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ABSTRACT

Pairwise sequence alignment is a ubiquitous tool for
inferring the evolution and function of DNA, RNA and
protein sequences. It is therefore essential to iden-
tify alignments arising by chance alone, i.e. spurious
alignments. On one hand, if an entire alignment is
spurious, statistical techniques for identifying and
eliminating it are well known. On the other hand, if
only a part of the alignment is spurious, elimination
is much more problematic. In practice, even the
sizes and frequencies of spurious subalignments
remain unknown. This article shows that some
common scoring schemes tend to overextend align-
ments and generate spurious alignment flanks up to
hundreds of base pairs/amino acids in length. In the
UCSC genome database, e.g. spurious flanks prob-
ably comprise `18% of the human–fugu genome
alignment. To evaluate the possibility that chance
alone generated a particular flank on a particular
pairwise alignment, we provide a simple ‘overalign-
ment’ P-value. The overalignment P-value can iden-
tify spurious alignment flanks, thereby eliminating
potentially misleading inferences about evolution
and function. Moreover, by explicitly demonstrating
the tradeoff between over- and under-alignment,
our methods guide the rational choice of
scoring schemes for various alignment tasks.

INTRODUCTION

Figure 1 displays some genomic alignments from the pop-
ular UCSC genome browser (http://genome.ucsc.edu/) (1).
The alignments are ‘optimal local alignments’, i.e. geno-
mic subsequence–subsequence alignments maximizing an
alignment score (2,3). Because the rigorous Smith–
Waterman–Gotoh algorithm for optimal alignment is
relatively slow, fast heuristic methods like FASTA and
BLAST have been developed (4,5). The genomic

alignments in Figure 1 were made with a BLAST variant
called BLASTZ (6,7).
In Figure 1, a region from human chromosome 2 aligns

to mitochondrial DNA (mtDNA) from fugu, dog, rat and
mouse. Probably, chromosome 2 harbors a recent nuclear
insertion of mtDNA (NUMT), of which there are many in
the human genome (8). The dog, rat and mouse align-
ments all terminate at precisely the same location in the
NUMT sequence, indicating a putative end of the NUMT
in chromosome 2. The fugu alignment extends 85 bp
farther to the left, however, suggesting the erroneous
extension of a ‘true alignment’ into an unrelated sequence.
Figure 2 shows a part of the fugu alignment from

Figure 1 in detail. The dashed line plots the cumulative
alignment score (labeled ‘Left score’ on the y-axis to the
left). For every pair of aligned letters, the cumulative score
adds a score from a scoring matrix, and for each align-
ment gap, it subtracts a penalty score. Starting from the
left end-position of the optimal local alignment, the cumu-
lative alignment score never drops below zero—necessarily
so, else the alignment score would not be maximal—but
the score remains close to zero for about the first 85 bp.
The proximity to zero is a hint that the flank of the fugu
alignment is not trustworthy.
In Figures 1 and 2, for each gap of size k, BLASTZ

reduced the cumulative score by 400+30 k, a so-called
‘affine gap penalty’ with gap opening penalty (GOP) of
400 and gap extension penalty (GEP) of 30. BLASTZ
used the HoxD55 matrix for the fugu DNA alignment,
and the HoxD70 matrix for the mammalian DNA align-
ments (Table 1). For reference, Table 2 lists some typical
scoring schemes for DNA and protein alignments. The
HoxD70 matrix (and presumably also HoxD55) derives
from aligned segments of human and mouse DNA (9).
Unlike simple match/mismatch scoring schemes, the
HoxD matrices apply lesser penalties to transitions
(A$G and C$T) than to transversions [although simple
match/mismatch scoring schemes might be more appropri-
ate for species not exhibiting transition–transversion bias
(10)]. Similarly, the BLOSUM scoring matrices reflect the
substitution frequencies found in blocks from protein
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alignments (11). (Each number, e.g. 45 in BLOSUM45,
refers to a percent identity threshold, so lower thresholds
increase the dissimilarity of the letter pairs contributing to
the substitution frequencies.)
Statistical P-values (or E-values) can discriminate bio-

logically interesting alignments from chance sequence
similarities. Unfortunately, current P-values evaluate
only entire alignments. If applied, even though the align-
ment flank in Figure 1 appears spurious, the P-values

would indicate (probably correctly) that the fugu align-
ment is biologically interesting. Clearly, it would be
useful to be able to control the risk of overextending a
true pairwise sequence alignment and to identify poten-
tially spurious alignment flanks.

