19]. Oleuropein administration increased
the mRNA levels of Wnt10B, LRP5, and FZDR1, and the protein level of β-catenin in
mice compared to minoxidil-treated C57BL/6 mice [19]. RGO remarkably increased the
protein expression of β-catenin and LEF1 induced by testosterone and RGO co-treatment
in dorsal skin tissues compared to treatment with testosterone alone [22]. RGO also en-
hanced β-catenin and phosphorylated GSK-3β protein expression in C57BL/6 mouse skin
compared to that in the minoxidil-treated group [38]. Thuja orientalis (TO) is used to treat
dermatitis, gout, and chronic tracheitis [147]. TO (5.05 mg/cm2/day) administration pro-
moted hair growth and the early anagen phase, and prolonged the mature anagen phase in
mice [39]. Immunohistochemical analysis showed increased β-catenin expression after TO
treatment [39]. 3,4,5-Tri-O-caffeoylquinic acid (TCQA) is a caffeoylquinic acid derivative
that acts as a neuroprotective agent and protects against amyloid-β (Aβ)-induced cell
death [148,149]. Topical treatment with 1% TCQA prolonged anagen phase induction in
C3H mice for 30 days [40]. It was also confirmed that β-catenin expression increased in the
skin of TCQA-treated mice and HFDPCs [40]. Gene expression profile data revealed an
increase in the expression of the canonical Wnt-associated genes, Ctnnb1, Wls, Wnt2b, and
Wnt4 after TCQA treatment [40]. Ishige sinicola (IS) is a brown alga that exhibits various
activities, including osteoblastic bone formation [150] and anti-inflammatory effects [151].
IS treatment for 3 weeks increased hair-fiber length in rat vibrissa follicles and induced
anagen progression of the hair shaft [41]. Protein expression of β-catenin and phosphoryla-
tion of GSK3β were increased after treatment with IS in cultured DPCs [41]. Prunus mira
Koehne (PK) is a wild peach species that contains various nutrients and fatty acids [152].
Zhou et al., showed the hair-promoting effect of nut oil from PK [42]. They demonstrated
that nut oil from PK increased hair length in mice and upregulated Wnt10B, β-catenin, and
GSK-3β expression in mice [42]. Costunolide, a constituent of Saussurea lappa, has been
used as an antioxidant, anti-inflammatory, and anticancer agent [153–155]. Costunolide
increased cell proliferation and β-catenin expression in hHFDPCs [43]. Morroniside is
the main component of Cornus officinalis and possesses neuroprotective, anti-apoptotic,
and antioxidant effects [156–159]. Morroniside increased Wnt/β-catenin signaling by up-
regulating Wnt10B, β-catenin, and LEF1 in cultured human ORS cells [44]. In a mouse
model, morroniside promoted the anagen phase and delayed the catagen phase of HF,
which was partly related to an increase in β-catenin expression [44]. 3-DSC inhibited
the phosphorylation of β-catenin protein but promoted the transcriptional activity of
TCF/LEF [36]. Timosaponin BII extracted from Anemarrhena asphodeloides rhizome is
known to have antioxidant [160], anti-inflammatory [161,162], and anticancer [163] proper-
ties. A clinical study showed that application of timosaponin BII (0.5%) containing scalp
care solution for 28 days resulted in improvement in hair and scalp conditions, particularly
hair luster, scalp hydration, hair fall number, and scalp redness level [164]. A recent study
showed that timosaponin BII (0.5%) increased the hair regrowth area and HF number
in mice [45]. Moreover, timosaponin BII treatment was shown to upregulate β-catenin
and Wnt10B expression in the dorsal skin of mice [45]. The application of 20 mg/mL
liposomal honokiol also increased Wnt3a and β-catenin expression [34]. Malva verticillata
(MV) is a traditional herb native to Mongolia that contains flavan-3-ols, flavonoids, and



