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Psychogenic fever is a stress-related, psychosomatic disease especially seen in young women. Some patients
develop extremely high core body temperature (Tc) (up to 41�C) when they are exposed to emotional events, whereas
others show persistent low-grade high Tc (37–38�C) during situations of chronic stress. The mechanism for psychogenic
fever is not yet fully understood. However, clinical case reports demonstrate that psychogenic fever is not attenuated
by antipyretic drugs, but by psychotropic drugs that display anxiolytic and sedative properties, or by resolving patients’
difficulties via natural means or psychotherapy. Animal studies have demonstrated that psychological stress increases
Tc via mechanisms distinct from infectious fever (which requires proinflammatory mediators) and that the sympathetic
nervous system, particularly b3-adrenoceptor-mediated non-shivering thermogenesis in brown adipose tissue, plays an
important role in the development of psychological stress-induced hyperthermia. Acute psychological stress induces a
transient, monophasic increase in Tc. In contrast, repeated stress induces anticipatory hyperthermia, reduces diurnal
changes in Tc, or slightly increases Tc throughout the day. Chronically stressed animals also display an enhanced
hyperthermic response to a novel stress, while past fearful experiences induce conditioned hyperthermia to the fear
context. The high Tc that psychogenic fever patients develop may be a complex of these diverse kinds of hyperthermic
responses.

What is Psychogenic Fever?

Among those who develop episodic or persistent high core body
temperature (Tc) without any inflammatory causes, there are
patients whose high Tc is associated with psychological stress.1-14

Some patients develop a high fever (up to 41�C) when they are
exposed to emotional events (Fig. 1), whereas others show a persis-
tent low-grade fever (37–38�C) lasting months and even years, either
during or after situations of chronic stress (Fig. 2) (for review,
see).15,16 The existence of such patients has been recognized since
the early twentieth century17 and their high Tc has been called
“psychogenic fever”2,18,19 or “neurogenic fever.”20,21 Psychogenic
fever is bothersome for both patients and physicians because,
although many patients consider the fever to be disabling, there is no

abnormal finding to account for their high Tc and antipyretic drugs
do not reduce their fever. Moreover, there are still physicians who do
not recognize the fact that psychological stress can cause high Tc.

Therefore, to obtain a better understanding of patients with
psychogenic fever, this article reviews how psychological stress
affects Tc in laboratory animals, healthy human subjects, and
clinical populations.

Acute Psychological Stress-Induced Hyperthermia
in Laboratory Animals

Animal studies have demonstrated that many, but not all,
types of acute psychological stress increase Tc. For example,
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exposing rats or mice to stressors such as
being placed into an unfamiliar space or
an open field (novelty stress),22-24

changing home cages (cage-change
stress or cage switch stress),25-27

restraint/immobilization,28-31 removing
cage-mates (cage-mate removal
stress),27,32-34 and exposure to domi-
nant animals (social defeat stress)35-38

or an intruder39 increases Tc. Fig. 3
shows that social defeat stress, i.e.,
exposing rats to a dominant conspecific,
increases Tc by up to 2�C within
30 min.37 As represented by this model,
a single exposure to psychological stress
induces a transient, monophasic
increase in Tc, known as psychological
stress-induced hyperthermia (PSH).
Existence of PSH has been observed not
only in rats and mice but also in rab-
bits,40,41 tree shrews,42,43 sheep,44 squir-
rels,45,46 chimpanzees,47 impalas,48

