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Abstract: CRISPR/dCas9 is an important DNA modification tool in which a disarmed Cas9 protein
with no nuclease activity is fused with a specific DNA modifying enzyme. A previous study reported
that overexpression of the TET1 catalytic domain (TET1cd) reduces genome-wide methylation in
Arabidopsis. A spontaneous naturally occurring methylation region (NMR19-4) was identified in
the promoter region of the PPH (Pheophytin Pheophorbide Hydrolase) gene, which encodes an enzyme
that can degrade chlorophyll and accelerate leaf senescence. The methylation status of NMR19-4 is
associated with PPH expression and leaf senescence in Arabidopsis natural accessions. In this study,
we show that the CRISPR/dCas9-TET1cd system can be used to target the methylation of hyperme-
thylated NMR19-4 region to reduce the level of methylation, thereby increasing the expression of PPH
and accelerating leaf senescence. Furthermore, hybridization between transgenic demethylated plants
and hypermethylated ecotypes showed that the demethylation status of edited NMR19-4, along with
the enhanced PPH expression and accelerated leaf senescence, showed Mendelian inheritance in F1
and F2 progeny, indicating that spontaneous epialleles are stably transmitted trans-generationally
after demethylation editing. Our results provide a rational approach for future editing of sponta-
neously mutated epialleles and provide insights into the epigenetic mechanisms that control plant
leaf senescence.

Keywords: NMR19; CRISPR/dCas9; DNA methylation; epigenetic inheritance

1. Introduction

Epigenetics is the study of heritable variations that occur in the absence of changes in
the DNA sequence [1]. Epigenetic variations include DNA methylation, histone modifica-
tion, and non-coding RNA. DNA methylation, the addition of a methyl group to position 5
of the pyrimidine ring of cytosine by the action of methyltransferase using S-adenosyl-l-
methionine as the methyl donor, 5-methylcytosine (5mC) is inherited as cells divide [2,3],
and is a biologically important epigenetic modification involved in gene regulation and
transposon silencing [4–6], that plays crucial roles in genome stability, seed development,
genetic imprinting, and abiotic stress in plants [7,8]. De novo DNA methylation is me-
diated by the RNA-directed DNA Methylation (RdDM) pathway in plants [9]. RdDM is
initiated through the action of RNA POLYMERASE IV (Pol IV) to form single-stranded P4
RNA (Pol IV generates transcripts) [10–12], and then through RNA-DEPENDENT RNA
POLYMERASE 2 (RDR2) to form double-stranded RNA (dsRNA) [13,14], which is cleaved
by DICER-LIKE PROTEIN 3 (DCL3) to form 24 nt small interfering RNAs (siRNA) [15],

Int. J. Mol. Sci. 2022, 23, 10492. https://doi.org/10.3390/ijms231810492 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms231810492
https://doi.org/10.3390/ijms231810492
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-8289-4076
https://doi.org/10.3390/ijms231810492
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms231810492?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 10492 2 of 15

and 24 nt siRNAs which are loaded into ARGONAUTE 4 (AGO4) [16–18]. The P5 RNA
(Pol V generates transcripts) formed by RNA POLYMERASE V (Pol V) and 24 nt siRNA are
complementary [19], recruiting DOMAINS REARRANGED METHYLTRANSFERASE 2
(DRM2) and initiating de novo methylation [20,21]. Unlike mammals, there are three con-
texts of 5mC DNA methylation in plants, respectively CG, CHG, and CHH (H represents A,
T, or C), which are regulated by different methyltransferases [9]. After methylation is estab-
lished, CG methylation is maintained by METHYLTRANSFERASE 1 (MET1), a homolog
of DNA methyltransferase 1 (DNMT1) [9]. The methylation of CHG and CHH around
the centromere and long transposon is maintained by CHROMOMETHYLASE 3 (CMT3)
and CHROMOMETHYLASE 2 (CMT2) [22,23]. DRM2 is involved in the maintenance of
CHH methylation at the edge of hetero-chromatin mid-long transposon and euchromatin
mid-short transposon around centromere [22–24]. In plants, REPRESSOR OF SILENCING
1(ROS1) recognizes cytosine methylation and initiates DNA demethylation through the
base excision repair process [25,26].

