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Maximization of growth rate is an important fitness strategy for bacteria.

Bacteria can achieve this by expressing proteins at optimal concentrations,

such that resources are not wasted. This is exemplified for Escherichia coli

by the increase of its ribosomal protein-fraction with growth rate, which

precisely matches the increased protein synthesis demand. These findings

and others have led to the hypothesis that E. coli aims to maximize its

growth rate in environments that support growth. However, what kind of

regulatory strategy is required for a robust, optimal adjustment of the ribo-

some concentration to the prevailing condition is still an open question. In

the present study, we analyze the ppGpp-controlled mechanism of ribo-

some expression used by E. coli and show that this mechanism maintains

the ribosomes saturated with its substrates. In this manner, overexpression

of the highly abundant ribosomal proteins is prevented, and limited

resources can be redirected to the synthesis of other growth-promoting

enzymes. It turns out that the kinetic conditions for robust, optimal pro-

tein-partitioning, which are required for growth rate maximization across

conditions, can be achieved with basic biochemical interactions. We show

that inactive ribosomes are the most suitable ‘signal’ for tracking the intra-

cellular nutritional state and for adjusting gene expression accordingly, as

small deviations from optimal ribosome concentration cause a huge frac-

tional change in ribosome inactivity. We expect to find this control logic

implemented across fast-growing microbial species because growth rate

maximization is a common selective pressure, ribosomes are typically

highly abundant and thus costly, and the required control can be imple-

mented by a small, simple network.

Introduction

Bacterial growth rates vary greatly with conditions.

Doubling times in Escherichia coli range from tens of

minutes to tens of hours. Evolutionary reasoning indi-

cates the importance of the maximization of bacterial

growth rate. In environments that support growth, the

growth rate of a bacterium equates directly to fitness

[1] because it allows for outgrowth of competitors.

Even during irregular feast–famine fluctuations,

growth rate remains important, because it gives rise to

more offspring and spread of genetic diversity.

Bacteria adjust their growth rate by adapting their

metabolism. Recent experimental [2–5] and theoretical

work [6–8], inspired by studies carried out decades ago

[9–11], indicate the importance of the covariation of

the bacterial protein composition with growth rate. It

turns out that reasoning about the ‘protein economy’

of a bacterial cell [6,12] provides an intuitive frame-

work that relates growth rate changes to the regulation

and kinetics of metabolic reactions. Yet, it remains

poorly understood how bacteria perceive their growth
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rate and adjust it via the regulation of gene activity

and metabolic enzymes.

At steady-state exponential growth, the macromolec-

ular content (mass) and volume of a bacterial cell

increase exponentially with time at an equal rate, (i.e.

the exponential growth rate, which is inversely propor-

tional to the doubling time). The growth rate depends

on the rate at which the cell is able to synthesize new

proteins [6,12]. This, in turn, depends on the cellular

ribosome concentration, but also on how efficient each

ribosome is used. For ribosomes to be used efficiently,

they need to be supplied with enough amino acids.

Because the total protein concentration of a bacterial

cell (defined as protein mass per cell mass) hardly

changes across conditions [13], synthesizing more of

certain proteins goes at the expense of others. This

implies that synthesis of more ribosomal proteins

reduces the concentration of metabolic proteins, which

produce amino acids, such that the ribosomes are used

less efficiently. This indicates that an optimal ribosome

concentration exists, matching the supply of amino

acids by metabolism to the demand of protein synthe-

sis, and maximizing the growth rate. This argument

applies more generally to metabolic proteins; the rate

of all metabolic reactions increases with both the con-

centration of the catalyzing enzyme and that of its

substrates. From an economic perspective, it is thus

advantageous to saturate enzymes with their sub-

strates, because this means that less protein is needed

to attain the same rate. Consequently, more resources

are available for other proteins; for example, for those

that supply the substrate. Management of the protein

economy by bacteria is thus central to understanding

strategies for growth rate regulation.

The importance of protein economy for growth rate

maximization is supported by three types of experi-

mental findings. Firstly, the growth rate ‘cost’ of

enzyme excess is illustrated by observations that the

growth rate decreases upon non-functional protein

synthesis. This decrease is often observed to be linear

with the non-functional protein fraction [14,7,15],

which is predicted by theory [7,16]. However, non-lin-

ear protein costs have also been reported [17], possibly

as a result of effects related to protein activity rather

than production [18]. Secondly, the concentration of

each protein should be precisely tuned [16,19]. This

has been found for several enzymes in E. coli,

[20,21,17,22], Lactococcus lactis [23–25] and Saccharo-

myces cerevisiae [26]. These latter studies report that

the relationship between the growth rate and a meta-

bolic enzyme concentration displays a maximum and

that the wild-type growth rate is close to this maxi-

mal value. Thirdly, evolutionary experiments show the

prevention of the synthesis of unneeded costly protein

for the general stress response of E. coli [27] and the

loss of excess protein in yeast glycolysis [28].

However, chemostat studies indicate a remarkable

degree of protein excess of glycolysis at low growth

rates in Bacillus subtilis [29], L. lactis (A. Goel, T.H.

Eckhardt, P. Puri, A. de Jong, F. Branco dos Santos,

M. Giera, F. Fusetti, W.M. de Vos, J. Kok, B. Pool-

man, D. Molenaar, O.P. Kuipers and B. Teusink,

unpublished data), and S. cerevisiae [30]. This could be

because microorganisms hardly encounter chemostat-

like growth conditions in the wild and that they tend

to be optimized more for feast and famine conditions

rather than for sub-saturating nutrient conditions.

Alternatively, efficient regulation of glycolysis during

glucose dynamics may require enzyme excess. This is

supported by evolution of S. cerevisiae in glucose-

limited chemostats where enzyme overexpression in

glycolysis is reduced [28]. In any case, trade offs can

occur in metabolism that prevent the optimal tuning

of all metabolic enzyme levels.

One can imagine that the control task to precisely

tune the concentrations of all proteins may be too

hard to solve for the cell. It turns out that this is also

not required. What is intuitively clear is that near-

maximal growth rates can be achieved by carefully

tuning only the most abundant proteins. Compare a

protein that is 5% of total cellular protein and 10% in

excess with another protein that is 0.5% of total and

also 10% in excess. Thus, the former protein should

be 4.5% and therefore 0.5% of total protein is wasted,

whereas, in the latter case, this amounts to only

0.05%. Thus, tuning abundant proteins liberates most

resources for acceleration of other reactions.

