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Abstract
Aberrant cortical network excitability is an inextricable feature of Alzheimer disease (AD) that can negatively impact memory
and accelerate cognitive decline. Surface electroencephalogram spikes and intracranial recordings of nocturnal silent seizures in
human AD, coupled with the abnormal neural synchrony that precedes development of behavioral seizures in mouse AD
models, build the case for epileptogenesis as an early therapeutic target for AD. Since most individuals with AD do not develop
overt seizures, leveraging functional biomarkers of epilepsy risk to stratify a heterogeneous AD patient population for
treatment is research priority for successful clinical trial design. Who will benefit from antiseizure interventions, which one,
and when should it begin?
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Introduction

The earliest symptoms of Alzheimer disease (AD), including

short-term memory loss and a decline in cognition that

impairs daily function, reflect a burden of neuropathology

that has slowly accumulated over decades. Prior to the onset

of cognitive decline, there is a 15- to 20-year preclinical stage

of AD in which high levels of amyloid and hyperphosphory-

lated tau protein aggregate as extracellular plaques and intra-

cellular neurofibrillary tangles, respectively.1 This is

accompanied by progressive synaptic loss,2 aberrant patterns

of excitability gene transcription,3,4 and neuronal circuit

degradation.5 By the time the signs of cognitive dysfunction

appear, like the tip of an iceberg, significant unseen damage

has already occurred; hence, the recent strategic shift of AD

clinical trials toward earlier, even preclinical stages,6 and the

pressing need to identify proven treatments that can slow

disease progression.

Stabilizing network hyperexcitability is one such target.

Preserving the health of temporal lobe networks is impera-

tive for maintaining memory function, as the entorhinal

cortex–hippocampal circuitry is hard hit early in AD. Early

AD pathology drives synaptic dysfunction in this highly

vulnerable pathway, initiating an excitotoxic cascade entail-

ing circuit reorganization and impaired neurogenesis.2,7 This

attenuates memory storage, by figuratively rearranging the

deck chairs and burning the lifeboats, triggering inflamma-

tion, and epileptiform activity that may contribute to the

ongoing amnestic syndrome and drive further decline.

Although epileptologists are no strangers to short-term

memory loss caused by mesial temporal lobe epilepsy

(MTLE), the repercussions of MTLE in AD significantly

worsen this blow. Evidence in mouse models of MTLE and

AD has established a feedforward cycle directly linking

neuronal hyperactivity with excess release of soluble amy-

loid and tau, suggesting that epileptiform activity in AD
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drives further deposition of amyloid and tau pathology.8

Treatment of hAPP J20 mice with levetiracetam not only

reduced seizures and spiking but also ameliorated cognitive

deficits, demonstrating that epileptiform activity can rever-

sibly impact cognitive function in AD.9 Moreover, hyper-

excitability in mouse AD models can be rescued even while

leaving amyloid plaques intact,10 suggesting that stabilizing

network excitability is possible even at later stages of AD

and may still offer an important opportunity to protect cog-

nitive function.

Seizures are common in AD, affecting 2.8% to 47.7% of

individuals with autosomal dominant AD (ADAD),11-13 and

0.5% to 22% with sporadic AD.14,15 Among patients with

AD who develop epilepsy, 11% to 32% experience their first

seizure in the 5 years preceding the onset of cognitive

decline.16,17 Moreover, patients with epilepsy develop cogni-

tive decline, on average, 5 years earlier than those without

epilepsy,16 supporting a role for epileptogenesis in accelerating

preclinical and early clinical stages of AD. In AD, as in MTLE,

the precise onset of epileptogenesis is rarely known. Recent

studies in humans and mouse AD models have shown that

seizures in AD may remain electrographically hidden, deep

below the neocortical surface, and beyond the range of scalp

electrodes.18-21 Mesial temporal lobe (MTL) seizures fre-

quently evade diagnosis, as 58% of patients with MTLE have

subclinical seizures, and 63% experience clinical auras that

have no ictal correlate on scalp electrodes.22

Seizures are not a universal feature of AD, however, and if

only some patients with AD stand to benefit from an antiepi-

leptogenesis strategy, early biomarkers of MTLE are needed to

avoid underpowered clinical trials and to assess whether the

medication actually works by suppressing MTL hyperexcit-

ability. Stratifying patients and assessing efficacy in an

AD-related antiepileptogenesis drug trial would be straightfor-

ward if MTLE could be reliably detected with scalp electroen-

cephalogram (EEG). However, MTL spikes and seizures

transmit poorly to the cortical surface, since 70% to 95% of

these spikes lack an epileptiform correlate on scalp EEG.18,23

More sensitive biomarkers for early detection of MTLE are

needed.

Here, we draw attention to the development of MTL hyper-

excitability biomarkers needed to enrich drug trial design and

develop network modulating therapies to alter AD progression.

Combining electrophysiologic biomarkers of hyperexcitability

with complementary biological evidence will help define tract-

able MTL dysfunction and stratify trial subgroups. A multiplex

protocol that quantifies network excitability during the AD

trajectory, demonstrates target engagement, and correlates with

treatment outcome, is essential for assessing novel neuropro-

tection strategies.