Previous approaches to the manipulate of DNA methylation and expression mainly
relied on the mutations involved in the DNA methylation machineries or the chemical in-
hibitors of DNA methylation, leading to random genome-wide DNA methylation changes
and the resulting massive off-target consequences [27–29]. Artificially mediated Zinc-finger
has been used to fuse the RdDM effector such as Pol IV and RDR 2 on the FWA promo-
tor [30]. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system
is widely used for targeted gene editing, and the inactivated endonuclease Cas9 has been
used to achieve gene regulation and genome modification editing [31]. CRISPR/dCas9 is a
system with transcriptional regulation function obtained by transforming the Cas9 protein
in the CRISPR/Cas9 system into dCas9 (catalytically dead Cas9) [32]. Compared with
the CRISPR/Cas9 system, the CRISPR/dCas9 system has the ability to bind to the target
site without cutting the DNA strands [33], and the dCas9 protein and single guide RNA
(sgRNA) are combined with some transcription factors to induce activation or inhibition
of a given gene [34,35]. The demethylase Ten-Eleven Translocation (TET) enzymes from
animals are involved in the demethylation process [36,37]. TET1 is an α-ketoglutarate
and Fe2+-dependent dioxygenase that catalyzes the conversion of 5-methylcytosine (5mC)
to 5-hydroxymethylcytosine (5hmC), and can also convert 5-methylcytosine (5mC) to
5-formylcytosine (5f C) and 5-carboxylcytosine (5ca C) [38], and the modified cytosine is
specifically recognized and excised by thymus DNA glycosylase (TDG), and then is excised
by the base excision repair pathway reverts to cytosine, which becomes the demethylation
pathway [39]. Fusion of the TET1 catalytic domain (TET1cd) to the zinc-finger protein
and dCas9 resulted in the loss of targeted gene methylation [40,41]. In plants, overexpres-
sion of TET1 cd in Arabidopsis leads to a decrease in CG methylation across the whole
genome and can be inherited in subsequent generations [42]. Both the zinc-finger fusion
to TET1cd and the dCas9-SunTag fusion to TET1cd with specific sgRNAs can specifically
remove the methylation of the FWA gene promoter and FIE gene body, resulting in late
flowering in Arabidopsis and a dwarf plant phenotype in rice, respectively [40,43]. Since
CRISPR/dCas9 can be used for epi-editing, artificially altered DNA methylation modifica-
tion in plants can be inherited and results in the formation of novel epialleles. Therefore,
the introduction of the CRISPR/dCas9 system into plants is of great significance for the
study of DNA methylation, regarding the causative connection between DNA methylation
variants and observed phenotypic and/or expression variation in natural populations,
namely spontaneous natural epialleles [44].

Differences in DNA methylation in specific regions of the genome cause changes in
gene expression levels and phenotypes, and the alleles that the difference in the DNA
methylation can be stably passed on to the subsequent generations are called epialleles [45].
The SUP (SUPERMAN) gene is a key gene that regulates flower development in Arabidop-
sis. Mutant clk (clark kent) and the sup mutant have similar phenotypes; that is, the flowers
in both mutants have abnormal development. Experiments have shown that the SUP gene
in the clk mutant has a lower expression level, but there is no difference in the nucleic acid
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sequence between the clk mutant and the wild type (WT). Bisulfite analysis showed that in
the clk mutant, the SUP locus is highly methylated. Therefore, CLK and SUP are epialleles
that can be stably passed on to subsequent generations [46]. Other studies on epialleles also
include changes in fruit ripening, vitamin E accumulation, flowering time, photosynthesis,
and sex determination [47–51]. Previously, we identified a naturally occurring methylated
region (NMR19-4) [52], which is a LINE1 type transposon that is present in the promoter
of some ectypes Arabidopsis PPH gene and is independent of the cis and trans genetic
variations, so called pure epialleles [45,53]. In some ecotypes, NMR19-4 hypermethylation
is associated with low PPH expression, while in other ecotypes, NMR19-4 hypomethylation
is associated with high levels of PPH expression, resulting in different leaf senescence.
Recently, a large number of DNA methylation variations have been identified between
different natural accessions of Arabidopsis [54], and these be divided into two types: ge-
netic variation-dependent methylation variation and genetic-independent methylation
variation [55]. Our research focuses on the mechanism of methylation differences that are
independent of genetic variation.

Overall, the epigenetic variation can originate from natural sources and induced
approaches [56]. Natural sources of epigenetic variation refer to spontaneous epimuta-
tions, genetic changes (cis or trans), and Wide crosses polyploidy. Induced approaches
of epigenetic variation include mutations in the epigenetic machineries (epiRILs), chem-
ical treatments (5-AzaC, zebularine), epigenome editing, and tissue culture [56]. Thus
far, methylation of FWA gene is regulated by other epigenetic factors, and the epi-edited
plants are not subjected to Mendelian co-segregation analysis to test the trans-generational
inheritance of edited methylation patterns. While the methylation of NMR19-4 is not
regulated by the RdDM pathway and is independent of genetic variations, it provides a
basis for us to study the heritability of epi-editing the spontaneous epialleles [52]. Here,
we fused expression of a dCas9-TET1cd fusion protein in transgenic Arabidopsis plants
from different ecotypes in which NMR19-4 is hypermethylated. We obtained plants with
demethylated NMR19-4 in multiple subsequent generations, and the demethylated state
can be in stable Mendelian inheritance without overall genome-wide changes in DNA
methylation. Our results provide a reference for future study of trans-generational epi-
editing spontaneous epialleles.