Accordingly, given an alignment scoring scheme and a
set of background letter frequencies, we calculate the dis-
tribution of how far a ‘true alignment’ extends into a
flanking pair of random sequences. For several DNA scor-
ing schemes, by considering NUMTs with known edges,
we demonstrate the practical tradeoff between the risks of
over- and under-alignment. Finally, for various scoring
schemes, we calculate the score distribution of alignment

Figure 1. A likely overalignment between fugu mtDNA and a human
nuclear insertion of mitochondrial DNA. The figure displays four pair-
wise alignments, of a 200-bp stretch of human chromosome 2 to the
fugu, dog, rat and mouse genomes, taken from the UCSC genome
browser (version hg18). The light gray bars on the right represent
mtDNA from the four organisms; the darker bars on the left, nuclear
DNA. Note that the mtDNA alignments extend beyond the right-hand
edge of the figure.

Figure 2. Overalignment P-values for the start of the fugu–human alignment in Figure 1. The upper sequence is from the fugu mitochondrial
chromosome, and the lower sequence is from human chromosome 2. (The alignment extends further to the right than shown in Figure 2.) The solid
line under the human sequence indicates the region aligning to the dog, rat and mouse mtDNA; the dotted line, the putative spurious left flank
starting at the boundary position (marked with ‘?’, to indicate its putative nature). The dashed line shows the cumulative alignment score, starting
with zero at the left, using the HoxD55 matrix with GOP=400, GEP=30. The solid line shows the probability of obtaining this score or greater by
alignment of two random sequences, from the formula P � cely for the cumulative alignment score y. The single downward arrow indicates the
P-value P at the boundary position, between 10�2 and 10�3. Trimming the left flank at P-value P requires trimming to the rightmost occurrence of
the P-value P, indicated by the downward double arrow. (As an aside, the alignment would still match reasonably well if it moved the first seven
human bases after the boundary position to the other end of the large gap, perhaps supporting the undependability of the alignment to the left of the
downward double arrow).

Table 1. The HoxD55 and HoxD70 scoring matrices

HoxD55 HoxD70

A C G T A C G T

A 91 �90 �25 �100 91 �114 �31 �123
C �90 100 �100 �25 �114 100 �125 �31
G �25 �100 100 �90 �31 �125 100 �114
T �100 �25 �90 91 �123 �31 �114 91
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extensions occurring by chance alone, thereby calculating
the overalignment P-values pertinent to spurious align-
ment flanks. Thus, our quantitative results permit a
rational basis for choice of scoring schemes for balancing
the risks of over- and under-alignment.

METHODS

We used crude Monte Carlo sampling to generate 10 000
pairs of pseudo-random sequences of fixed length 400.
We also generated pseudo-random sequences with impor-
tance sampling. The importance sampling technique deter-
mines random sequence lengths dynamically. It is faster
than crude Monte Carlo and can usually compute the
statistical parameters for local alignment in real time
(i.e., within 1 s) (12). We quantified the probability of
zero flank length, the average flank length and the over-
alignment parameters c and l (from the approximate
P-value formula P � celyfor a flank score y). The simula-
tion errors for c and l were estimated from the so-called
‘splitting method’ (Park,Y., Sheetlin,S. and Spouge,J.L.,
2008, manuscript in preparation); and for the probability
of zero flank length and the average flank length, from
standard errors. In Supplementary dataset 1, empty
fields indicate that simulations were unable to confirm
that the corresponding scoring schemes were in the local
regime, making computation of the overalignment para-
meters infeasible. [The Results section indicates why a
practical scoring scheme must be in the local regime. As
a scoring scheme moves out of the local regime, a phase
transition occurs, making the sequence lengths in impor-
tance sampling increase to infinity (13).]