Pharmaceutics 2021, 13, 2163 13 of 24

fatty acids [119]. MV is a therapeutic candidate for diabetes [121], bone disease [165],
and cancer [166]. MV leaves, stems, and seeds have been shown to be a rich source of
phenolic compounds. Microbial fermentation has been used to increase the extraction yield
of bioactive compounds from natural products [167]. Bacillus subtilis fermentation of MV
leaves exhibited an antioxidant and osteogenic effect [168]. The seeds of MV (50 µg/mL)
activated β-catenin protein expression in cultured DPCs [32]. Myristoleic acid, an active
compound of MV, upregulates Wnt reporter activity [32]. Another study showed that LA
in MV seeds increased cell proliferation and phosphorylation of GSK-3 and β-catenin in
DPCs [33]. Salvia plebeia (SP) belongs to the family Labiaceae and is used for its antioxi-
dant [169], anti-inflammatory [170,171], and anti-influenza [172] effects. It is reported to
contain flavonoids, phenolic acids, and other nutrients [169]. SP extract enhanced the pro-
liferation of hHFDPC and increased the TCF/LEF-luciferase activity as well as the level of
β-catenin protein expression [46]. The use of hair tonics, including Broussonetia papyrifera
(BP) extract, showed an increase in total hair count for 12 weeks in a clinical study. In
addition, BP treatment increased TCF/LEF-luciferase activity and β-catenin protein levels
in vitro [37]. Undariopsis peterseniana (UP), an edible brown seaweed, is a rich source of
nutrients and acts as an antioxidant and anti-inflammatory agent [173–176]. UP extract
was shown to induce hair growth in ex vivo organ cultures [47]. UP extract upregulated the
phosphorylation levels of β-catenin and GSK-3β compared with the control in DPCs [47].

2.4. 5α-Reductase Inhibitory Effect

Testosterone is converted to DHT by 5α-reductase, which is known to cause an-
drogenic alopecia [177]. Androgenic alopecia affects over 50% of men over the age of
50 [178], compared to only 25% of women by the age of 49 and 41% of women by the
age of 69 years [179]. Finasteride, a 5α-reductase inhibitor, has shown improvement in
androgenic alopecia in clinical trials [13]. However, the use of 5-α reductase inhibitors has
revealed that it has sexual and reproductive side effects [180]. DHT binds to androgen
receptors in DPCs, leading to the onset of the telogen phase [177]. Sophora flavescens or
Undariopsis peterseniana treatment showed potent 5α-reductase inhibitory effects [24,47].
Octaphlorethol A, a constituent of Ishige sinicola, inhibited 5α-reductase activity compared
to that of finasteride [41]. Costunolide treatment downregulated testosterone-induced 5α-
reductase mRNA expression in hDPCs [43]. Puerariae Flos (PF) has been used as a medic-
inal herb for its antioxidant, antidiabetic, and protective effects against ethanol-induced
injury [181–183]. PF extract showed inhibitory effects on 5α-reductase and hair-growth-
promoting effects in mice [48]. Cacumen platycladi (CP) is a Chinese medicine containing
organic acids, flavonoids, and phenylpropanoids [184]. Treatment with CP decreased DHT
levels and 5α-reductase expression while promoting hair growth in vivo [49]. Another
study showed that CP volatile oil treatment increased the proliferation of hDPCs and short-
ened the time of hair regrowth [185]. Ginseng rhizomes have been used in medical reme-
dies [186,187]. Ginsenoside Ro, a major ginsenoside constituent in the ginseng rhizome, has
anti-inflammatory [188,189], antioxidant [190], and anti-obesity [191] effects. Murata et al.,
revealed that red ginseng rhizome extract, ginsenoside Ro, and ginsenoside Rg3 showed
inhibitory effects on 5α-reductase activity [50]. The study also showed that topical adminis-
tration of red ginseng rhizomes (2 mg/mouse) and ginsenoside Ro (0.2 mg/mouse) induced
hair regrowth in testosterone-treated mice [50]. Physcion, a component of Polygonum
multiforum (PM), has anti-inflammatory, antioxidant, and anticancer effects [192,193].
Treatment with physcion exhibited hair growth-promoting activity in testosterone-treated
C57BL/6 mice [51]. In addition, physcion inhibits 5α-reductase expression in vivo [51].
Rosmarinus officinalis belongs to the Lamiaceae family and has been widely studied for its
antibacterial, antioxidant, and anticancer activities [194–196]. Murata et al. showed that
Rosmarinus officinalis leaf extract improved hair regrowth in mice, as well as 5α-reductase
inhibitory activity [52]. Avicennia marina is used in traditional medicine for the treatment
of skin diseases, rheumatism, ulcers, and smallpox [197]. Avicequinone C, isolated from
Avicennia marina, attenuated 5α-reductase inhibitory activity (IC50 of 38.8 ± 1.29 µM) [53].