2. Results
2.1. Identification of NMR19-4-Related CRISPR/dCas9-TET1cd Epimutation

At present, studies of epigenetic editing in plants have mainly been focused on the
FWA gene in Arabidopsis [30,40,57], which is regulated by the RdDM pathway, and little
is known about the editing of naturally occurring epialleles. Previously, we identified a
natural epialleles, NMR19, which is highly methylated in C24, but not in Col-0 [52]. The
molecular mechanism of this spontaneous stochastic and genetic variation independent
methylation formation is still unknown. In the TAIR10 reference genome, NMR19 is lo-
cated at the 3′ end of the LINE1 transposon AT5G41835 on the chromosome 5. A specific
truncated and inverted LINE1 transposon at 4.45 Mb on chromosome 5 of C24 was found
by fine mapping and next-generation sequencing, which is the origin of NMR19-4. At the
same time, 140 different ecotypes were screened, and the results showed that 20 ecotypes
were hypermethylated in NMR19-4. The study found that NMR19-4 is located in the
promoter region of the PPH gene, and different methylation states of NMR19-4 lead to
differential expression of PPH; when NMR19-4 is hypermethylated, PPH expression is low,
conversely, when NMR19-4 is hypomethylated, the expression of PPH is high. Therefore,
we sought to further verify this conclusion by manually inducing demethylation, which
showed that the expression of PPH is indeed affected by the methylation of NMR19-4.
We randomly selected four ecotypes for demethylation editing among the 20 NMR19-4
hypermethylated ecotypes and screened the NMR19-4 methylation levels of these Ara-
bidopsis ecotypes on the 1001 Genomes website (Figure 1a), and compared to NMR19-4
hypomethylated ecotype Ber, all screenshots of eco-types NMR19-4 that we selected for
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demethylation editing are hypermethylated. We designed three sgRNAs to target the
two ends and the center of NMR19-4, and based on our previous information, the Pol
III-dependent promoter At7SL-2 was used to drive the sgRNA expression [58], (Figure S1).
Subsequently, the three different sgRNAs were cloned into the dCas9-TET1cd expression
vector, respectively. Then, the CRISPR/dCas9-TET1cd vector was then used for plant
transformation (Figure 1b). To determine whether the transformation caused methylation
changes, we carried out Chop-PCR (Methylation Sensitive Restriction Enzymes PCR) with
MspI methylation-sensitive enzyme based on our previous results [52], and TET1cd geno-
typing at the same time (Figure 1c). The results of Chop-PCR showed that only the DNA
fragment from ecotype Krot 0 was cut, but not the other ecotypes, indicating that the epige-
netic editing was successful (Figure 1c). Thus, we obtained Krot 0-65dc demethylated plant
using the CRISPR/dCas9-TET1cd, indicating that our experimental system can be used
for epi-editing.
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Figure 1. Targeted DNA demethylation of the Arabidopsis NMR19-4 using the CRISPR/dCas9-
TET1cd epigenetic editing system. (a) Methylation level of NMR19-4 in Bor 4, Lp2-2, Bs 1, C24, Per 1,
Krot 0, and Ber; (b) Schematic representation of the CRISPR/dCas9-TET1cd system. The target site
and the regions for bisulfite PCR (BS-PCR) are shown in the schematic. Green filled circles indicate
hypermethylation and red open circles indicate hypomethylation. (c) Chop-PCR analysis of the
methylation level of NMR19-4 detected in transformation Arabidopsis T1 generation. The number
marked in red represents the line we use in our subsequent experiments.

2.2. Inheritance of the Epimutation in Krot 0-65dc

Whether the epi-edited alleles can be stably inherited through multiple generations is
an important concern for epigenetic editing. To investigate the inheritance in Krot 0-65dc,
we randomly selected 18 T2 generation individuals and 22 T3 generation individuals for
Chop-PCR assay of the NMR19-4 methylation levels and found that in both the T2 and T3
generations, the progenies of the edited individuals remained de-methylated compared to
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the wild type (Figure 2a). We also screened homozygous edited individuals without TET1cd
in the T4 generation, and we found that demethylation was still present in the NMR19-4
region in the edited individuals without TET1cd vector, demonstrating that demethylation
editing can be inherited in the offspring independent of the vector (Figure 2b). Based on
our previous results [52], the NMR19-4 transposon is located in the promoter region of the
PPH gene and potentially affects the expression of the PPH gene through DNA methylation.
To determine whether epi-editing-induced demethylation can lead to changes in PPH gene
expression, we assayed the expression levels of PPH gene in the epi-edited individuals,
the Krot 0 wild-type, and the other two NMR19-4 hypermethylated ecotypes C24 and Per
1. The results showed that the gene expression of PPH in the epi-edited plants from T2
and T4 generations were significantly higher than that of the Krot 0 wild type, C24, and
Per 1 (p < 0.05, t-test, Figure 2c), demonstrating that epigenetically induced methylation
changes affect the expression of the PPH gene. Therefore, the hypomethylation status
of the methylation-edited NMR19-4 can be stably inherited in the progeny plants. Our
results suggest that in the spontaneous epialleles, artificial epigenetic editing can affect the
methylation changes and then regulate the expression of the related genes.
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Figure 2. Multiple-generational inheritance of the epi-edited Krot 0-65dc. (a) Chop-PCR analysis of
plants from T2 and T3 generations. The red numbers indicate the lines used in the experiment; (b) T4
generation without CRISPR/dCas9-TET1cd vector, the left is the results of T4 generation detection
Chop-PCR and without dCas9, and the right is the T4 generation detection without TET1cd and
sgRNAs. (c) PPH gene expression in Per 1, C24, Krot 0 WT (Krot 0 wild type), T2, and T4 generations
(n = 3, *, p < 0.05, t-test).