Pekin ducks,49 and pigeons.50

Psychological or emotional stress
increases Tc via mechanisms that are
distinct from fever that animals develop
when they suffer from infectious and
inflammatory diseases (for review,
see).51,52 Infection- and inflammation-
induced fever is induced when PGE2
acts on neurons in the preoptic area of
the hypothalamus (POA).53,54 When
animals suffer from infectious diseases,
fever is initiated by the release of brain-
permeable PGE2 from hepatic and pul-

monary macrophages.55,56 Macrophages also release proinflam-
matory cytokines such as interleukin-1b and interleukin-6 and
these cytokines stimulate synthesis and release of acute phase pro-
teins such as C-reactive protein (CRP) from hepatocytes. Fur-
thermore, macrophage-derived proinflammatory cytokines
stimulate synthesis of PGE2 from endothelial cells of the
brain vessels57,58 or perivascular cells59 and cause prolonged
fever.60,61 Activation of the dorsomedial hypothalamus
(DMH)–medullary raphe region (including the rostral raphe
pallidus and adjacent raphe magnus nuclei)–sympathetic
(hypothalamic-medullary-sympathetic, HMS) axis increases
Tc by activating b3-adrenoceptor-mediated non-shivering
thermogenesis in brown adipose tissue (BAT) and a-adreno-
ceptor-mediated peripheral vasoconstriction to inhibit heat
loss.62,63 Stimulation of the DMH and the medullary raphe
region also induces shivering thermogenesis in skeletal
muscles.64-66 Usually, the POA sends tonic inhibitory input
to the HMS axis. PGE2 causes fever by inhibiting the POA
neurons, i.e., by disinhibiting the HMS axis.67-69 Conse-
quently, fever is attenuated by nonsteroidal antiinflammatory
drugs (NSAIDs), which block PGE2 synthesis (Fig. 4).

Figure 1. Prominent psychogenic fever observed in a 15-year-old schoolgirl. She was referred from a
pediatrician to my outpatient clinic because she repeatedly developed antipyretic drug-resistant
fever of unknown causes. I asked the patient to record her axillary temperature (Ta) using an electro-
thermometer 4 times a day (8 a.m., 12 a.m., 4 p.m., and 8 p.m.) and the events of the day in a “fever
diary” to better understand mind (stressor)-body (temperature) relationships. I also asked her mother
and school nurse to make sure the temperature she recorded was accurate. The fever diary demon-
strated that she developed a high Ta up to 39�C only on the days when she went to school (under-
lined black bar). (Unpublished observation.)

Figure 2. Chronic psychological stress-associated, persistent low-grade
high axillary temperature (Ta) observed in a 56-year-old head nurse. She
had antipyretic drug-resistant, low-grade (37–38�C) high Ta for more
than 3 months. © Japanese Society of Psychosomatic Internal Medicine.
Reproduced by permission of Japanese Society of Psychosomatic Inter-
nal Medicine. Permission to reuse must be obtained from the
rightsholder.
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By contrast, recent studies have demonstrated that acute psy-
chological stress also activates the HMS axis and increases
Tc,37-39,70-72 albeit via proinflammatory cytokine- and PGE2-
independent mechanisms.27,37,38,72,73 Therefore, systemic
administration of cyclooxygenase inhibitors, such as indometha-
cin, do not inhibit PSH,33,52 while anxiolytic drugs such as

diazepam or 5-HT1A agonists74-76 and b3-adrenoceptor antago-
nists, such as SR59230A, do attenuate PSH (Fig. 3).37 Other
brain regions, such as the prefrontal cortex,77 the POA,78,79 the
medial amygdala,80 or the lateral habenula,81 in addition to
orexin neurons82 are also suggested to be involved in the develop-
ment of PSH. However, so far, it is not fully understood how
psychological stress activates DMH neurons or how other brain
regions affect the HMS axis during psychological stress.