To explain the probability of zero flank length and the
average flank length in detail, consider a high-scoring true
alignment containing two sequences, and concatenate
each of the two sequences to a random flank sequence.
If the maximal scoring alignment of the concatenated
true and flank sequences included no flank sequences,
the flank length was 0: there was no overextension.

If over-extension occurred, then the flank length is the
number of letters the maximum alignment contains from
the first concatenated flank sequence.
To identify recent human NUMTs, we aligned the

human mitochondrial genome to the human nuclear
genome (UCSC version hg18) using NCBI BLAST
2.2.17 with options -p blastn -e 1e-10 -m 9 -F ‘m D’. We
then kept BLAST hits that matched gaps in either the
hg18/rheMac2 or hg18/panTro2 alignment nets from
UCSC, allowing up to 5-bp difference between the edge
of the BLAST hit and the edge of the gap.
To test various scoring schemes, the human NUMTs

were aligned to mtDNA from mouse (UCSC version
mm9), fugu (UCSC version fr2) and the inshore hagfish
Eptatretus burgeri (Refseq NC_002807.1) (14), using an
implementation of the Smith–Waterman algorithm
(‘water’ from EMBOSS 5.0.0) (15). Figures 2–6 were cre-
ated with R (www.R-project.org).

RESULTS

We generated pseudo-random sequences to determine
how far typical alignment scoring schemes spuriously
overextend alignments into neighboring unrelated
sequences. Random protein sequences reflected the stan-
dard Robinson–Robinson (16) amino acid frequencies;
random DNA sequences, the human genome average fre-
quency of 60% AT. To mimic extension from a true align-
ment, a variant of the Needleman–Wunsch algorithm
optimized the score over all alignments starting (possibly
with gaps) at the beginning of the two sequences but
ending anywhere. For a given pair of random sequences,
after finding a constrained alignment with the maximal
score, we recorded its flank length, which is the number
of residues aligned in the first random sequence. We esti-
mated flank length distributions, both by ‘crude Monte
Carlo sampling’ (the name for brute-force simulation
in statistics), which generates letters independently from
the appropriate background frequencies, and by a

Table 2. Over-alignment parameters for some common scoring schemes

Matrix GOP GEP l c E(length) P(length=0) Comments

BLOSUM45 15 2 0.203 0.674 6.72 0.490
BLOSUM50 10 2 0.141 0.714 22.89 0.369 FASTA 3.5 default
BLOSUM62 7 2 0.239 0.700 7.80 0.483 WU BLAST 2.0 default
BLOSUM62 11 1 0.267 0.669 5.53 0.532 NCBI BLAST 2.2.17 default
BLOSUM62 11 2 0.299 0.645 2.96 0.589
BLOSUM62 10 4 0.309 0.633 2.37 0.605 Matcher default
BLOSUM62 9.5 0.5 – – – – Water, Supermatcher default
BLOSUM80 10 1 0.300 0.609 2.81 0.611
HoxD55 400 30 0.00592 0.802 23.50 0.330 UCSC genome alignments
HoxD70 400 30 0.00908 0.694 4.53 0.486 BLASTZ v7 default
+1/�1 2 1 0.916 0.997 2.30 0.602
+1/�3 5 2 1.332 1.000 0.36 0.736 NCBI BLAST 2.2.17 default
+2/�3 5 2 0.593 0.790 0.87 0.666 NCBI BLAST website default
+5/�4 12 4 0.133 0.789 10.80 0.351 FASTA 3.5, Matcher default
+5/�4 0 10 0.0765 0.9294 40.51 0.226 WU BLAST 2.0 default
+5/�4 9.5 0.5 – – – – Water, Supermatcher default

Protein parameters are for Robinson-Robinson frequencies. DNA parameters are for 60% AT.
�Dashes represent that simulations were unable to determine whether the scoring scheme was in the local regime.
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Figure 3. Probability distributions for the length of overalignment into random sequences. The solid lines show distributions obtained from
alignment of 10 000 random sequence pairs (using the variant of the Needleman–Wunsch algorithm mentioned in the Results section). The
dashed lines show distributions predicted by importance sampling. The top row refers to protein sequences with Robinson–Robinson frequencies,
and the bottom row refers to DNA with 60% AT. The abbreviations are GOP (gap opening cost), GEP (gap extension cost), and+X/�Y (match
score/mismatch score).