Evolution of regulatory systems that achieve tuning

of abundant protein concentration is therefore strongly

selected for. This intuition is supported by recent theo-

retical work, which indicates that abundant proteins

have the highest influence on growth rate [16]. The

translation machinery, including the ribosome and

elongation factors, is the functional class with the larg-

est protein fraction in E. coli at maximal growth rate

[22] (between 20–40% depending on growth condi-

tions). A visualisation of the E. coli proteome is pro-

vided elsewhere [31]. We expect that a high abundance

of translation machinery applies to fast-growing bacte-

ria in general [32,33,4].

The ribosome concentration is thus likely tightly

regulated. Indeed, the well established linear relation-

ship between ribosomal concentration and growth rate

in E. coli [2,4,9,11,34] is considered to be the result of

growth rate optimization. Decades ago, Maaløe and

Kjeldgaard [34] and, more recently, Scott et al. [12],
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reasoned about optimality, explaining the high degree

of substrate-saturation of ribosomes and the linear

relationship between ribosome fraction and growth

rate [34,12]. Ehrenberg and Kurland [35] analyzed

what the consequences of optimality are for the error

rate of translation and deduced the linear relation

from this perspective.

So, given both experimental and theoretical work,

growth rate maximization by E. coli has turned into a

decades old persistent hypothesis for which (circum-

stantial) evidence continues to pile up. Yet, how bacte-

ria can optimise their growth rate is unclear: (a)

Which internal variables should they sense?, (b) Which

feedback designs are required?, and (c) How rapidly

would we expect those to evolve? It is becoming clear

that the molecular circuitry underlying such seemingly

complex regulatory tasks can be remarkably simple

[36–42]. In this spirit and to answers these questions,

we will use a model of E. coli growth and its regula-

tion of ribosome synthesis that captures the essential

dynamics but is otherwise as simple as possible. The

benefit of using simple models is that they are more

tractable and therefore the underlying logic is more

transparent. We will first show that our model repro-

duces the well known linear relationship between

growth rate and the optimal ribosomal concentration.

We explain how deviations from the optimal ribosome

concentration are sensed, how this signal is translated

into ppGpp dynamics and subsequent compensatory

gene regulation, and how this ensures that the optimal

ribosomal protein concentration is attained. We derive

the minimal kinetic requirements at the level of metab-

olism and gene regulation for growth-rate maximiza-

tion across a wide range of conditions, show that

E. coli implements these, and ask whether those are

likely implemented by other fast-growing bacteria. We

use parameter values obtained from literature for our

model, and we show that the qualitative behaviour of

the model is extremely insensitive to the actual param-

eter values.

Results

Model description

Here, we will give a general outline of our model of

E. coli growth and its regulation. A detailed derivation

and mathematical description of the model, including

the justification of many details that we left out of our

model, is provided in Doc. S1 and Tables S1 and S2.

We only take metabolic proteins (m-proteins), ribo-

somal proteins (r-proteins; this also includes all other

proteins involved in translation, such as elongation

factors) and rRNA into account. Our model can be

conceptually divided in three modules (Fig. 1A).

Amino acid metabolism and protein synthesis

First, we consider amino acid metabolism and protein

synthesis (Fig. 1B). Twenty different amino acid spe-

cies are synthesized by the m-proteins, each at a rate

vai ¼ kni �mi � 1

1þ ai=KI
ð1Þ

where ai is the concentration of amino acid species i,

KI is the product inhibition constant, mi the concentra-

tion of m-proteins in the biosynthetic pathway of

amino acid i, all in lM. kni is the effective turnover

number of the pathway, i.e. kni is the maximal rate of

synthesis of ai per second per unit mi-protein. Changes

in environmental conditions are modelled by changing

the average kn, which reflects the assumption that in

high quality nutrient media, less metabolic proteins are

required to attain the same amino acid synthesis flux.

The amino acids are added to their conjugate

tRNAs to form aminoacyl-tRNA complexes (‘charged’

tRNAs). These serve as the substrate for biomass syn-

thesis, catalyzed by ribosomes, consisting of r-protein

and rRNA. The system is in (metabolic) steady state

when the production rate of each amino acid equals its

consumption rate in protein synthesis.

When new biomass is being synthesized, it is also

diluted out due to (cell volume) growth. By definition,

this dilution rate is the specific growth rate l, and it is

equal to the rate of biomass synthesis per unit bio-

mass. During balanced growth, the fraction of proteins

in total biomass is constant, from which it follows that

l is equal to the rate of protein synthesis (vribosome, in

lM amino acids per second) per unit protein [43], (see

Equations S2, S7 of Doc. S1):

l � vribosome

½total protein� / krib � ½r-protein�
½total protein� � fðtaÞ ð2Þ

where krib is the maximal specific peptide elongation

rate of the ribosomes (in other words, the ‘kcat’ of the

ribosome, in units amino acids per ribosome per sec-

ond), ta={ta1,. . .,ta20} is the vector containing the con-

centrations of charged tRNAs (in lM), and f(ta) gives

the degree to which ribosomes are saturated with

charged tRNAs, i.e. 0 ≤ f(ta) ≤1. Note that [total pro-

tein] and [r-protein] are expressed in lM-amino acids,

such that l is per second. Increasing the r-protein frac-

tion
½r-protein�

½total protein�, has two effects on l: a positive one

because it increases the total capacity to synthesized

2031FEBS Journal 282 (2015) 2029–2044 ª 2015 The Authors FEBS Journal published by John Wiley & Sons Ltd on behalf of FEBS.

Bosdriesz et al. Optimal regulation of ribosome synthesis



new proteins and a negative one because it reduces the

m-protein fraction, which leads to a lower amino

acid supply, lower tRNA charging, and thus a lower

saturation degree of the ribosome, f(ta). A lower satu-

ration degree of the ribosome is disadvantageous,

because it indicates protein excess, which is at the

expense of other proteins, of which some are limiting

the growth rate and those should therefore increase in

concentration.

ppGpp metabolism

Second, we consider the signalling of the ribosome sat-

uration state to the translational machinery by the sig-

nalling molecule ppGpp (Fig. 1C). In E. coli, ppGpp

is synthesized from GTP by two synthetases, SpoT

and RelA [44,45]. RelA binds to ribosomes and con-

verts GTP into ppGpp (via the intermediate pppGpp)

when the ribosome has an uncharged tRNA bound to

its A-site [44] and as such signals the shortage of the

cognate amino acid [43]. We model the rate of ppGpp

synthesis by RelA proportional to the concentration of

uncharged tRNA bound to the ribosomes (Eqn S9a).