DNA methylation is the most stable and most extensively studied epigenetic modi-
fication and is mainly found to silence transposons, thereby inhibiting the expression of
proximal genes. Since the methylation level of NMR19-4 is negatively correlated with
the leaf senescence [52], we treated Krot 0-65dc T4 generation, Krot 0 wild type, Per 1,
and C24 to dark induction, and recorded their leaf senescence phenotypes before and
after 6 days of dark induction. The results showed that demethylation editing led to a
decrease in the methylation level of the Krot 0-65dc T2, T3, and T4 generations (Figure 2a,b),
which also led to the accelerated leaf senescence compared with the NMR19-4 hyperme-
thylated ecotypes (Per 1 and C24), in which demethylated Krot 0-65dc T4 individuals
exhibited accelerated dark-induced senescence and yellowing of leaves (Figure 3a). To
confirm the accelerated leaf senescence induced by demethylation editing, we measured
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the chlorophyll levels; we found that the chlorophyll content of all plants was consis-
tent before dark induction, while after dark induction, demethylation-edited individuals
showed significantly lower chlorophyll content than others, strongly supporting the leaf
senescence phenotype (p < 0.01, t-test, Figure 3b). This result is also consistent with our
previously published results showing that hypomethylated NMR19-4 is associated with
elevated PPH gene expression and accelerated leaf senescence [52]. We also performed
bisulfite sequencing analysis of the NMR19-4 region; the result demonstrated that the target
region showed obvious hypomethylation in all three contexts in T4 generation (Figure 3c,
Table S2). To further validate the targeted DNA demethylation of NMR19-4, we performed
whole-genome bisulfite sequencing (BS-seq) of the two T4 generation individuals without
TET1cd and two Krot 0 wild-type plants. Over 95% CT conversion in all of the samples
by calculating the bisulfite mapping rate of unmethylated chloroplast and mitochondrial
DNA, indicating that the bisulfite treatment was complete, and the results are reliable
(Table S3). In total, 42,115,420–52,859,086 raw reads were generated from each sample and
the mapping rates over 75% for all the samples, providing high-quality methylation level
data (Table S4). Analysis of our sequencing results showed that our epi-editing did not
cause a large change in the whole-genome methylation level (Figures 3d and S2). At the
same time, we showed that the methylation levels of C, CG, CHG, and CHH of NMR19-4
in T4 generation progeny plants was lower than that in the Krot 0 wild type (Figure 3e),
corroborating our Chop-PCR results (Figures 1c and 2a,b). We also sequenced the tran-
scriptomes of T4 generation TET1cd-free individuals in the and Krot 0 WT, and found that
PPH expression was significantly increased in the epi-edited progeny plants (Figure 3f,
Table S5). Thus, using our CRISPR/dCas9-TET1cd system, we demonstrated that targeted
demethylation editing of NMR19-4 charged the demethylation status of offspring, and
that is stably inherited and accelerates leaf senescence. Through methylation detection,
quantification of PPH expression measurement, and analysis of leaf senescence phenotype
analysis in the demethylation edited individuals, we also proved that PPH expression
is indeed controlled by, but not just associated with, the methylation status of NMR19-4,
illustrating the feasibility of our demethylation editing system.
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represent methylated cytosine and the empty circles represent unmethylated cytosine. (d) Genome
methylation level between Krot 0 WT (Krot 0 wild type) and T4 generation. There are two replications
in Krot 0 WT (Krot 0 wild type) and T4 generation. (e) Integrated Genome Browser (IGB) snapshot
showing methylation variation between Krot 0 WT (Krot 0 wild type) and T4 generation generated
from BS-seq data. The blue line indicates the level of methylation. (f) RPKM values from RNA-seq
data of Krot 0 WT (Krot 0 wild type) and T4 generation (n = 3, **, p < 0.01, t-test).
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2.3. NMR19-4 Methylation Status after CRISPR/dCas9 Editing Is Mendelian Inheritance