Electrophysiology

Foramen ovale electrodes. Foramen ovale (FO) electrodes posi-

tioned adjacent to the MTLare a minimally invasive alternative

to stereo-EEG electrodes and represent the gold standard for

assessing deep temporal epileptiform activity in AD. In a pilot

study, individuals with AD displayed sleep-activated spikes

and electrographic MTL seizures that were invisible on scalp

EEG electrodes.18 MTL epileptiform abnormalities are most

prevalent during non-REM sleep in humans,18,24 but interest-

ingly, occur primarily during REM sleep in mouse AD mod-

els.21,24 Although FO electrodes offer high fidelity recordings of

MTL activity, the costs and potential risks of electrode place-

ment limit their utility as a screening tool for MTLE in AD.

Scalp EEG. Subclinical epileptiform discharges visible on scalp

EEG occur in 9% to 21% of AD with no prior history of

epilepsy, compared to 0% to 5% of healthy controls.25-27 Most

spikes occur during sleep, requiring overnight EEGs for

detection. Scalp EEG spikes in AD typically arise locally

from the lateral temporal cortex or propagate to the surface

from deep MTL foci. In early-onset AD, subclinical epilepti-

form discharges were associated with a faster decline in glo-

bal cognition and executive function.25 However, scalp EEG

spikes alone are unreliable biomarkers for MTLE in AD, since

they are infrequent (<10 per 24 hours) and have variable

association with seizures.25,27 This complexity is recapitu-

lated in mouse AD models, where multiple spike morpholo-

gies exist,20 with distinct responses to antiseizure

medications.

On scalp EEG, some MTL spikes resemble small sharp

spikes (SSSs),18,28 a benign variant not linked to epilepsy.29

Frequent (>100 per 24 hours), unilateral SSS-like waveforms

are associated with epilepsy in AD, but occur in only 13% of

those with AD-related epilepsy.27 Their use as a MTLE bio-

marker requires further validation using methods that distin-

guish pathologic (due to MTLE) from benign SSS. Temporal

intermittent rhythmic delta activity (TIRDA) is a well-

described biomarker of MTLE30 that occurs in 26% of patients

with AD-related epilepsy.27 Similar to spikes, TIRDA occurs

infrequently (<10 per 24 hours) in AD, reducing its utility as a

quantitative biomarker.27

Magnetoencephalography. Magnetoencephalography (MEG)

offers a complementary but largely unexplored approach to

detecting MTL network dysfunction in AD. A small study

using 1-hour MEG recordings and overnight scalp EEG in

early-onset AD found that 21% of participants had epileptiform

discharges visible on MEG but not on scalp EEG, compared to

11% of healthy controls.25

Computational approaches. MTL spikes and seizures may be

associated with quantitative EEG or MEG signatures that per-

mit their detection even in the absence of a visible corre-

late.31,32 Development of machine learning approaches that

reliably extract MTL spike or seizure information from surface

EEG or MEG is under way33-36 but will require validation with

larger clinical data sets of combined scalp EEG/MEG and

intracranial recordings from patients with MTLE.
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Genotyping

Genomic profiling can enrich a trial study population for those

at higher risk for epilepsy, though individual genotypes remain

an imperfect predictor of ongoing or future hyperexcitability.

Alzheimer disease genes. Autosomal dominant AD is caused by

mutations in amyloid precursor protein, presenilin1, or prese-

nilin2, with each linked to elevated seizure risk in humans and

mouse models.37 Despite the monogenic etiology of ADAD,

there is considerable variability in which individuals will

develop epilepsy and when, even in single large pedigrees.38

Mouse AD models also demonstrate interindividual variability

in epilepsy risk, as even littermates carrying the same AD

mutation on an isogenic background show incomplete pene-

trance.19,21,39 Genetic background plays an important role in

excitotoxicity in both epilepsy and ADAD.40 For example,

mutations in MAPT (tau) do not cause AD, but tau deletion

prevents epileptogenesis in mouse models.41 APOE e4, the

most significant genetic risk factor for sporadic AD, confers

an age and dose-dependent risk of late-onset epilepsy.42 Over-

expression of BIN1, the second most significant genetic risk

factor for sporadic AD, induces network hyperexcitability in rat

hippocampal neurons.43

Epilepsy genes. This rapidly expanding list defines a source of

inherited risk for altered cortical excitability in AD. Pro-

epileptic modifier genes in AD could either enhance or mask

network excitability44 depending on their combinatorial pat-

tern45 and may guide treatment choice. Building an oligogenic

profile of epilepsy risk in AD may explain different onset ages

or cognitive features, and incorporating clinical exome studies

into AD-related epilepsy drug trials may help predict treatment

response. As the genomic landscapes of sporadic AD and epi-

lepsy grow, merging these gene lists will refine translational

studies.