SpoT has a dual activity. It synthesizes ppGpp in

response to stresses and nutrient limitations (but not

amino acid limitations), and it also hydrolyses ppGpp

to GDP [44,46]. We are interested in amino acid depri-

vation related ppGpp-synthesis, and so we simply

model ppGpp synthesis by SpoT as a low constant

background rate, and ppGpp hydrolysis by SpoT with

mass-action kinetics.

Regulation of r-protein synthesis

Third, we consider the ppGpp-mediated regulation of

the partitioning of transcription proteins, RNA poly-

merase and sigma factor 70, over operons encoding

the r-proteins and m-proteins (Fig. 1D). In our

model, the relative concentrations of m-proteins and r-

proteins at steady state depend on the ribosome frac-

tions dedicated to their synthesis. Because we only

model protein dilution and not degradation, at steady

state, the concentration r-protein (m-protein) is set by

the fraction of ribosomes synthezising r-proteins (m-

proteins). In other words, if 20% of the ribosomal

capacity is allocated to the synthesis of r-proteins (m-

proteins), [r-protein]/[total protein] = 0.2.

Although there are many factors influencing the

cell’s physiology, ppGpp can account for the majority

of E. coli growth rate control [47]. Therefore, in our

Amino acid synthesis: 
vai

tRNA charging: 
vtai Protein synthesis: 

vribosome

P1-P2 rrn-operon

rRNA

rrn-transcription-initiation

RNAP

Active RelA

Inactive RelA

SpoT

Idle ribosome

r-protein
precursor consumption

Amino acidsm-protein
precursor synthesis

Ribosome

rrn

tRNA

ppGpp metabolism
signaling

Regulation of ribosome synthesis
global resource partitioning

Pathway 1
Pathway 2

Pathway n

New 
proteins

A

B

DC

Fig. 1. Model of E. coli growth and regulation of its ribosome concentration. (A) Coarse-grained perspective on the coupling of amino acid

synthesis, protein synthesis and the ppGpp-mediated control of ribosome concentrations. (B) Model of Escherichia coli growth. Amino acids

are synthesised by m-proteins at a rate vai which depends on the environmental condition and the m-protein concentration. These amino

acids are used to charge their conjugate tRNAs. Charged tRNAs subsequently bind to the ribosome that links the amino acids to the growing

peptide chain which eventually becomes the new protein. The growth rate is proportional to the total protein synthesis rate. (C) Model of

ppGpp metabolism. When the concentration of an amino acid is low, the concentration of its cognate uncharged tRNA is high. When this

uncharged tRNA binds to the ribosome, RelA produces ppGpp. Alternatively, ppGpp can be produced by SpoT. (D) Model of the regulation of

ribosome synthesis. ppGpp diverts RNA polymerase from ribosomal operons to catabolic operons. This reduces the transcription of rRNA

and translation of ribosomal proteins, which increases catabolism and so restores the synthesis of the limiting amino acid.
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model, we only incorporate the regulation of ribosome

synthesis by ppGpp. Synthesis of r-proteins is tightly

matched to the synthesis of rRNA [48], and concentra-

tions of elongation factors and tRNA are maintained

at a constant ratio with the concentration of ribosomes

[49,50]. Synthesis of rRNA is inhibited by ppGpp,

most likely by inhibition of rRNA transcription initia-

tion [48,49,51,52]. ppGpp interacts with the protein

DskA [45], and factors such as Fis and NTPs are also

involved [53]. However, the precise mechanism does

not affect the model results. In Doc. S1, we offer a

more detailed discussion on how ppGpp inhibits

rRNA synthesis. So, ppGpp indirectly inhibits r-pro-

tein synthesis and frees up ribosomes for the synthesis

of m-proteins. In our model, the rate of r-protein syn-

thesis, vr-protein is related to the ppGpp concentration

in the following manner:

vr�protein / 1

1þ ppGpp/Ki;ppGpp

ð3Þ

Ki,ppGpp is the inhibition constant of rRNA operon

transcription initiation by ppGpp, and ppGpp and Ki,

ppGpp both have unit lM. Because the total protein

concentration is fixed, the r-protein fraction and the

ribosome concentration are directly proportional.

Since ribosomes that are not synthezising r-proteins

synthesize m-proteins instead, ppGpp redirects biosyn-

thetic resources from r-protein synthesis to m-protein

synthesis.

The dynamics of this system are described by a system

of ordinary differential equations. Together, these three

modules form a coupled system. Given a certain environ-

ment, the system will autonomously evolve to a steady

state, where the time derivative of the concentration of

all species in the model (including those of r-and m-pro-

tein) are equal to zero. The steady state growth rate

depends on the nutrient quality (quantified by kn) and the

fraction of r-proteins.

In silico, numerical optimization of the ribosome

protein fraction reproduces its linear relationship

with growth rate

A study by Scott et al. [4] showed that the r-protein

fraction increases linearly with growth rate when the

nutrient quality is increased, and that the slope of this

increase is steeper for mutants with a lower ribosome

elongation rate, krib. Furthermore, when the krib is

reduced by the addition of translation inhibiting anti-

biotics, the r-protein fraction increases linearly with

decreasing growth rate. The data are reproduced in

Fig. 2A.

To test whether growth rate optimization in our

model is consistent with these findings, we first study

our model without regulation of r-protein synthesis.

We numerically calculated which r-protein fraction

maximizes the growth rate for different nutrient quali-

ties, kn. The results are shown in Fig. 2B and S1A.

We find that indeed the optimal r-protein fraction

increases linearly with growth rate and this increase is

steeper when krib is lower. When we reduce krib while

keeping the nutrient quality constant, which simulates

addition of translation inhibiting antibiotics to the

growth medium, we also reproduce the linear increase

in r-protein fraction with decreasing growth rate.