Since NMR19-4 is a spontaneously formed epiallele and is not regulated by RdDM [52],
we wanted to ask whether the hypomethylation state is Mendelian transmission of alleles
in crosses between the epi-edited Krot 0 hypomethylated individuals wild-type plants.
To test our hypothesis, according to documents of Arabidopsis thaliana SNPs of differ-
ent ecotypes and the methylation levels of NMR19-4, we selected F1 and F2 plants from
reciprocal crosses in Krot 0-65-10-9-1dc (NMR19-4 hypomethylated individuals), Per 1
(NMR19-4 hypermethylated ecotype), and C24 (NMR19-4 hypermethylated ecotype) to
examine whether both PPH expression and leaf senescence co-segregate with the NMR19-4
methylation status using Cleaved Amplified Polymorphic Sequences (CAPS), Chop-PCR,
leaf senescence induced in dark, and qPCR assays (Figures 4b,c and S3). Here, the methyla-
tion levels in F1 and F2 progenies from crosses between hypermethylated ecotypes and
NMR19-4 hypomethylated individuals are specially inherited by allele, that is, there is no
interaction between the methylation levels of different alleles, which is consistent with
Mendelian segregation (Figure 4a,b). As a result, all F1 progenies were in a hyperme-
thylated state, with the same level of PPH expression and chlorophyll content as in the
parents (Figure 4b,c). In addition, among the F2 progeny, there were individuals that
were homozygous for the NMR19-4 hypermethylated allele and individuals that were
homozygous for the NMR19-4 hypomethylated allele. CAPS genotyping proved which
parents NMR19-4 hypomethylated and hypermethylated alleles came from. Thus, the
methylation status of NMR19-4 in demethylation-edited Arabidopsis plants is stably in-
herited (Figure 4b). For further validation, we examined chlorophyll content and PPH
expression levels in some NMR19-4 hypermethylated and hypomethylated individuals
from the F2 generation. Consistently, in the F1 hybrid and the segregating F2 popula-
tion, the expression levels of PPH in plants in which NMR19-4 was hypomethylated were
higher than those carrying the NMR19-4 hypermethylated allele (p < 0.05, t-test, Figure 4c),
while the chlorophyll levels were lower, which was further validated by selecting dif-
ferent parents to cross (Figure S3). These results indicate that the methylation status of
the epi-edited NMR19-4 can be stably separated in the hybrid progeny, and the edited
NMR19-4 can also regulate the expression of PPH as well as leaf senescence in Arabidop-
sis. These results are consistent with those from our previous crosses between NMR19-4
hypermethylated and hypomethylated ecotypes, in which the F2 individuals from hy-
pomethylated plants have low methylation levels, high levels of PPH expression, and rapid
chlorophyll degradation, and vice versa [52]. Thus, we confirmed a Mendelian inheritance
of epi-edited spontaneous epialleles by showing that the hypomethylated state of NMR19-4
can still be segregated in F2 progeny after de-methylation-edited plants are crossed with
hypermethylated plants, and the hypomethylated state of NMR19-4 was not affected by
hypermethylation counterparts via RdDM dependent trans-chromosomal methylation
interaction in the F1 hybrids [59,60]. Taken together, our experimental results demon-
strate that the methylation state of spontaneous epialleles produced by CRISPR/dCas9
editing can be stably maintained by trans-generational inheritance and further showed that
methylation of NMR19-4 regulates leaf senescence in Arabidopsis.
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Figure 4. Demethylation-edited NMR19-4 loci can be trans-generationally transmitted by Mendelian
inheritance in F1 hybrid and F2 segregation. (a) A schematic diagram of trans-generational transmis-
sion by Mendelian inheritance in F1 hybrid and F2 progeny. Filled green circles indicate hyperme-
thylation and red empty circles indicate hypomethylation. (b) The methylation status of NMR19-4
was detected by Chop-PCR in F1 and F2 recombinant lines. The arrows on the left side of the gel
photo indicate the specific alleles corresponding to the bands in the gel. The numbers of A1 to A19
and B1 to B19 represent the different individual plants, and all of them were used for Chop-PCR,
CAPS, darkness-induced leaf senescence, and qPCR assays. CAPS: Based on the difference in the
parental allele SNPs, the same primer was used for amplification, and the resulting PCR products
were then digested with a restriction enzyme, and the specific inheritance allele in the progeny based
on the distinguish of the digested band. (c) Quantification of chlorophyll content after 6 days of dark
induction in the F1 and F2 recombinant lines by qPCR (n = 3) (**, p < 0.01, t-test) and the expression
level of PPH in F1 and F2 recombinant lines by qPCR (*, p < 0.05, t-test).