Pharmaceutics 2021, 13, 2163 14 of 24

Ecklonia cava, an edible marine brown alga, contains a variety of bioactive compounds,
including phlorotannins, carotenoids, and fucoidans [198]. Ecklonia cava has been reported
to have various biological properties, including antioxidant, anti-inflammatory, anti-allergy,
and anticancer effects [199]. Shin et al., showed that Ecklonia cava polyphenols reduced
oxidative stress in hDPCs [54]. It was found that androgens, the main cause of androgen
alopecia, increase reactive oxidative species (ROS) in hDPCs in which androgen receptors
are overexpressed [54]. In addition, TGF-β-1 secretion induced by androgen was inhibited
by an ROS scavenger, indicating that antioxidants can promote hair growth [54]. Topical
application of 0.5% Ecklonia cava enzymatic extract induced anagen progression on the back
of C57BL/6 mice [200]. Furthermore, the Ecklonia cava enzymatic extract, dieckol, inhibited
5α-reductase activity [200].

2.5. Sonic Hedgehog (Shh) Signaling

The hedgehog pathway is one of the most important signaling pathways in tissue
development, homeostasis, and repair [201]. Hedgehog signaling is triggered by Sonic
hedgehog (Shh), Indian hedgehog (Ihh), and Desert hedgehog (Dhh). Shh signaling
plays an important role in HF development [202]. Hedgehog signaling occurs through
the binding of hedgehog ligands to the receptor Patched (PTCH) 1, which suppresses
the activation of Smoothened (SMO). Inhibition of SMO results in the translocation of the
glioma-associated (GLI) gene to the nucleus [202]. Shh plays an essential role in the cell–cell
interactions involved in the morphogenesis of hair follicles [203]. Hair follicle development
results from complex signaling between epithelial and mesenchymal cells. Various signal-
ing pathways are involved in hair follicle development, such as Wnt, bone morphogenetic
protein (BMP), platelet-derived growth factor (PDGF), Notch, and ectodysplasin, and they
exhibit signaling crosstalk with the hedgehog pathway [201]. RGO treatment upregu-
lated Shh signaling-related expression of Shh, SMO, and GLI1 in testosterone-induced
C57BL/6 mice [22] and in mouse skin [38]. TO treatment resulted in an increase in Shh
expression [39]. Costunolide elevated GLI1 mRNA and protein expression in hDPCs [43].
Epigallocatechin-3-gallate (EGCG) is a major bioactive molecule in green tea that has been
shown to act on multiple molecular targets to ameliorate various human diseases [204].
Green tea leaf extracts have polyphenolic components that exhibit anti-inflammatory and
stress-inhibitory effects, which may influence mouse hair growth [205]. EGCG treatment
promoted the growth of mink hair follicles and the proliferation of DPCs and outer root
sheath cells (ORSCs) [55]. EGCG has also been shown to increase the protein levels of Shh,
PTCH, Smo, and Gli1 in hair follicles [55].