From Eqn (2), we can see that these observations

are expected only when the degree of saturation of the

ribosome, f(ta), is kept constant. As noted above, from

an economic perspective we also expect f(ta) to be

close to 1. Indeed, in our model, for a large range of

growth conditions, the optimal r-protein fraction is

such that ribosomes are operating close to their maxi-

mal capacity (Fig. S1B). This is also consistent with

the experimental observation that E. coli maintains its

level of tRNA charging high [54] and thus its function-

ing ribosomes active at over 80% of their maximal

activity [13]. Approximately 80% of total ribosomes

are functioning, the remainder are presumably matu-

rating [7]. In our model, there is some deviation from

this behaviour at low growth rates, which might be

because we model tRNA concentrations to be propor-

tional to that of r-proteins. As a consequence, at low

r-protein fractions, the ribosomes are not saturated

with charged tRNAs, even when all tRNA are

charged, simply because there is not insufficient tRNA

around. This deviation might be a model artefact.

From these model optimizations, we conclude that

the observed relationship between growth rate and r-

protein fraction are consistent with growth rate opti-

mization. This brings us to the next question: is the

ppGpp regulatory mechanism of E. coli capable of

optimizing the r-protein fraction?

ppGpp-mediated regulation optimizes ribosome

protein fraction equally well as in silico,

numerical optimization

We tested whether our model, including regulation of

r-protein synthesis by ppGpp, is capable of reproduc-

ing the above mentioned observations. Figs 2C and

S1A indicate that this is the case. So, ppGpp regula-

tion functions in a similar manner as the numerical

optimization algorithm used to obtain Fig. 2B. Across

conditions, ppGpp regulation of r-protein synthesis

maximizes the growth rate by maintaining the ribo-
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somes saturated with amino acids (Fig. S1), giving rise

to the known linear relationship between growth rate

and r-protein fraction (Fig. 2C). To test how sensitive

these finding are to the model parameters, we changed

all parameters involved in the regulation of r-protein

synthesis and calculated how much the new growth

rate deviated from its theoretical maximum. Without

exception, all of the parameters can be changed by

five- to 10-fold in either direction without a notewor-

thy decrease in growth rate (Fig. S1). This can be con-

sidered as an experimentally testable prediction of our

model: moderate changes in, for example the RelA

concentration should not affect the (steady state)

growth rate and ribosome concentration. This regula-

tory mechanism is, therefore, extremely robust. We

consider the ability of the ppGpp mediated system to

attain optimal ribosomes concentrations, regardless of

the exact values of the parameters, as one of the main

findings of the present study and below, we further

determine the origin of this robustness.

In Fig. 3, we compare several other model predic-

tions with experimental data reported in the literature.

Figure 3A shows that our model predicts that upon a

downshift from a rich medium to a less favourable one,

there will be a large transient increase in ppGpp synthe-

sis. We modelled this downshift as a stepwise decrease

in the catalytic efficiency of amino acid synthesis, kn.

Upon such a downshift, amino acids will become limit-

ing and ppGpp synthesis is activated. This results in a

decrease in the r-protein concentration and an increase

in m-proteins, leading to increased amino acid synthe-

sis, an increase in tRNA charging and a decrease in

ppGpp levels. So, upon a downshift, we expect a large

transient increase in the ppGpp level after which it will

decrease, as the r-protein concentration is adjusted to

the new environment, finally reaching a concentration

close to the one before the downshift (Fig. 3A, solid

line). Indeed, such transient increases in the ppGpp

level, followed by a slower decrease, have been

observed in experiments (Fig. 3A, grey circles) [51];

similar data are also reported elsewhere [55]). Similarly,

upon a nutritional upshift, there is a strong repression

of ppGpp synthesis, causing a drop in the ppGpp con-

centration (Fig. 3B,[51]). In our model, this drop

causes a near maximal ribosome synthesis rate until the

ribosome concentration settles on its new, higher steady

state concentration (not shown) and the ppGpp con-

centration returns to a value close to its pre-shift value.

The (nearly) immediate increase in the rate of ribosome

synthesis upon a nutritional upshift has also been

experimentally observed by Shepherd et al. [56] (see

also Langeler et al. [57].) Note that the magnitude of

the transient increase or drop in the ppGpp concentra-

tion depends on the magnitude of the nutrient shift. We

Numerical optimisationB Full model simulationCExperimentA

RibosomePathway 1

Pathway 2

Pathway n

Fig. 2. ppGpp regulation of the r-protein fraction maximizes growth rate and reproduces the experimentally observed linear relationship

between r-protein fraction and growth rate. All panels plot the r-protein fraction against the growth rate. (A) Experimental data adapted from

Scott et al. [4]. (B) Results obtained from numerically optimising the r-protein fraction in a model without ppGpp-regulation. (C) ‘Self-

optimization’ model, where the r-protein fraction is set by the ppGpp regulation mechanism. The growth rate was varied by changing the

nutrient quality of the medium in which the cells were grown (circles) or by changing the concentration of a translation-inhibiting antibiotic

(squares). The blue circles represent wild-type cells; the red and green circles indicate mutants with a decreased maximal specific

elongation rate, krib. Clearly, all results are similar. With increasing nutrient quality, they show the linear increase of r-protein fraction with

growth rate, and this increase is steeper for mutants with a lower krib (blue, red and green circles). If the krib is reduced by addition of

antibiotics, the r-protein fraction increases linearly with decreasing growth rate (purple symbols). These observations imply that the

saturation of ribosomes with charged tRNA is kept constant.
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used shifts from kn=0.275 to kn=0.15, and back again.

Our model also predicts a decrease of the steady state

ppGpp concentration with increasing growth rate,

because higher ribosome concentrations require a

higher rate of ribosome synthesis (Fig. 3C). This is, yet

again, consistent with an experimental observation on

the relationship between growth rate and ribosome

concentration as reported by Bremer & Dennis [13].

The ppGpp-feedback mechanism partially compensates

for rrn-operon deletion; however, abolishing the regula-

tion of ribosome synthesis by knocking out RelA and

SpoT reduces the growth rate. This can be seen from

Fig. 3D, which compares the effect in our model of

reducing the maximal ribosome synthesis rate (to simu-

late rrn-operon deletion) and of uninhibited ribosome

synthesis (to simulate RelA and SpoT knockout) to

experiments performed by Bollenbach et al. [58].

Finally, we note that these model results are also con-

sistent with the observation that increased rRNA

gene-dosage does not significantly increase rRNA tran-

scription [59].

Summarizing, we conclude that the likely control

objective of the ppGpp system is to maintain the ribo-

somes saturated by matching the ribosome concentra-

tion to its demand. The resulting dynamics are

consistent with a number of experimental observations.

The next questions are: How is this achieved? What

are the essential kinetic requirements for this optimiz-

ing behaviour?