3. Discussion

The CRISPR/Cas9 system consists of a single guide RNA (sgRNA) and the Cas9
protein and is an important tool for targeted modification of DNA [61]. In recent years, the
CRISPR/Cas9 system has been modified to regulate transcriptional activity by fusing other
enzymes. Cas9 is a protein composed of a NUC nuclease domain and a REC domain [62].
The NUC domain includes RuvC domain, PAM domain, HNH domain, and WED do-
main [62,63]. Cas9 protein uses the HNH domain and RuvC domain nuclease activity to
perform cleavage function [61]. Firstly, the sgRNA recognizes the complementary sequence
in the genome and form an RNA-DNA heteroduplex. Then, Cas9 introduces a double
strand break (DSB), leading to that, the damaged DNA is repaired in the organism to
generate mutants in the target sequence [64]. The CRISPR/dCas9 system is an upgraded
system based on the CRISPR/Cas9 system that can be used to regulate and for targeted
epigenetic editing. The HNH and RuvC domains of the Cas9 protein have been mutated
to make inactivate [32]. The dCas9 protein without its original cleavage function can be
fused to a variety of proteins, such as transcriptional activators or repressors and epigenetic
enzymes, and is guided by sgRNA to modify the target DNA strand precisely [31]. Studies
have shown that the expression of target genes can be efficiently induced or silenced by
the fusion expression of dCas9 to the transcriptional activator VP64 or the transcriptional
inhibitor KRAB [65,66].

Epigenetics includes histone modification, DNA methylation, and non-coding RNA
regulation. Therefore, researchers have made a lot of attempts in epigenetic editing using
CRISPR/dCas9 technology. In 2015, it was found that fusing the human acetyltransferase
p300 with the dCas9 protein can promote the acetylation of the promoter H3K27, resulting
in the activation of target gene transcription [67]. In 2017, dCas9-HDAC1 was used to
modify histone deacetylation on the KRAS promoter, resulting in KRAS gene silencing [68].
Chen et al., fused histone methylase with dCas9 to form a CRISPR/dCas9-EZH2 system
that can target histone methylation and downregulate gene expression [69]. The dCas9
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SunTag-JARID1A histone demethylation system affects gene expression by reducing histone
methylation levels [70]. The study found that dCas9 fusion to DNMT3a can induce specific
promoter methylation and can also use multiple gRNAs to target multiple sites in order to
methylate large fragments of promoter regions [71]. In plants, dCas9 fused to NtDRMcd
targeted mutant FWA methylation and produced an early-flowering phenotype [65].

DNA demethylases play an important role in the regulation of epigenetic modification
in organisms [72]. The study achieved targeted demethylation using the CRISPR/dCas9
system and successfully induced FWA gene activation [65]. Through genetic engineering,
the MS2 RNA element was inserted into the sgRNA and cooperated with dCas9-TET11cd
to successfully recruit more demethylases to achieve demethylation [73]. The modified
dCas9-SunTag system successfully recruited more demethylases and achieved a wider
range of demethylation. In plants, targeted demethylation of the FWA promoter using
SunTag-TET1cd resulted in site demethylation and yielded a late flowering phenotype [40].
In our experiments, we attempted to demethylate NMR19-4 via editing with dCas9-TET1cd
fusion, and further verified that PPH expression is regulated by NMR19-4 methylation. Our
epi-editing experiments demonstrated that the methylation status of NMR19-4 affects the
expression of PPH, which in turn affects the rate at which leaf senescence occurs. Therefore,
based on this previous foundation and the results of our research, we can try to fuse the
plant native demethylase, like ROS1 or DEMETER [72], into the CRISPR/dCas9 epi-editing
system in the future.

The growth of plants is easily affected by their environment, so a series of self-
protection mechanisms have evolved to maintain growth and development. Plants have
evolved complex mechanisms that allow them to sense and adapt to changes in the external
environment. Among these, DNA methylation plays an important role in the response
of plants to environmental changes [54]. Drought induces altered methylation sites in
rice, and some of these altered methylation sites were retained after stress relief [74]. The
study found that when Brassica napus L. was treated with potassium dichromate, it caused
genome-wide hypermethylation [75]. On the contrary, the whole genome methylation
in Trifolium repens and Cannabis sativa decreased under stress such as Ni2+, Cd2+, and
Cr6+ [76]. The methylation level in the potato cultivar ‘Russet Burbank’ was reduced
after salt stress treatment, while DNA methylation was significantly increased in alfalfa in
response to high-salt treatment [77,78]. Temperature is an important factor that impacts
plant growth and development, and high temperature affects DNA methylation status in
Arabidopsis [79]. Cold stress-induced hypomethylation of the maize root-specific Ac/Ds
transposon region due to down-regulation of MET1 expression [80]. In future research, we
can learn from the use of CRISPR/dCas9 epi-editing system to improve plant traits and
make their growth more adaptable to environmental changes.