Effects of Repeated and Chronic Stress on Tc

Regardless of the source of stress, acute PSH is represented by
a transient, monophasic increase in Tc, and the high Tc returns
to baseline levels within several hours if the stressor is terminated.
In contrast, repeated or chronic exposure to psychological stress
has complex effects on Tc. First, repeated exposure to uncontrol-
lable stressors such as daily confrontation with a dominant rat at
fixed time intervals induces anticipatory or learned hyperthermia,

Figure 3. Effects of indomethacin (A), diazepam (B), and SR59230A (C),
on social defeat stress-induced hyperthermia in rats. Rats received an
intraperitoneal injection of indomethacin, a cyclooxygenase inhibitor
(5 mg/kg), diazepam, an anxiolytic drug (4 mg/kg), SR59230A, a b3-adre-
noceptor antagonist (5 mg/kg), or their respective vehicles at the time
point indicated by arrows and were subsequently exposed to social
defeat stress (Stress) or left undisturbed (Control) during the period indi-
cated by the horizontal bars. © John Wiley and Sons. Reproduced by per-
mission of John Wiley and Sons. Permission to reuse must be obtained
from the rightsholder.

Figure 4. Possible mechanisms of psychological stress-induced hyper-
thermia in comparison with infectious fever. Infectious fever is induced
by warmth-seeking behavior and shivering thermogenesis of the skeletal
muscles, as well as sympathetic nerve-mediated non-shivering thermo-
genesis in brown adipose tissue and peripheral vasoconstriction. The
HMS axis is known to mediate both sympathetic activation and shiver-
ing. In contrast, the brain region responsible for warmth-seeking behav-
ior is currently unknown. Evidence suggests that neither the POA nor the
DMH mediate warmth-seeking behavior.129 Infectious/inflammatory
fever is accompanied with elevated acute-phase proteins such as CRP
and sickness behavior. By contrast, psychological stress increased Tc
without accompanying sickness-related symptoms because it increases
Tc via cytokines and PGE2-independant manner. So far, it is not known
how psychological stress activates the DMH neurons to increase Tc or
how the POA and other brain regions are involved in the psychological
stress-induced hyperthermia. BAT, brown adipose tissue; CRP, C-reactive
protein; DMH, dorsomedial hypothalamic nucleus; HMS, hypothalamic-
medullary-sympathetic; IML, intermediolateral cell column; IL, interleu-
kin; Mf, macrophage; PG, prostaglandin; POA, preoptic area; rRPa, rostral
raphe pallidus nucleus; Tc, core body temperature. Reprinted from
Advances in Neuroimmune Biology, Vol 3, Oka T, Oka K, Mechanisms of
psychogenic fever, Pages 3-17. © IOS Press. Reproduced by permission
of IOS Press. Permission to reuse must be obtained from the rightsholder.
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i.e., Tc becomes higher during the hour preceding the scheduled
time of stress application or during the hour when animals have
been exposed to dominant rats even if they are kept in their
home cages without stress exposure.36,83,84 Second, repeated
application of stressors (for more than several weeks) either
reduces diurnal changes in Tc, mostly by increasing Tc in the
light (inactive) period,85 or slightly increases Tc (around 0.2–
0.3�C) throughout the day.36,86 Third, repeated or chronic stress
enhances the magnitude of the hyperthermic effect induced by a
novel stressor87 or intravenous administration of noradrenaline
(NA).88 Fourth, these rats display depressive-like behavior rather
than increased anxiety-like behavior.36,89 Fifth, these changes can
be observed even several days after cessation of the final stress
exposure.36,85,86

Hyperthermic responses in rats exposed to repeated or chronic
stress do not seem to be induced by exactly the same mechanisms
as acute PSH. First, the hyperthermic response during condi-
tioned fear does not appear to involve activation of BAT.90 Con-
textual conditioned fear does not induce the expression of Fos, a
marker of neuronal activation, in the DMH, but does increase
Fos in spinally projecting neurons in the perifornical area of the
hypothalamus.91 Second, after repeated immobilization, the
magnitude of the NA-induced increase in Tc, interscapular BAT
temperature, and oxygen consumption become greater in stressed
rats versus controls.88 As repeated immobilization stress induces
interscapular BAT hyperplasia92 and increases uncoupling pro-
tein 1 (UCP1), a protein that generates heat according to its
expression and function30 in BAT, these changes may lead to
prominent PSH (Fig. 5).92,93 Thirdly, psychological stress indu-
ces microglial activation94-96 and subsequent proinflammatory
cytokine production97 in the central nervous system. As brain-
derived cytokines also increase Tc98,99 and induce depressive-like
behavior,100-102 there is a possibility that hyperthermia and

depressive-like behaviors in rats exposed to chronic stress are
mediated, at least in part, by activated microglia and subsequent
proinflammatory cytokines within the brain. However, addi-
tional studies are necessary to make sure if this is the case.