The essence of the ppGpp-regulatory mechanism

To extrapolate the previous results to fast-growing bac-

teria in general, we need to determine the requirements

for optimal regulation. First, we analyze the mechanism

of the full model and then we simplify this model to its

essential behaviour. It is the biochemical complexity of

this latter model that will allow us to speculate on the

evolvability and prevalence of this optimal network

motif across fast-growing bacteria. If it is simple, then

we expect this regulatory motif to occur across fast-

growing bacteria, likely by way of parallel evolution.
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Fig. 3. The self-regulation model of protein synthesis incorporating ppGpp control reproduces experimental data. Model predictions

(coloured lines or discs) are compared with experimental data from the literature (grey circles). (A) Dynamic response of ppGpp to a

nutritional downshift at t = 0. Experimental data is reproduced form Murray et al. [51]. Lazzarani & Cashel [55] report similar dynamics (not

shown). (B) Dynamic response of ppGpp to a nutritional upshift at t=0. Experimental data is reproduced form Murray et al. [51]. (C)

Dependence of the steady state ppGpp concentration on growth rate. Data reproduced from Bremer & Dennis [13]. The steady state ppGpp

concentration decreases with increasing growth rate because higher ribosome concentrations require a higher rate of ribosome synthesis.

(D) The effect of rRNA operon number or SpoT and RelA knockout on growth rate. Dx indicates that x out of 7 rrn-operons were knocked

out. Data are reproduced from Bollenbach et al. [58].
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In Fig. 4, we illustrate the compensatory response

of the ppGpp regulatory system to deviations of the r-

protein fraction from its optimal value. Figure 4A

shows the dependence of the doubling rate, propor-

tional to the growth rate, on the ribosomal protein

fraction. These relationships were calculated by only

considering the metabolic subnetwork; thus, the

ppGpp-controlled activities of catabolic and anabolic

protein synthesis were removed. The grey lines indicate

the steady state that the full model reaches. In poor

media near-optimal behaviour is reached, with a minor

deviation of a few percent, which improves with an

increased quality of the medium. In Fig. 4B, we con-

sider the model without transcriptional regulation and

with ppGpp and the metabolic subnetwork. Calcula-

tion of its steady state indicates ultrasensitivity of the

steady-state concentration of ppGpp to changes in the

ribosomal protein fraction. Small deviations from the

optimal r-protein fraction cause large changes in

ppGpp concentration, making it a potent signal for

deviations from optimality. In Fig. 4C, we show that

the relationship of the r-protein synthesis and degrada-

tion rate with the r-protein fraction leads to the opti-

mal r-protein fraction. At the steady state that the

system finally reaches, the synthesis and degradation

rates are equal, and the r-protein synthesis rate

depends on the r-protein fraction through its regula-

tion by ppGpp.

The ultrasensitivity of ppGpp to deviations from

optimality is the origin of the robustness of the

ppGpp-regulatory mechanism (Fig. 4C). When the r-

protein fraction is slightly less than optimal, ppGpp is

very low and thus the r-protein synthesis rate is very

high. Similarly, when the r-protein fraction is slightly

higher than optimal, ppGpp overshoots and r-protein

synthesis is almost completely shut down. Because the

dependence of ppGpp on the deviation from optimality

is so steep, simple first-order inhibition of rRNA synthe-
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Fig. 4. The ultrasensitive response of the ppGpp concentration to deviations from the optimal r-protein fraction lead to optimality across

conditions. We computed the response of the system to deviations from optimal r-protein fractions for three different nutrient conditions

(indicated by the different colours). (A) Doubling rate. (B) the ppGpp concentration. (C) the r-protein synthesis and degradation rate (relative

to the total protein synthesis rate), as a function of the r-protein fraction. (A) The optimal growth rate and ribosome protein fraction together

form the linear relationship, as discussed in the main text. (B) The quasi steady state ppGpp concentration changes strongly from around

1 lM when the r-protein fraction is just below its optimum to 100 lM when it is just above it. This is a consequence of the strong

response in the levels of uncharged tRNA bound to the ribosome (see Fig. S3). (C) The system is in steady state when r-protein synthesis

and dilution (dark grey line) rates are equal. This is indicated by the vertical grey lines. Note that these lines almost coincide with the

optimal r-protein fractions. Regulation of ribosome synthesis always pushes the system back to optimal levels: if the ribosome

concentration is too low, ppGpp is low as well and so synthesis exceeds degradation, and vice versa.
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sis, and thus indirectly of r-protein synthesis, suffices.

The strength of ribosome synthesis inhibition by ppGpp

(quantified by KIppGpp) therefore, does not need to be

precisely tuned to attain optimal regulation, which

makes the system very robust. In addition, the steep

dependency of the r-protein synthesis rate on the r-pro-

tein fraction (Fig. 4C), as a result of the ultrasensitivity

of the ppGpp concentration, indicates that the steady-

state r-protein fraction always lies close to the maxi-

mum.

The origin of the ultrasensitivity of ppGpp is that the

signal controlling its synthesis, uncharged tRNA bound

to the ribosome, also responds ultrasensitively around

the optimum (Fig. S3). Other quantities that could have

been candidates for signalling the deviation from

optimality, such as the total amino acid pool or the con-

centration of charged tRNA, do not show this ultrasen-

sitive behaviour. The uncharged tRNA bound to the

ribosome therefore appears as the best signal for detect-

ing deviations from the optimal ribosome concen-

tration. The question that now remains is the origin of

the ultrasensitivity of the concentration of the complex

of uncharged tRNA bound to the ribosome. This is

addressed below.

Figure 4 also explains the response of the system

to a change in nutrient quality that leads to a

growth rate change (as shown in Fig. 3A,B). Con-

sider the nutrient upshift from medium (orange lines)

to good (red line) nutrient quality. As soon as the

nutrient is changed, the ppGpp concentration will

drop; the time that this takes will be in the order of

seconds to minutes (Fig. 3A ). This causes an

increase in ribosome synthesis, the uncharged-tRNA/

ribosome complex increases, and ppGpp rises until

the ribosome transcript level has achieved steady

state. At this steady state, the ppGpp and

uncharged-tRNA/ribosome complex concentration

have increased slightly and the growth rate has

increased to its new maximal value.

A reduced model that captures the kinetic

requirements for optimal protein levels

We use two reduced models to highlight key features

of the ppGpp regulatory system in E. coli, required for

robust and optimal regulation of ribosome synthesis.