Figure 4. Tradeoff between over- and under-alignment. These graphs refer to Smith–Waterman alignments of mouse, fugu and hagfish mtDNA to 31
human NUMTs with 1000 bp of flanking sequence on either side. The 62 endpoints of the NUMTs are known to within �5 bp. The solid lines show
the distribution of overalignments, and the dashed lines show the distribution of underalignments. We discarded alignments not overlapping the
NUMT at all: the horizontal dotted lines indicate the number of endpoints remaining for consideration.
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well-accepted, more efficient but complicated procedure
called ‘importance sampling’ (see Methods section for
more details) (12).

Figure 3 plots the flank length distributions for several
scoring schemes; Table 2 lists the expected lengths and
probabilities of length=0. Although the distributions
vary widely, the crude Monte Carlo and importance
sampling estimates agree closely. Among protein

scoring schemes, BLOSUM50 with GOP=10 and
GEP=2 has an expected flank length of 23 and probabil-
ity 0.1 of a flank length exceeding 65. Thus, sizeable over-
extensions are likely with this scoring scheme. The other
protein scoring schemes in Figure 3 are much more
restrained: for instance, BLOSUM62 with GOP=11
and GEP=1 has an expected flank length of 5.5 and
probability 0.1 of a flank length exceeding 17. However,

Figure 5. Probability distributions for the scores of overalignments into random sequences. The solid lines show score distributions from alignment
of 10 000 random sequence pairs (using the variant of the Needleman–Wunsch algorithm mentioned in the Results section). The dashed lines show
distributions predicted by the formula P � cely. Table 2 contains the values of the overalignment parameters c and l. The dotted lines are the
distributions of the maximum left score, as described in the Results section.

Figure 6. Tradeoff between over- and under-alignment after trimming flanks with P4 0.01. These graphs refer to the same alignments as in Figure 4.
This time, however, the alignments were shortened at either end by removing flanks with P4 0.01. In a few cases, the trimming removed the entire
alignment: we discarded these cases from consideration.
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there is always a small probability of getting large flanks:
BLOSUM62 with GOP=11 and GEP=1 has probabil-
ity 0.01 of a flank length exceeding 69. Since it is common
to perform hundreds or even millions of alignments, these
probabilities are not negligible. The flank lengths for
NCBI BLAST can be roughly halved by increasing the
gap extension penalty to 2.
The flank length distributions for popular DNA

scoring schemes vary even more widely. The
+5/�4 scheme with GOP=0 and GEP=10 is severely
prone to overextension, with an expected flank length of
41 and probability 0.1 of a flank length exceeding 141.
Surprisingly here, the gap extension penalty is twice the
match score, perhaps highlighting the importance of a
large gap opening penalty in restraining overextension.
Surprisingly also, even with the same gap penalties, and
despite apparent similarity, the HoxD55 matrix is much
more prone to overextension than HoxD70. Because the
HoxD55 scheme with GOP=400 and GEP=30 has an
expected flank length of 24 and probability 0.1 of a flank
length exceeding 94, overextensions like the one in Figure 1
are probable. On the other hand, the default schemes
for NCBI BLAST are extremely restrained: the
+2/�3 scheme with GOP=5, GEP=2 has only prob-
ability 0.01 of a flank length exceeding 8, and the
+1/�3 scheme is, of course, even more conservative.
Because local alignments of random sequences should