Stress-Induced Hyperthermia in Healthy Subjects

As in laboratory animals, psychological stress increases the Tc
in healthy humans. Previous studies have demonstrated that Tc
just before emotional events is higher than Tc after these events
or at the same hour of the day under non-stressful conditions.103-
110 For example, the mean oral temperature before boxing con-
tests (37.55�C) in 12 school boys (12–14 years old) was 0.8�C
higher than that taken at home at the same hour of the day
(36.75�C).107 The mean oral temperature on movie-watching
days in separate groups of females in their teens and twenties
(37.55�C and 37.46�C) was 0.53�C and 0.27�C higher than
that of the same hour on preceding or following days (37.03�C
and 37.19�C), respectively.104 The hyperthermic effect of exami-
nation stress is reported to be weaker than the effects of the emo-
tional events described above. For example, the mean oral
temperature of 40 subjects immediately before taking a nurses’
registration examination (37.17�C) was 0.34�C higher than
observed after the examination (36.83�C).103 The mean axillary
temperature of 22 residents (26 – 33 years old), 10 to 15 min
before a yearly university examination (37.00�C), was 0.6�C
higher than the temperature taken 2 to 3 weeks later after having
sat and relaxed for at least 30 min (36.40�C).108 The mean oral
temperature of 108 medical students (18 – 27 years old) immedi-
ately before examination (37.4�C) was 0.18�C higher than what
was taken at the same hour of the day 3 days after the exam
(37.22�C).109 The mean oral temperature of medical students
(17 – 19 years old) 5 – 7 days before examination (36.91�C) was
0.17�C higher than that at the same time 5 – 7 days after the
examination (36.74�C).110 In contrast, one study demonstrated
that exposing healthy subjects to a standardized laboratory stress
task (the Trier Social Stress Test) did not change temporal artery
temperature and also decreased intestinal temperature, both of
which are assumed to reflect Tc.111

Psychogenic Fever

In 1930, Falcon-Lesses18 made precise descriptions of a 20-
year-old woman who exhibited a high oral temperature around
37.8�C when she visited the clinic but a normal temperature at
home. Her temperature increased following venipuncture, a visit
by physicians, or vaginal examination in the hospital as well as
during arguments with her sister at home. For example, veni-
puncture increased her Tc from 36.61�C to 37.39�C (a 0.78�C
increase), occurring within 5 min. Falcon-Lesses termed these
stress-induced hyperthermic responses of this patient
“psychogenic fever.”

Psychogenic fever is comprised of several subtypes in terms
of magnitude and duration. I would like to describe some

Figure 5. Possible mechanisms for enhanced psychological stress-
induced hyperthermic response in chronically stressed rats. BAT, brown
adipose tissue; SNS, sympathetic nervous system; Tc, core body tempera-
ture, UCP1, Uncoupling protein 1.
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patients I have treated. Fig. 1 indicates an acute onset, short-
lasting, prominent psychogenic fever in a 15-year-old school-
girl. Like this case, some patients develop a high Tc abruptly
(up to 41�C) when they are exposed to emotional events. She
repeatedly developed an antipyretic drug-resistant high axil-
lary temperature around 39�C only on the days when she
went to school (underlined black bar) that returned to
around 36.5�C after coming back home and remained nor-
mal on days when she stayed at home. There were no inflam-
matory signs even when she exhibited a high temperature.
The fever was not factitious, either. She was a courteous, obe-
dient, and good girl. Via diagnostic interview, she said she
wanted to go to school but felt very tense and sad at school
because some classmates teased and bullied a friend who had
a physical handicap. She hated to see it, but could not do
anything. While she wanted to stay at school even when she
had a high temperature, she gradually felt hotter and fatigued
as her temperature increased. Consequently, her school nurse
regularly asked her to go home or to the hospital. Eventually,
she changed to another school. Thereafter, her “school fever”