The first model explains the general requirements for

the occurrence of ultrasensitivity in metabolic path-

ways. The second model explains why the concentra-

tion of the complex of uncharged-tRNA bound to the

ribosome is the best signal to measure deviations from

optimality. A full mathematical description of these

models is provided in Doc. S2.

The first model (Fig. 5A) considers two enzymes,

M1 and M2, in sequence. The rate, v1, at which the

metabolic intermediate X is produced by M1, depends

on the nutrient availability, and we include product

inhibition by X with inhibition constant KI1. The rate

of X consumption, v2, is described by simple Michael-

is–Menten kinetics, with Michaelis–Menten constant

KM2
. The aim is to maximize the steady state flux, J,

by optimization of the concentrations [M1] and [M2]

under the constraint of a maximal enzyme concentra-

tion ([M1]+[M2]=[Mtot]). Clearly, the highest flux is

attained if the inhibition of M1 is negligible, and M2 is

saturated with substrate, because then both enzymes

are operating close to their maximal rate. This can

only be attained if product inhibition is weak

(KM2
� KI1 ), in which case the optimum is character-

ized by the condition:

KM2
� ½X� � KI1 : ð4Þ

We note that there exists an approximately 100-fold

difference between the product inhibition constant for

amino acid synthesis and the KM for the ternary com-

plex [60], indicating that the condition, Eqn 4, is met

by E. coli.

This condition has two important consequences: (a)

the optimal J and [M2] are linearly related because in

the optimum M2 is saturated with X (Fig.5B , solid

line), this linear relationship agrees with the linear rela-

tionship between E. coli’s growth rate and its ribosome

fraction. If KM2
� KI1 does not hold, the linear rela-

tionship between optimal flux and [M2] breaks down

(Fig. 5B , dashed lines), because it is no longer optimal

to keep M2 fully saturated. (b) A small deviation from

optimality in [M2] causes a large change in steady state

[X]. This is illustrated in Fig. 5C, which shows v1 and

v2 as a function of [X] for the optimal [M2] (solid

curves) and when [M2] is slightly reduced (dashed

curves). We decreased [M2] from 0.5[Mtot] (its optimal

value) to 0.49[Mtot], which decreases the flux J by 1%,

but increases the steady state [X] by more than 200%.

As a result of Eqn (4), the sensitivity of both v1 and v2
to changes in [X] is low, which can be seen from the

flatness of the curves. Thus, around the optimum,

small changes in flux are accompanied by large

changes in the steady state [X], which explains the ul-

trasensitivity of [X] with respect to deviations from

optimality. Conversely, it also implies that a large

range of [X] corresponds to close to optimal condi-

tions. Any regulatory systems that assures that [X]

returns to approximately the same level upon a pertur-

bation therefore keeps the flux very close to optimal.

Simple repression of synthesis of M1 proteins, or acti-
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vation of synthesis of M2 proteins, by X, therefore

suffices and the exact parameters of the regulatory sys-

tem are of little importance, indicating robustness

(Fig. S4).

Given the discussion above, one might hypothezise

that the amino acid or charged-tRNA pool, which cor-

respond to the pool of the intermediate X in the mini-

mal model, could be a good signal for the regulation

of r-protein synthesis. However, this is not the case.

The reason is that multiple, independent amino acid

biosynthesis pathways converge in this pool. Instead,

the concentration of the uncharged-tRNA (bound to

the ribosome) is a much better signal for deviations of

the ribosome concentration from its optimum. We

illustrate this assertion with a second model that has

one synthesis reaction more than the first model: two

metabolites, Xa and Xb, are now produced by M1a and

M1b, respectively, and consumed by M2 (Fig. 5D). We

again consider weak product inhibition, such that

KIa≫K2Ma and KIb≫K2Mb. In the optimum, M2 will

operate close to its maximal rate and M1a and M1b

close to their uninhibited rates. If M2 is limiting, all

intermediate levels will be very high. However, if one

of the intermediate-producing pathways is limiting,

only the concentration of the product of that pathway

will be low. Because the consumption of all metabo-

lites is stoichiometrically coupled (for proteins the stoi-

chiometric coefficients equal the average amino acid

composition), all non-limiting metabolite levels will be

high (Fig. 5E; also see Elf & Ehrenberg [60] for a

detailed discussion on the accumulation of non-

limiting amino acids). Hence, neither Xa nor Xb are

reliable signals for the regulation of M2 synthesis

because a high level of either intermediate does not

necessarily imply that M2 is limiting. Furthermore, the

total intermediate pool is also not a suitable signal

because, when the concentration of M2 is above opti-

mal, this pool will not be depleted.

The degree of inefficiency of M2, defined as 1�v2/

Vmax,2, is a good signal. Fig. 5F shows that this mea-

A B C

D E F

Fig. 5. Minimal models that achieve optimal protein concentrations to maximize metabolic pathway flux per total invested protein. (A) The

metabolite X is synthesized by metabolic enzyme M1 and consumed by M2, whereas the total amount of protein resources is fixed:

[M1]+[M2]=[Mtot]. A mathematical description of the model is provided in Doc. S2. (B) The relationship between optimal [M2] and the

maximal flux. The maximal flux is increased by increasing the nutrient availability. At large values of the ratio of the product inhibition

constant (KI1) over the Michaelis constant (KM2) the optimal [M2] increases linearly with the optimal flux J (black solid line). This linear

relationship breaks down when KI1 is not much larger than KM2. (C) The rates v1 and v2 as a function of [X]. Solid lines indicate the optimum

where [M2]=0.5�[Mtot] and dashed lines indicate a slight deviation from optimality, [M2]=0.49�[Mtot]. The steady states are indicated by a red

and grey dot, respectively. Clearly, a small change in [M2] brings about a large change in steady state [X]. (D) A model of two converging

pathways. Both metabolites Xa and Xb are required as a substrate for M2, and have weak feedback inhibition (i.e. K1a and K1b are much

larger than KM2a and KM2b, respectively). (E) Because consumption of Xa and Xb are stoichiometrically coupled, the concentration of the non-

limiting metabolite (here [Xb]) remains high, even when [M2] is higher than optimal. Hence, the metabolites are not a reliable signal for

deviations from optimality. (F) The degree of inefficiency of M2, defined as 1�v2/Vmax, 2, responds ultrasensitively to deviations from

optimality. This behaviour does not depend on the relative rate of Xa and Xb synthesis. Hence, this is a suitable regulatory signal.
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sure changes strongly around the optimum. Also, it is

not very sensitive to sub-optimality of relative abun-

dances of supply pathways (dashed lines). The reason

for ultrasensitivity is that, in the optimum, the degree

of inefficiency is very small, and small absolute devia-

tions from optimality result in large relative changes of

this signal. For example, assume that in the optimum,

M2 is 95% saturated (i.e. the degree of inefficiency

equals 0.05 and the degree of efficiency equals 0.95). If

the system is perturbed such that [M2] decreases and

the saturation increases to 99%, this would lead to an

0.04/0.95 9 100% � 4% change in the degree of effi-

ciency, but an 0.04/0.05 9 100% � 80% change in the

degree of inefficiency.