not extend to include most of the sequence length, prac-
tical scoring systems are constrained to have reasonably
strong mismatch and gap penalties. Despite extensive
simulation, we were unable to verify that the default
scoring schemes in two EMBOSS programs, Water and
Supermatcher (but not Matcher) satisfied this constraint
for sequences with 60% AT (15). [In technical terms, prac-
tical scoring systems must be in the ‘local regime’ (13),
which depends also on the letter frequencies in random
sequences. In other words, a scoring system might be in
the local regime for GC-rich DNA, but not for AT-rich
DNA. Although a few approximate analytical studies are
extant (17,18), simulations are generally required to show
that a scoring system is in the local regime. We could not
verify that the Water and Supermatcher scoring systems
were in the local regime.]
Mismatch and/or gap penalties restrain overextension,

but there is of course a tradeoff: if penalties are too high,
alignments fail to include weakly similar subsequences.
Because the tradeoff depends on the nature of weak bio-
logical similarities, we studied it in real biological
sequences, by examining alignments of mtDNA to recent
human NUMTs. Because NUMTs are unrelated DNA
insertions with well-defined edges, they serve our purposes
particularly well. As described in the Methods section, we
identified 31 recent NUMTs. The 31 NUMTs, with
1000 bp of flanking sequence on either side (Supple-
mentary dataset 2), were then aligned to mtDNA from
mouse, fugu and hagfish (a borderline vertebrate), repre-
senting three levels of divergence.
Figure 4 shows the length distribution of overalign-

ments, where the alignment extends past the edge of the
NUMT, and underalignments, where the alignment ends
before the edge of the NUMT, for six scoring schemes.

Although the default scheme of NCBI BLAST (+2/�3
with GOP=5, GEP=2) is indeed resistant to overalign-
ment, it pays for this with a strong tendency for under-
alignment. On the other hand, the most aggressive
scoring schemes (+5/�4 with GOP=0, GEP=10 and
HoxD55 with GOP=400, GEP=30) exhibit the least
underalignment, but excessive overalignment. The
default scheme of BLASTZ (HoxD70 with GOP=400,
GEP=30) offers a good balance between under- and
overalignment, especially for the level of divergence
between human and fugu mtDNA. (To avoid misunder-
standing, note that on average, human and fugu mtDNA
are much less divergent than human and fugu nuclear
DNA.) In general, conservative scoring schemes provide
a better balance for closely related sequences, and
aggressive schemes for divergent sequences. If one desires
a simple match/mismatch scoring scheme, then +1/�1
with GOP=2, GEP=1 offers a reasonable balance for
a wide range of problems, being somewhat more conser-
vative than the BLASTZ default.

A judicious choice of scoring scheme can make large
overextensions infrequent, but it does not prevent them
completely. Thus, we need to identify overextensions
when they occur. Figure 2 suggests that long overexten-
sions have relatively low scores. Thus, given the score
distribution for alignments extending from true align-
ments into random sequences, a P-value (the probability
of a chance flank with equal or greater score) could help
identify spurious alignment flanks.

Given a true alignment, a spurious alignment flank is
approximately the alignment of two random sequences
starting from the final aligned letter pair in the true align-
ment. [To test robustness of our results by varying the
nature of the true alignment, we simulated long sequence
pairs under the hybrid alignment model of related
sequences (19), and then concatenated random unrelated
sequences to the aligned sequences. Results remained
essentially unchanged (data not shown).] Under the
approximation, the contribution to the alignment score
from the flank is equivalent to a quantity known as the
‘global maximum score’ (20). The global maximum score y
has a P-value P � ce�ly, where c is a fixed constant and l
is the so-called ‘Gumbel scale parameter for local align-
ment’. Analytical formulas for c and l are known only for
gapless alignment (21), but importance sampling techni-
ques can estimate c and l very efficiently for gapped align-
ment (see Methods section). Crude Monte Carlo sampling
confirmed the accuracy of P-values from importance sam-
pling (Figure 5).