disappeared. In addition to the emotional events that provoke
negative affect such as anxiety, anger, or fear, other psycho-
logical stressors that induce remarkable hyperthermia include
separation from nurturing persons (emotional deprivation)1,19

and suppression of negative emotion.3 Stress interviews, i.e.,
recalling and talking about stressful life events, also increases
Tc (Fig. 6).13,14

In contrast, other patients show a persistent low-grade fever
(37–38�C) lasting months and even years, either during or after
situations of chronic stress. Figure 2 shows the chronic psycho-
logical stress-associated, persistent low-grade high Tc observed in
a 56-year-old head rheumatology nurse. She suffered from
NSAIDs- and adrenocorticosteroid-resistant, low-grade (37–
38�C) high Tc for more than 3 months. Her doctor, a rheuma-
tologist, conducted thorough medical tests but could not discern
any findings to account for her fever. For diagnostic purposes,
the doctor asked her to take NSAIDs and corticosteroids, but
they were ineffective in reducing her fever. Subsequently, she was
referred to my outpatient clinic. Through a diagnostic interview,
I realized that she was in a physically and psychologically
demanding situation because of cumulative stressful life events at
the time she noticed the low-grade high Tc in April. She had
been working as a nurse for more than 30 years while at home
taking care of her father with dementia in recent years. In Janu-
ary, she was shocked to hear that her younger sister was diagnosed
with breast cancer. In March, one hospital nurse suddenly quit
and the patient had to substitute for her and had to work an over-
night duty as well. Her Tc showed diurnal changes but was 37.4–
37.8�C in the afternoon. There were no inflammatory signs
accounting for her high Tc. Although it was just a slightly ele-
vated Tc, she felt strong discomfort and increased fatigue when
the Tc increased above 37.0�C. Therefore, she was suspended
from her job. However, even after taking sufficient time off for
recuperation for more than 3 months, her high Tc did not
decrease until she began to take paroxetine, a selective serotonin
reuptake inhibitor (SSRI).112

Certain forms of psychogenic fever have been given additional
labels, e.g., prolonged low-grade high Tc in nervous patients has
been termed “habitual hyperthermia”113 and abrupt increases in
Tc in hysterical patients was previously called “hysterical
fever.”114,115

Differences Between PSH in Healthy Subjects and
Psychogenic Fever

The clinical significance of high Tc in patients with psycho-
genic fever is different from PSH in healthy subjects in several
ways.116 Remarkable differences include the magnitude of
increase in Tc and the associated symptoms. First, in healthy sub-
jects, although emotional events increase Tc, its magnitude is
<1�C and the maximal Tc they show is <37.5�C in most
cases.103-110 By contrast, in some patients with psychogenic fever,
emotional events increase Tc to 39–41�C (Fig. 1).4,6,8 Such dif-
ferences may arise according to the severity of stressors. However,
as was shown in animal studies, it is also possible that chronic