Leaf is an important photosynthetic organ in plants. SUVH2-overexpressing plants
show abnormal leaf development and delayed senescence phenotypes [81]. Transcriptome
analysis found that SUVH2 overexpression alters the inducible expression of genes that
regulate aging [82]. In 2018, we discovered the transposon NMR19-4 by screening 140
ecotypes of Arabidopsis and that methylation of NMR19-4 can inhibit the expression
of leaf senescence gene PPH and thus affect the leaf senescence in different ecotypes of
Arabidopsis [52]. At the same time, the methylation level of NMR19-4 was significantly
negatively correlated with the average temperature in the dry season. Therefore, NMR19-4
may adapt to environmental changes by changing the expression of PPH gene. Because
leaf senescence is a complex biological process, the epigenetic regulation mechanisms are
still unclear. For the current plant epigenetic editing, most of them involve in editing
the commonly used FWA gene, which is regulated by RdDM [30,40,65]. Therefore, we
selected NMR19-4 for editing because the spontaneous mutation is not regulated by RdDM.
After the epi-edited plants were obtained, crosses were carried out to verify that the edited
demethylation state could be transmitted to future generations in Mendelian inheritance.
In-depth elaboration and study of spontaneous methylation variation plays an important
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role in increasing our understanding of epigenetic diversity. Research has emphasized the
role of methylation variation in the response and plant stress adaptation [83].

Intriguingly, in the four NMR19-4 hypermethylated ecotypes that were randomly
selected for CRISPR/Cas9-TET1cd targeted epi-editing, only Krot 0 was demethylated
successfully. We also give the positions of the sgRNAs and PAM sequences in the four
ecotypes (Figure S1), but we failed to find SNP differences in the positions corresponding to
the sgRNAs of the four ecotypes. Since dCas9 SunTag-fused VP64 can activate transposon
expression in heterochromatin regions [65], an ATAC-seq (assay for transposase-accessible
chromatin using sequencing) analysis showed that whether NMR19-4 was hypermethylated
or hypomethylated, its chromatin position was not open (Figure S4). However, why Krot 0
was edited successfully is still worthy of additional research. In future research, we will
improve the vector to use a SunTag fusion vector, and try to fuse methylating enzymes such
as DRM with dCas9 for epi-editing. We will also try to use different editing methods for
the editing in plants to provide a basis for the subsequent improvement of crop traits. At
the same time, demethylation of NMR19-4 by epi-editing has deepened our understanding
of leaf senescence mechanisms.

With the in-depth application of CRISPR/dCas9, it has also made progress in plant
research. At present, CRISPR/dCas9 is mainly used for gene expression regulation and
epigenetic modification. For example, activation of FWA gene expression with dCas9 and
VP64 in Arabidopsis [65], linking dCas9 to TET1 in Arabidopsis and rice promotes the
reduction of target site methylation level [40,43]. Therefore, the CRISPR/dCas9 system has
shown strong adaptability in plants. In our study, the CRISPR/dCas9-TET1cd demethyla-
tion system can target spontaneous epialleles-NMR19-4, leading to methylation reduction
and can be stably inherited in the progeny. It provides a reference for future research on
spontaneous epialleles in more crops, and also broadens ideas for future crop breeding.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

All plants were grown under 16 h light/8 h dark. Arabidopsis seeds were grown
on 1/2 Murashige and Skoog (MS) medium solidified with 0.7% agar and containing
1.5% sucrose, and plates were incubated at 4 ◦C for 7 days in darkness before being
transferred into a growth chamber. After 14 days of growth in the growth chamber, the
14-day-old seedlings were transferred to the soil. All mutant lines in this study were Krot
0 background. When Arabidopsis grows to flowering, the flowers were emasculated in the
afternoon and pollination was performed in the morning of the next day, thereby producing
the F1 generation hybrid seeds.

4.2. Vector Construction and PCR Assay

We used the Arabidopsis Pol III-dependent promoter At7SL-2 to initiate sgRNA tran-
scription. TET1cd was cloned and linked into the 1300-dCas9 vector [41]. Three sgRNAs were
linked into the 1300-dCas9-TET1cd vector, respectively. The final 1300-sgRNA-dCas9-TET1cd
vector was transformed into GV1301 (A. tumefaciens), which was then transformed into the
Arabidopsis plants. The seeds of T0 transgenic plants were screened on 1/2 MS with hy-
gromycin B. We designed special primers to confirm TET1cd insertion, for Chop-PCR and
identification of hybrid generations, and then MspI(NEB) for Chop-PCR and MboI(NEB)
and EarI(NEB) for CAPS detection. Genomic DNA samples (100 ng) were digested for 4 h
at 37 ◦C in a 20 µL reaction mixture volumes. For Chop-PCR, PCR detection was performed
using 4 µL of the digest genomic DNA as template. All of our PCR reactions were carried
out using 2 × Es Taq Master Mix (CWBIO, Taizhou, China). Primer sequences were listed
in (Table S1).

4.3. Whole-Genome Bisulfite Sequencing

For the preparation of Whole-Genome Bisulfite Sequencing (BS-seq) libraries, genomic
DNA was extracted from two-week-old plants using CTAB-based method. After the
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Illumina second-generation sequencing was off, the raw data of DNA bisulfite sequencing
was obtained. First, quality control of the raw data was performed using software SeqPrep
(https://github.com/jstjohn/SeqPrep, accessed on 12 November 2021) and Sickle (https:
//github.com/najoshi/sickle, accessed on 12 November 2021). The clean reads after quality
control were aligned to the Arabidopsis genome through Bsmap (https://github.com/
genome-vendor/bsmap, accessed on 12 November 2021), and the methylation alignment
rate and coverage were calculated. The false discovery rate (FDR) was calculated using the
Bonferroni method to correct for p values, and FDR < 0.05 was to be considered statistically
significant. Methylation levels of C, CG, CHG, and CHH contexts were calculated by using
perl scripts.