Table 2 gives values of l and c for sixteen scoring
schemes; Supplementary dataset 1 gives values for many
other scoring schemes. Figure 2 illustrates how the for-
mula P � ce�lyconverts a given flank score into an over-
alignment P-value. In the bottom row of Figure 2, the
cumulative score reaches a minimum value of 515, at the
end of the large gap in the lower sequence. Because
P � ce�ly � 0:038 (c=0.802, l=0.00592 and y=515),
and because the UCSC fugu–human data include many
thousands of individual alignments, we expect many spur-
ious extensions with P-values of this magnitude.
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Then, how can we use the overalignment P-value to
strengthen inferences from alignments? Figure 2 plots
the flank P-value against the alignment position with a
solid line. After exclusion of the largest flank with
P-value P, 1�P becomes a lower bound for the (theore-
tical) probability that on that flank, the remaining align-
ment does not involve two random sequences.
(The inference might seem feeble, but it is the only infer-
ence possible from any alignment P-value).

In bioinformatics, P-values usually flag biological simi-
larities, so this statement might seem counterintuitive.
The overalignment P-value, however, aims to exclude bio-
logically spurious flanks, to increase the dependability of
the remaining alignment. Several intervals on a flank
alignment might have the same score (and thus, the
same overalignment P-value), however. Which interval
should we exclude?

To introduce some relevant subtleties, consider the
boundary position between the true and flank alignments
in Figure 2. Consider now the left end-position of the
maximal local alignment. Let the ‘left scores’ be the suc-
cessive cumulative global alignment scores within the
flank, starting from the left end-position and moving
rightward (as shown by the dotted line in Figure 2).
Now, reverse direction and consider the ‘right scores’
(not shown in Figure 2), which are successive cumulative
global alignment scores starting from the boundary posi-
tion and moving leftward. Because the left end-position
is the end of the maximal local alignment, it achieves
the maximum right score, which we denote here
by M. Fortunately, the P-value P ¼ PfM5yg � ce�ly

for the maximum right score M is known from other
work (20).

Because the alignment score for any interval remains
the same under sequence reversal, the left score at the
boundary position is also M. Because we know the left
end-position of an optimal local alignment but not the
boundary position, to exclude a boundary position with
a left score M ¼ y, we must exclude every position with
left score y. In Figure 2, e.g. we must exclude the right-
most position with left score y, indicated by the downward
double arrow. As an intuitive justification, consider every
alignment position with left score y. All intervening align-
ment intervals have a score of 0, which does nothing for
our confidence that they represent parts of a biologically
interesting alignment.

One should bear in mind that statistical significance
does not always reflect biological significance, however.
Various rules of thumb can estimate biological signifi-
cance from BLAST E-values, e.g. PSI-BLAST iterations
retain sequences with a statistical E-value of 0.005.
Figure 2 suggests that for overalignment P-values, statis-
tical and biological significance are similar, but further
practical experience is required to confirm this point.

To increase confidence in an alignment, an investigator
could trim the alignment flanks with the overalignment
P-value, but trimming also involves a tradeoff: overalign-
ment becomes less frequent but underalignment becomes
more frequent. The P-value threshold used for trimming
flanks should therefore reflect the subjective penalties
assigned to over- and under-alignment. Figure 6 shows

the same mtDNA-NUMT alignments as Figure 4, but
after removing flanks with P4 0.01. As expected, over-
alignment decreases but underalignment increases. In par-
ticular, underalignments of length around 10 bp are
frequent, because true alignments are likely to extend for
a few bases into nearby sequences. Since the overalign-
ment P-values for short extensions are near 1.0, no solid
judgment is possible about a few residues at the end of any
alignment.
Based on these results, we do not recommend routine

trimming of alignment flanks, particularly because well-
balanced scoring schemes rarely produce large overexten-
sions. Rather, programs should include the P-value of
flanks, so investigators can know how often a random
flank produces the indicated alignment. In the case of
low-quality alignments of transcription factor binding
sites, for example, investigators can then regard any
flanks with large P-values with appropriate suspicion.