Figure 6. Effects of stress interview on core and peripheral temperatures
in a 26-year-old CFS patient. Changes in axillary (armpit) and tympanic
membrane (tym.) temperatures (A) and fingertip temperature (B) during
and after a 60-minute stress interview. Stress interview was conducted
for one hour (0 min – 60 min). © BioMed Central. Reproduced by permis-
sion of BioMed Central. Permission to reuse must be obtained from the
rightsholder.
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stressors that the patient has experienced cause the induction of a
prominent hyperthermic response when the patient is exposed to
emotional events. Second, healthy subjects do not complain of
symptoms even when they exhibit high Tc. By contrast, although
some patients have no complaints except for the high Tc, others
complain of numerous symptoms in addition to high Tc. These
symptoms include insomnia, fatigue, headache, nausea, and/or
abdominal pain. As increases in Tc are frequently associated with
these symptoms (Fig. 7), patients consider the high Tc disabling.
Some patients are neurotic and have high anxiety.20 Psychogenic
fever is also observed in patients who have traumatic experiences
in their early lives115 and with psychiatric disorders such as anxi-
ety (panic and post-traumatic stress) disorders,8 mood (depressive
and bipolar) disorders,7,11 somatoform (conversion) disorders,115

catatonia,5,117 and borderline personality disorders.6 For these
reasons, they worry about their high Tc and may consult their
physicians asking for treatment.

Low-Grade Fever in Patients with Chronic Fatigue
Syndrome and Fibromyalgia Syndrome

Patients with chronic fatigue syndrome (CFS) and fibromy-
algia syndrome (FMS) also exhibit low-grade fever of
unknown causes.14,118 It is well known that psychological
stress exacerbates their symptoms, and this may be the case
with their low-grade fever. For example, some patients show
“workday hyperthermia,” i.e., higher Tc on working days com-
pared with holidays.14 Figure 8 shows the record of Tc and
severity of fatigue of a 24-year-old woman having both CFS
and FMS. It demonstrates that her Tc and fatigue scores were
higher during working days compared to days off. As she was
a telephone operator, she remained sitting almost all day but
kept concentrating on numerous phone conversations. There-
fore, the higher Tc may not be due to increased activity during
the working day, but due to psychological strain.

Another example is the remarkable psychological stress-induced
hyperthermic response in these patients. A 26-year-old female
nurse with CFS noticed that her Tc became higher (up to 38.5�C)
when she felt stressed at work. To investigate the mechanisms for
her PSH, we conducted a 60-minute stress interview, in which we
asked her to recall and talk about her difficult life.14 Her Tc at
baseline was 37.2�C, and increased to 38.2�C (a 1.0�C increase)
by the end of the interview. In contrast, her fingertip temperature
decreased during the interview (Fig. 6). During the stress inter-
view, blood levels of pyretic cytokines, such as IL-1b and IL-6, or
antipyretic cytokines, such as TNF-a and IL-10, did not change
but heart rate (HR), systolic blood pressure (SBP), diastolic blood
pressure (DBP), and plasma levels of NA and adrenaline (A)
increased. These results suggest that stress interview-induced
hyperthermia is not mediated by pyretic cytokine production but
by emotional expression-associated sympathetic activation. Con-
sidering these findings on the effects of chronic stress on acute
PSH in animals, it is possible that the patient’s difficult daily life
acts as a chronic stressor, leading the patient to exhibit robust
increases in Tc when she/he is exposed to emotional events.

Figure 7. Inhibitory effects of tandospirone, a 5-HT1A receptor agonist,
on the axillary temperature (Ta) and severity of fatigue in a 30-year-old
woman with psychogenic fever. Vertical lines show axillary temperature
(black line) and fatigue level (dotted line, with numerical rating scale in
which 10 represents the most severe fatigue imaginable and 0 repre-
sents none). (A) Before the treatment (August 5th), (B) After tandospirone
treatment Sep. 9th, and (C) After tandospirone treatment Sep. 18th. The
patient started to take tandospirone, a 5-HT1A agonist, 30 mg from Sep.
2nd and 60 mg from Sep. 9th. © Japanese Society of Psychosomatic Inter-
nal Medicine. Permission to reuse must be obtained from the right-
sholder. Before the treatment, as her Ta induced 0.5�C increased from
36.8�C to 37.3�C, her fatigue level increased remarkably from 4 to 9. She
asked for the treatment of her low-grade fever hypochondriacally (A).
However, after the treatment with tandospirone, she became less con-
cerned about her low-grade fever, when although her Ta increased from
36.8�C to 37.3�C, her fatigue level increased from just 1 to 2 (B). Her Ta
did not exceed 37�C (C).
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How Does Psychological Stress Increase
Tc in Humans?