Translating this to E. coli, uncharged tRNA bound

to the ribosome is a measure for ribosome inefficiency,

and hence the most suitable signal to detect deviations

from optimality. However, there is an additional effect

relevant for E. coli, which is absent in the reduced

model, further amplifying the ultrasensitivity of the

uncharged-tRNA ribosome complex. When a particu-

lar amino acid becomes limiting, ribosomes will tend

to stall at the conjugate codon. As a result, there are

more sites for the uncharged tRNA to bind to and the

ultrasensitivity is further enhanced (Fig. S5). When

these mechanisms are combined, they explain the

robustness with respect to changes in kinetic parameter

values (Fig. S2) and environmental conditions

(Figs 2D and 4) of the full growth model.

Discussion

We used a coarse-grained, kinetic model of the regula-

tion mechanism that E. coli uses to balance its cata-

bolic and anabolic protein synthesis rates to show that

the (famous) linear relationship between the ribosome

fraction and the growth rate is in agreement with

growth-rate maximization. E. coli exploits the binding

of uncharged tRNA to the ribosome as a signal of

ribosome excess and subsequently synthesizes ppGpp.

Because this signal responds ultrasensitive to devia-

tions from optimality, an adjustment in the ribosome

concentration that restores optimality can be made in

a robust manner. An unexpectedly simple view

emerges on the relationship between the global protein

economy - [i.e. the partitioning of resources between

catabolic (m-proteins) and anabolic (r-proteins) pro-

cesses] and growth rate. When nutrients are scarce,

nutrient uptake and assimilation are substrate-concen-

tration limited and high catabolic protein concentra-

tions are required to attain high rates of these

processes. This occurs at the expense of protein invest-

ment in anabolic processes. As a consequence, the rate

of protein synthesis decreases, it takes longer to double

the cellular protein content, and the growth rate

decreases. When nutrients are in excess, nutrient

uptake and assimilation reaction are saturated and

require less protein to attain the same rate, a larger

fraction of total protein synthesis can be diverted to

anabolism, the protein synthesis rate increases, and an

increased growth rate follows. This view is consistent

with experimental findings [4] and is supported by

mathematical models [6,7,12]. However, direct experi-

mental illustrations of optimality of the ribosomal con-

centration are regrettably scarce, partially because

such experiments are not straightforward. The most

direct evidence that we are aware of is by Bollenbach

et al. [58]. They manipulated ribosome concentrations

by deleting either various numbers of ribosomal ope-

rons or the genes coding for RelA and SpoT, and

found that, in one particular growth condition, the

wild-type ribosome concentration maximizes growth

rate.

Because we focused on the regulation of ribosome

synthesis, we only modelled how the optimal control

of the synthesis of ribosomes liberates resources to

invest in amino acid synthesis, but not how these

resources are subsequently distributed over metabolic

processes. Interestingly, most amino acid biosynthesis

pathways are either under repressor control of their

own product, or are activated by high levels of

uncharged tRNA conjugate to their product, both of

which respond ultrasensitively to deficiencies in that

particular amino acid [61]. As a result, when one

amino acid becomes limiting, resources are likely redi-

rected from ribosome synthesis to synthesis of proteins

in the biosynthetic pathway of that particular amino

acid. In our model, we took this into account by mak-

ing the amino acid supply well balanced, i.e. the rela-

tive synthesis rate of all amino acids are approximately

equal to their relative consumption rate. More gener-

ally, within metabolism there are other key regulators,

transcription factors and associated metabolic signals,

such as cAMP and fructose 1,6-bisphosphatase, that

redistribute resources according to metabolic demands

[3]. Another source of growth rate related regulation

of major classes of metabolic proteins is via growth

rate-dependent, but selective, adaptation of mRNA

stability [62]. We emphasize that, for tuning of the

ribosome concentration whether, and how, the concen-

trations of metabolic proteins are optimised is not rele-

vant, because these effects are all absorbed in the

catalytic efficiency of amino acid synthesis. Ribosome

concentrations are tuned to the available amino acid

supply, regardless of what is happening ‘inside’

upstream metabolism.
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We did not consider protein degradation, which

might explain why we find an (approximate) propor-

tional relationship between growth rate and r-protein,

where as experimental studies suggest a linear but not

proportional relationship [4]. The reason for this is that

protein degradation implies the need for a certain base-

line rate of protein production to compensate for the

proteins that are degraded. Technically, the in corpora-

tion of a constant rate of protein degradation in our

model would mean that the steady state growth condi-

tion [Eqn (2)] changes to l = (vribosome�vprotein degrada-

tion)/total protein. This implies the curves in Fig. 2B and

C are shifted to the left by an amount vproteindegradation/

total protein, which would make the relationship

between r-protein and growth rate linear but not pro-

portional. Alternatively, a pool of catalytically inactive

ribosomes could explain the linear rather than propor-

tional relationship.

Degradation of specific proteins can also play a role

in adaptation to stresses. For example, in response to

amino acid starvation, ribosomal proteins are

degraded by the protease Lon, in a manner involving

ppGpp [63]. Degradation of r-proteins by Lon requires

inorganic polyphosphate (polyP) [64], and polyP deg-

radation is inhibited by ppGpp and pppGpp [65]. So,

polyP accumulates in response to ppGpp accumulation

as a result of amino acid starvation. The inhibition

constant of polyP degradation by ppGpp is 200 lM
[65], which is much higher than Ki,ppGpp (see eqn (3)

and Table S1) and than the ppGpp concentrations in

growing cells (Up to 50lM, Fig. 3C). Thus, r-protein

degradation by Lon is repressed in growing cells, when

amino acids levels are sufficient. Furthermore, Lon

does not degrade intact ribosomes, but only free ribo-

somal proteins [64]. As a result, Lon dependent,

ppGpp triggered, r-protein degradation does not affect

the steady state ribosome concentration, although it

presumably speeds up adaptation to nutrient stress by

liberating amino acids to be used for synthesis of

nutrient stress related proteins.