2.6. Apoptosis

Apoptosis plays an important role in morphological development and is accompanied
by a number of characteristic morphological changes, including cell shrinkage, nuclear
condensation, and cellular fragmentation [206]. There are two major apoptosis signaling
pathways: the death receptor (extrinsic) pathway and the mitochondria-mediated path-
way [207]. The extrinsic pathway is initiated by cell-surface-expressed death receptors of
the tumor necrosis factor superfamily. Once the receptor is activated, caspase-8 is activated
and initiates apoptosis by direct cleavage of downstream effector caspases [207]. The
intrinsic pathway is initiated by intracellular stresses, and it induces permeabilization
of the outer mitochondrial membrane and activates the mitochondrial pathway. Once
mitochondrial permeabilization occurs, cytochrome c is released into the cytosol and asso-
ciates with caspase-9 and Apaf-1 to form apoptosomes, which can activate caspase-3 or
caspase-7, causing apoptosis [207]. Apoptosis signaling is attenuated by a particular group
of proteins (Bcl-2, Bcl-xL, and Mcl-1) [208]. Another group of proteins (Bax, Bak, Bok, Bim,
Bad, Bcl-xS, and Bid) act as apoptotic agonists that promote apoptosis [208]. In the anagen
phase, hair follicular cells undergo dynamic cell proliferation and differentiation to form
the hair shaft [209]. During the catagen phase, growth factors expressed by DPCs cause
a decrease in the proliferation and differentiation of hair matrix keratinocytes, leading
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to apoptosis [210,211]. The anagen-catagen transition plays a clinically important role
in human hair growth; the abnormal termination of the anagen phase has been shown
to cause gradual hair thinning [211]. Therefore, extension of the anagen phase is a key
strategy for the prevention of hair loss. Caffeine administration inhibits apoptosis and
necrosis in human ORS keratinocytes [20]. The decrease in the protein level of Bcl-2 in
testosterone-treated mice was reversed after treatment with RGO, LA, and SITOS [22].
Treatment with RGO after UVC exposure inhibited cleaved caspase-3, cleaved caspase-9,
and cleaved poly-ADP ribose polymerase (PARP) expression in mouse skin tissues [38]. In
addition, RGO treatment resulted in an increased Bax/Bcl-2 ratio in the UVC-treated group
compared to that in the control group [38]. Quercitrin administration resulted in a decrease
in mRNA expression of Bad, although the mRNA and protein expression of Bcl-2 increased
after treatment of cultured hDPCs with 10 nM and 100 nM quercitrin [23]. PM extract
also showed an increase in Bcl-2 mRNA expression and a decrease in Bad expression in
hDPCs [30]. Panax ginseng extract inhibited apoptosis in Dickkopf-1 (DKK-1)-induced ORS
keratinocytes as determined by terminal deoxynucleotidyl transferase-mediated dUTP
nick end labeling (TUNEL) staining [56]. Moreover, Panax ginseng extract downregulated
the mRNA expression of Bcl-2 and upregulated the mRNA expression of Bax in DKK-1-
induced ORS keratinocytes and HF [56]. AS treatment increased protein expression of Bcl-2
but led to a decrease in the protein levels of Bax, PARP, and caspase-3 in HFDPCs [31]. SP
extract elevated the protein expression of Bcl-2 and decreased Bax expression compared
with the negative or positive control (10 µM minoxidil) in hDPCs [46]. The extract from the
berries Serenoa repens (SR), commonly known as saw palmetto, showed therapeutic effects
as a 5α-reductase inhibitor [212]. SR and DHT co-treatment stimulated hair growth com-
pared to that induced by DHT in vivo [57]. Moreover, SR treatment led to a decrease in the
protein expression of TGF-β2, cleaved caspase-3, and Bax, but increased Bcl-2 expression
compared to DHT treatment [57].

2.7. Cell Cycle

Cell proliferation is controlled by factors that regulate the transition between different
cell cycle stages in mammalian cells [213]. Cell cycle progression also plays a major role in
HF biology [214]. The cell cycle consists of four phases: gap phase 1 (G1), DNA synthesis
(S), gap phase 2 (G2), and mitosis (M) [214]. Cyclins and cyclin-dependent kinases (CDKs)
function as regulators of the G1/S or G2/M phases [215]. Cyclin D1 binds to CDK4 and
CDK6 and drives cell cycle progression into the G1 phase [213]. Cyclin E associates with
CDK2 to promote G1-S phase transition [214]. Sinapic acid treatment was accompanied
by an increase in cyclin D1 and the distribution of cells in the G0/G1 phase, as well as
a decreased distribution in the S and G2/M phases [16]. Cyclin D1 is a direct target for
transactivation by the β-catenin/LEF-1 pathway through an LEF-1 binding site in the cyclin
D1 promoter and is a direct downstream molecule in the β-catenin pathway [213]. Woo
et al. suggested that sinapic acid treatment increased cell growth and cell cycle progression
through an increase in cyclin D1 expression [16]. Administration of RGO increased the
protein expression of cyclin D1 and cyclin E in testosterone-treated mice [22] and C57BL/6
mouse models [38]. UP treatment upregulated cyclin D1, phospho(ser780)-pRB, cyclin E,
phospho-CDK2, and CDK2 protein expression in DPCs [47]. Treatment with IS upregulated
cyclin E and CDK2 expression in cultured DPCs [41]. LA in MV seeds increased the mRNA
levels of cyclin D1 and CDK2 in vitro [33]. EGCG treatment increased the number of cells
in S phase, and upregulated the protein levels of cyclin D1 and cyclin B1 [55].

3. Conclusions

This study reviewed the beneficial effects of herbs and their bioactive compounds on
hair growth, and their underlying mechanisms of action (growth factors and cytokines,
Wnt/β-catenin, 5α-reductase inhibitory effect, sonic hedgehog signaling, apoptosis, and
cell cycle progression). The herbs and their constituents investigated in this study act via
multiple signaling mechanisms in the prevention of alopecia. Therefore, they have the
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potential to be more effective than minoxidil and finasteride, which are conventionally
used to treat hair loss. In this review, we have attempted to provide a database of phy-
tochemicals for hair-growth-promoting effects. This information will serve as a basis for
developing more effective therapeutic agents for the treatment of alopecia and improving
our understanding of their mechanisms of action.
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