Animal studies have demonstrated that psychological stress
increases Tc via PGE2- and proinflammatory cytokine-indepen-
dent mechanisms. This seems to be the case in patients with psy-
chogenic fever. First, NSAIDs do not attenuate the high Tc in
these patients. Second, stress interview-induced hyperthermia is
not associated with changes in blood levels of PGE2 or proin-
flammatory cytokines.13,14

In rodents, BAT thermogenesis plays a crucial role in the
development of PSH. In humans, BAT is distributed exclusively
in an interscapular region in infants119 and in thyroid/tracheal,
mediastinal, paracervical/supraclavicular, parathoracical, supra-
and peri-renal regions in adults.120-123 As in rodents, BAT indu-
ces non-shivering thermogenesis when humans are exposed to a
cold environment. Therefore, it is possible that psychological
stress increases Tc via sympathetic nerve-mediated non-shivering
thermogenesis in BAT in humans as well. Recently, the author
found that patients with psychogenic fever exhibit greater HR
response to orthostatic stress and increased prevalence of postural
orthostatic tachycardia syndrome, one form of orthostatic

intolerance, compared with healthy subjects,124,125 suggesting a
heightened sympathetic response to stress in patients with psy-
chogenic fever. This might account for prominent hyperthermic
responses to stressful events in patients with psychogenic fever.
However, a role of BAT in PSH in healthy subjects or high Tc in
patients with psychogenic fever has not yet been elucidated.

Previous clinical case reports have demonstrated that patients
who exhibit persistent low-grade high Tc were treated successfully
with drugs that produce sedative effects such as opium113 or pheno-
barbital,6,7 serotonergic tricyclic antidepressants such as amitripty-
line and clomipramine,8,126 SSRIs such as paroxetine (Fig. 2),112

or serotonin 1A receptor agonists such as tandospirone (Fig. 7).127

Furthermore, relaxation training,8,12 solving their difficulties, and
psychotherapy to ventilate suppressed negative emotion and con-
flicts verbally6,115 or non-verbally10 are also helpful strategies.

About the Name “Psychogenic Fever.”Why not
“Functional Hyperthermia?”

I propose to call psychological stress-associated high Tc
“functional hyperthermia” instead of psychogenic fever. This is

Figure 8. Fever and fatigue chart recorded by a 24-year-old patient with chronic fatigue syndrome and fibromyalgia syndrome. She worked as a
telephone operator, a sedentary job. This chart tells that her axillary temperature is higher on the workday than on a day-off, showing that “workday
hyperthermia” and the increase in axillary temperature is associated with increased fatigue. Reprinted from Advances in Neuroimmune Biology, Vol 4,
Oka T, Influence of psychological stress on chronic fatigue syndrome, Pages 301-9. © IOS Press. Reproduced by permission of IOS Press. Permission to
reuse must be obtained from the rightsholder.
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in part because psychological stress-associated high Tc is induced
by mechanisms distinct from infection/inflammation-associated
fever, where proinflammatory mediators play a pivotal role. Fur-
thermore, “psychogenic” sounds stigmatic for some patients and
their families. I do not want to call their high Tc emotional
hyperthermia, either, because it sounds like a physiological
response, which does not require treatment. I prefer to call it
functional because in the clinical setting the naming of diseases
including the term “functional,” such as functional dyspepsia,
functional gastrointestinal disorders, or functional somatic syn-
drome, connotes both stress-related pathology and impaired
functioning of the autonomic nervous system.
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