In our model, all parameter values except two (the

strength of binding of uncharged tRNA to the ribo-

some, jrt, and the constant rate of ppGpp synthesis by

SpoT, vSpoT,synthesis) are based on literature. Because of

the extreme robustness of the system, we can use prac-

tically any arbitrary value for most parameters without

qualitatively affecting the model behaviour. For exam-

ple changing jrt by an order of magnitude in either

direction still leads to a growth rate of more than 95%

of the theoretically maximal one, and for vSpoT, synthesis
this is even 99%. This independence of the (qualita-

tive) model behaviour form the parameter values not

only makes the conclusions derived in the present

study more robust, but also more likely to apply to

other micro-organisms.

Extrapolation of the strategy used by E. coli for

growth rate maximization to other fast growing bacteria

suggests that three closely-related conditions are met by

this class of bacteria: (a) they are expected to have high

ribosome concentration, (b) since overexpression of

abundant proteins has a high fitness penalty, ribosomes

are expected to be highly saturated with substrate; and

(c) to achieve the last feature robustly across conditions,

a regulatory system is active that regulates the ribosome

concentration and keeps the ribosome saturation degree

high across conditions. This is likely attained by using

the inefficiency of translation as a signal for the regula-

tion of ribosome synthesis. Because of the simplicity of

this regulatory system, we expect it to occur across fast-

growing bacteria.

Scott et al. [4] collected literature data of growth

rate and ribosome concentration for the fast- growing

bacteria Aerobacter aerogenes [66], Candida utilis [67]

and Neurospora crassa [68], which all showed a linear

relationship (see Fig. S1). The linearity occurs when

two conditions are met across conditions: (a) the total

cellular protein concentration is fixed and (b) the spe-

cific elongation rate (i.e. the rate of protein formation

per ribosome) is fixed, which implies that the satura-

tion of the ribosome with substrate is maintained at a

fixed degree. Scott et al. [4] also report the ribosome

growth rate relationship for Euglena gracilis [69],

which has a maximal growth rate that is over 20-fold

lower than E. coli, whereas its ribosome concentration

is only approximately 2 fold lower. Cox [33] reports

similar data for the slow-growing bacteria Streptomy-

ces coelicolor. Slow growing bacteria require more

ribosomes to attain the same growth rate (or, equiva-

lently, grow slower at the same ribosome concentra-

tion), which can be explained by a lower maximal

specific elongation rate of the ribosomes [4,32,33].

Also, for bacteria that grow slow at high ribosome

concentrations, it is expected that they actively prevent

higher than optimal ribosome concentrations, to

reduce the fitness reduction associated with protein

overexpression of an abundant protein. The linear

relationship between the growth rate and ribosome

concentration of these bacteria indicate that they likely

control the saturation degree of ribosomes as E. coli

does.

Little is known about how other bacteria regulate

their ribosome levels. The best understood example is

most likely Bacillus subtilis. It exploits a similar mech-

anism as that employed by E. coli. Also, in this organ-

ism, ppGpp is produced in response to uncharged

tRNA that is bound to the ribosome [70]. However, in
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B. subtilis, transcription regulation of ribosomal pro-

moters is ppGpp independent and is achieved by regu-

lation by the GTP concentration [70]. When this

concentration is high, transcription initiation occurs.

Synthesis of ppGpp during ribosome excess causes

GTP to drop, which inhibits ribosomal gene expres-

sion. Conversely, degradation of ppGpp during ribo-

some shortage causes GTP to rise and activate

ribosomal gene expression [70]. In E. coli, transcription

initiation of ribosomal genes is also dependent on the

energy status of the cell via the dependency of the

transcription initiation rate on the concentrations of

ATP, GTP, FIS and H-NS [53]. However, at nutrient

changes during exponential growth, ATP and GTP

concentrations remain homeostatic in E. coli, and this

possibly explains why ppGpp-mediated control is dom-

inant in E. coli [71]. It appears that B. subtilis and

E. coli share the same growth rate control strategy and

both aim to match their ribosome concentration to the

growth demand. Even though both use different

molecular mechanisms, they effectively monitor the

same signal: uncharged tRNA bound to the ribosome,

and thus, ribosome inefficiency. We also note that, for

Thermus thermophilus, a similar control mechanism

has been proposed [72]. Also, in Mycobacterium tuber-

culosis, ppGpp synthesis is activated by uncharged

tRNA bound to the ribosomes [73].

In the eukaryote Saccharomyces cerevisiae, the

molecular players leading to the adjustments in growth

rate are very different from those in E. coli and B. sub-

tilis [74]. Yet, at a coarse-grained level, the general

control strategy appears to be very similar. The tran-

scription factor GCN4p plays in many ways a similar

role as ppGpp. At high concentrations, GCN4p

induces transcription responses to nutrient and amino

acid starvation. The initiation of the translation of

GCN4 transcripts is regulated by Gcn2p, a kinase,

which is either activated by direct sensing of amino

acid limitation at the ribosome or via other kinases,

such as protein kinase A, involved in nutrient-limita-

tion or stresses [74,75]. Gcn2p binds to the ribosome

and is activated through phosphorylation by a ribo-

some-bound protein complex Gcn1p/Gcn20p that

becomes active when an uncharged tRNA binds to the

A-site of the ribosome. Again, activation of a stringent

response depends on a drop in the saturation degree

of the ribosome.

Materials and methods

All models were analysed using MATHEMATICA, version 10.0

(Wolfram Research, Champaign, IL, USA). For the E. coli

growth model, steady states were first approximated by

integrating the ordinary differential equations forward in

time using the NDSolve function, and then FindRoot to

determine the actual steady state. For the minimal models,

steady states were calculated by setting the time derivatives

equal to zero and (numerically) solving the obtained system

of equalities using the MATHEMATICA (N)Solve function.

Because the dynamics of the metabolic part of all models is

much faster than that at which the biomass concentration

changes, a quasi steady state (QSS) can be defined as the

steady state of metabolism for fixed r and mi values. Opti-

mal states were calculated by maximizing the growth rate/

flux under the constraint that the system is in QSS, using

the MATHEMATICA Maximize or FindMaximum function. A

notebook containing the E. coli growth model is provided

in (Doc. S3).
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