4.4. Bisulfite Sequencing

Krot 0 WT and T4 generation genomic DNA (1 µg) were performed for the CT conver-
sion using the EZ DNA Methylation-GoldTM Kit (ZYMO, Irvine, CA, USA). Then the CT
conversed DNA template was for PCR amplify by using 2 × Es Taq Master Mix (CWBIO).
The purified products cloned into pCE2 TA/Blunt-Zero Vector (Vazyme, Nanjing, China)
and transformed into Escherichia coli DH5α. Total 20 positive clones were analyzed by using
web-based Kismeth (http://katahdin.mssm.edu/kismeth, accessed on 15 May 2022) [84].

4.5. qRT-PCR Analysis

For all of our qRT-PCR experiments, total RNA was extracted from the leaf tissue of
plants that had been grown in soil for 10 days. An amount of 1µg of total RNA was used
for cDNA synthesis by cDNA synthesis kit (TaKaRa, Beijing, China). The cDNA was then
diluted and used for qPCR validation of gene expression and then stored at −40 ◦C. We
used the SYBR Green I Master mixture (Roche, Basel, Switzerland) as qRT-PCR reagent.
The 2−∆∆CT method was used to calculate the relative gene expression levels [85]. Primer
sequences were given in (Table S1).

4.6. RNA-Seq Analysis

Total RNA was extracted from 2-wk-old plants using based-TRIzol extracyion method.
The original Illumina transcriptome sequencing data was checked, and the fastp software
(https://github.com/OpenGene/fastp, accessed on 27 January 2022) was used for quality
control to obtain high-quality clean reads. Sequencing reads were aligned to the TAIR10
using TopHat (http://tophat.cbcb.umd.edu/, accessed on 27 January 2022). After sequence
alignment, the gene expression of all samples were calculated using the RPKM method.

4.7. ATAC-Seq Analysis

For the preparation of ATAC-seq (assay for transposase-accessible chromatin us-
ing sequencing) analysis, the quality control after sequencing was checked by FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/, accessed on 21 April 2022).
For data showing residual joints during quality control, we used fastp software to remove
connectors [65]. The data were aligned to the Arabidopsis thaliana reference genome incor-
porating the NMR19-4 sequence using Bowtie2 software [86], and finally further converted
into bam files. After the bam files were deduplicated with sambamba software [87], they
were converted into wig files and visualized by Integrated Genome Browser (IGB).

4.8. Darkness-Induced Leaf Senescence Assay and Quantification of Chlorophyll Content

After seedlings were transplanted to soil, the 10-day-old plant rosette leaves were
placed in a square petri dish containing three layers of filter paper, and the filter paper
was immersed with deionized water, and the plate was wrapped tightly in aluminum
foil, and placed in a growth chamber for cultivation. According to the method given in a
previously published paper, we extracted chlorophyll from the leaf tissues of the plants
using of 80% ice-cold acetone and measured and calculated chlorophyll content by UV
spectrophotometer [88].

https://github.com/jstjohn/SeqPrep
https://github.com/najoshi/sickle
https://github.com/najoshi/sickle
https://github.com/genome-vendor/bsmap
https://github.com/genome-vendor/bsmap
http://katahdin.mssm.edu/kismeth
https://github.com/OpenGene/fastp
http://tophat.cbcb.umd.edu/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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4.9. Published Data

The BS-seq data of NMR19-4 from all our used wild-type accessions were sourced from
the 1001 Genomes (https://www.1001genomes.org, accessed on 10 April 2021). The data of
ATAC-seq is available in the National Center of Biotechnology Information (NCBI) under
the accession number SRP300093 (https://www.ncbi.nlm.nih.gov/sra/?term=SRP300093,
accessed on 20 October 2021).

5. Conclusions

We have successfully used the CRISPR/dCas9-TET1cd system to edit NMR19-4
demethylation and obtained NMR19-4 demethylated plants. The demethylation status of
NMR19-4 can be stably inherited in the progeny without the vector, and the CRISPR/dCas9-
TET1cd system did not cause genome-wide methylation changes significantly; since
NMR19-4 hypomethylation can upregulate the expression of PPH and promote leaf senes-
cence, the results of quantitative experiments confirmed that the expression of PPH was
up-regulated in NMR19-4 demethylated plants, and darkness-induced leaf senescence
indicated that leaf senescence was accelerated in NMR19-4 demethylated plants. At the
same time, the results of hybridization showed that demethylated NMR19-4 is Mendelian
inheritance. These results provide a reference for our further spontaneous epialleles editing
of crops in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms231810492/s1.
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