DISCUSSION

Two essential messages emerge from our study: (i) appro-
priate scoring schemes can help avoid overextension of
alignments, and (ii) alignment tools should indicate over-
alignment P-values. Our results (particularly Figure 4)
indicate the critical importance of choosing an appropri-
ate scoring scheme to balance the risks of over- and under-
alignment.
The appropriateness of a scoring scheme might not be

immediately obvious: HoxD70 and HoxD55 (Figures 3
and 4), e.g. are superficially similar scoring matrices, but
they differ greatly in the overalignment of unrelated
sequences. Since most users accept the default values in
alignment software, the onus is on developers to choose
good defaults. Our results provide invaluable guidance on
defaults for avoiding alignment overextension. The two
most aggressive DNA scoring schemes shown in
Figures 3 and 4 (+5/�4 with GOP=0, GEP=10 and
HoxD55 with GOP=400, GEP=30) should probably
not be used. The BLASTZ default (HoxD70 with
GOP=400, GEP=30) is well suited to aligning verte-
brate DNA, as one would hope. Very conservative
schemes, such as the defaults for NCBI BLAST, are
appropriate for aligning very similar sequences. For simi-
lar sequences, more aggressive schemes (such as +1/�1
with GOP=2, GEP=1 for DNA) also appear to per-
form well, but more conservative schemes should perform
even better, by reducing the small but unnecessary risk of
overextension in such cases. A less conservative default is
appropriate to a general purpose tool such as BLAST,
however, particularly the BLAST variant, discontiguous
megablast, which is useful for finding distant similarities.
While it is easy to change scoring schemes, it is more

difficult to annotate alignments with the corresponding
overalignment P-values. We considered the possibility of
a postprocessing tool for annotation with overalignment
P-values, but there are two difficulties: such a tool needs to
know the scoring scheme, and alignments themselves come
in a bewildering variety of formats. Both of these pro-
blems would disappear if alignment programs calculated
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overalignment P-values. The only difficulty entailed in the
calculation is to provide alignment programs with the
parameters l and c in the P-value approximation P �
ce�ly. Accordingly, Supplementary dataset 1 contains
a table of l and c for a limited selection of sco-
ring schemes and residue abundances, and software for
calculating l and c is available at http://www.ncbi.nlm.
nih.gov/CBBresearch/Spouge/Software/.
Our analysis has examined spurious alignment

flanks, but not spurious internal regions. In fact, Smith–
Waterman and related local alignment algorithms can
include arbitrarily poor internal segments in alignments
(22). In practice, tools such as BLASTmitigate the problem
with algorithms like X-drop, insisting that any segment of
the alignment exceed a (negative) threshold score. On the
other hand, the BLASTZ default probably does not miti-
gate the problem, because its X-drop parameter is so large.
There are some alternative approaches to detecting and

avoiding inaccurate subalignments. Mevissen and Vingron
(23) assign a ‘reliability index’ to every residue pair in a
maximal-scoring alignment, using the score of the best
alternative alignment that does not include the residue
pair. More recently, Lunter et al. (24) used detailed evolu-
tionary models and posterior decoding to improve the
accuracy of genome alignment, and to predict the prob-
ability that individual alignment columns are correct.
Both of these approaches are related to centroid align-
ment, used by Miyazawa (25) to improve alignment accu-
racy, and recently championed by Lawrence (26,27). All
such methods involve changing the alignment algorithm,
however, which impedes their wider adoption, and a prob-
abilistic alignment tool with the speed and flexibility of
BLAST has yet to be developed. Furthermore, the relia-
bility estimates are a step away from true reliability: the
index of Mevissen and Vingron requires calibration, and
the posterior probabilities of Lunter et al. reflect a model
of sequence evolution and thus are not necessarily accu-
rate. Our study, in contrast, addresses a more specific pro-
blem, but one of practical importance, and it provides a
straightforward solution.
Finally, to illustrate the impact of alignment overexten-

sion, consider the proportion of spurious extensions in the
UCSC human–fugu genome alignment, which includes
189,888 individual alignments, covering 49,912,422 bp of
the human genome. Since the average flank length is 24
(Table 2), and each alignment has two ends, according to
our estimates, 9,114,624 (18%) of the aligned human
sequence is spurious, and the longest overextension is prob-
ably close to 1000 bp. The reality is almost certainly worse
than the estimate, which assumes random sequences, and
ignores the effects of repeats, isochores, etc.

SUPPLEMENTARY DATA

Supplementary data are available at NAR Online.
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