Imaging

Imaging studies provide complementary information for sta-

ging MTL network dysfunction in AD. Although AD is typi-

cally assumed to be a symmetric brain disease, epileptiform

abnormalities in AD often involve the temporal lobes asymme-

trically.25,27 This asymmetry could be leveraged to develop

imaging biomarkers for AD patients with MTLE.

Magnetic resonance imaging. Volume-based morphometric anal-

ysis of brain atrophy in patients with AD with epileptiform

abnormalities has been limited to small studies that analyzed

group-based averages of atrophy, without considering the loca-

tion of each individual’s epilepsy.25 Seeking a correlation

between epileptiform abnormalities and focal cortical atrophy

at a higher resolution may help identify biomarkers specific to

MTL network dysfunction. T2 white matter hyperintensities,

which are associated with higher risk of late-onset epilepsy,

may also be an informative biomarker.46

Functional magnetic resonance imaging. Functional magnetic

resonance imaging (fMRI) tasks that activate episodic memory

circuitry reveal increased hippocampal activation that predicts

impending MTL failure and cognitive decline in patients in the

mild cognitive impairment (MCI) stage of AD.47 In individuals

with MCI, chronic administration of low-dose levetiracetam

reduced hippocampal hyperactivity and improved memory per-

formance.48 Whether and how task-evoked hyperactivity on

fMRI is related to MTL epileptogenesis remains unclear. Rest-

ing state fMRI is more easily performed than task-based fMRI

and may provide a more scalable approach to evaluate under-

lying MTL network connectivity in AD-related epilepsy.49

Positron emission tomography. Several positron emission tomo-

graphy (PET) tracers offer opportunities to evaluate MTLE and

synaptic dysfunction in AD. PET tracers that bind amyloid

plaques and neurofibrillary tangles have transformed our abil-

ity to study AD pathology in vivo and correlate longitudinal

changes in AD pathology with clinical features.50 Since amy-

loid and tau deposition can both be driven by hyperactivity,8

regional or lateralized tracer uptake could potentially indicate

MTL network irritability. 18F-fluorodeoxyglucose (FDG) PET

has clinical utility in both dementia and epilepsy but has not yet

been evaluated in AD-related epilepsy. In TLE, reduced uptake

of FDG in the temporal lobe can be seen even in the absence of

an MRI lesion and can predict surgical outcomes.51 11C-

flumazenil PET also demonstrates focally reduced uptake in

TLE.52 11C-UCB-J PET imaging provides a measure of synap-

tic density53 and reveals widespread reduction of tracer uptake

in the MTL and neocortex in AD,54 while showing asymmetric

focal reduction in the temporal lobe harboring mesial temporal

sclerosis in TLE.53 Other PET ligands that assess specific meta-

bolic pathways or neurotransmitter receptors relevant to MTLE

in AD are under development.

Fluid Biomarkers

Fluid biomarkers that reflect recent brain hyperexcitability

over a period of hours to weeks are needed. Hyperexcitability

could be reflected in biofluid markers specific to AD pathol-

ogy. Cerebrospinal fluid (CSF) Ab42, total tau, and phosphory-

lated tau constitute core AD diagnostic biomarkers in

widespread use. More recently, plasma phospho-tau217 was

shown to discriminate AD from other neurodegenerative dis-

eases with performance comparable to CSF and PET mea-

sures.55 It remains unclear whether focal seizures generate

detectable changes in biofluid amyloid or tau that could help

recognize MTLE.

Additional biofluid markers of neuronal injury, synaptic

loss, and inflammation, while not specific to AD, could still

help identify MTLE in AD. Cerebrospinal fluid and plasma

levels of neurofilament light, a marker of active neurodegen-

eration, are elevated in many neurodegenerative diseases,

including AD.56 Neurogranin (Ng) is a postsynaptic protein

expressed in hippocampus and cortex. Increased CSF levels

of Ng are seen in MCI patients and predict cognitive decline,
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hippocampal atrophy, and glucose hypometabolism.57 Cere-

brospinal fluid levels of presynaptic proteins SNAP25, synap-

totagmin, and GAP-43, and the inflammatory protein TREM2,

are also elevated in AD.58 Examining biofluid profiles of these

and other molecules, including microRNAs, exosomes, and

epileptogenesis biomarkers identified from epilepsy studies

may provide additional insights.

Conclusion

Although robust preclinical data support a role for MTL hyper-

excitability in AD, clinical recognition of this phenomenon in

patients has been slow, due to limited visibility and variable

expression, and further clinical evidence is essential. Whether

MTL hyperexcitability and seizures accelerate AD pathology,

and antiepileptic treatment can lessen cognitive decline

remains to be determined. Recognizing that no ship is unsink-

able, however, we must arm the crew with the appropriate

surveillance tools to safely navigate the ice fields. Raising

warning flares early, bolstering the lifevest supply, and slowing

the velocity before impact are strategies that save lives. If

stabilizing MTL hyperexcitability can minimize network dam-

age and decelerate the progression of AD, antiepileptogenic

interventions may keep cognition afloat until help arrives.

Which ones to use, in whom, and when can only be determined

by controlled clinical trials.
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