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Sub-acute ruminal acidosis (SARA) is a gastrointestinal functional disorder in livestock

characterized by low rumen pH, which reduces rumen function, microbial diversity, host

performance, and host immune function. Dietary management is used to prevent SARA,

often with yeast supplementation as a pH buffer. Almost nothing is known about the

effect of SARA or yeast supplementation on ruminal protozoal and fungal diversity,

despite their roles in fiber degradation. Dairy cows were switched from a high-fiber

to high-grain diet abruptly to induce SARA, with and without active dry yeast (ADY,

Saccharomyces cerevisiae) supplementation, and sampled from the rumen fluid, solids,

and epimural fractions to determine microbial diversity using the protozoal 18S rRNA and

the fungal ITS1 genes via Illumina MiSeq sequencing. Diet-induced SARA dramatically

increased the number and abundance of rare fungal taxa, even in fluid fractions where

total reads were very low, and reduced protozoal diversity. SARA selected for more

lactic-acid utilizing taxa, and fewer fiber-degrading taxa. ADY treatment increased fungal

richness (OTUs) but not diversity (Inverse Simpson, Shannon), but increased protozoal

richness and diversity in some fractions. ADY treatment itself significantly (P < 0.05)

affected the abundance of numerous fungal genera as seen in the high-fiber diet: Lewia,

Neocallimastix, and Phoma were increased, while Alternaria, Candida Orpinomyces, and

Piromyces spp. were decreased. Likewise, for protozoa, ADY itself increased Isotricha

intestinalis but decreased Entodinium furca spp. Multivariate analyses showed diet

type was most significant in driving diversity, followed by yeast treatment, for AMOVA,

ANOSIM, and weighted UniFrac. Diet, ADY, and location were all significant factors for

fungi (PERMANOVA, P = 0.0001, P = 0.0452, P = 0.0068, Monte Carlo correction,

respectively, and location was a significant factor (P = 0.001, Monte Carlo correction) for

protozoa. Diet-induced SARA shifts diversity of rumen fungi and protozoa and selects
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against fiber-degrading species. Supplementation with ADY mitigated this reduction

in protozoa, presumptively by triggering microbial diversity shifts (as seen even in the

high-fiber diet) that resulted in pH stabilization. ADY did not recover the initial community

structure that was seen in pre-SARA conditions.

Keywords: SARA, rumen pH, fungal ITS, protozoal 18S, mothur, dairy cattle

INTRODUCTION

Sub-acute ruminal acidosis (SARA) is a well-recognized
gastrointestinal functional disorder in ruminant livestock,
characterized by periods of low rumen pH which are often
driven by a sudden switch to a highly-fermentable, starch-based
diet. The physiological effects of a decreased rumen pH, as
well as the associated decrease in feed intake and downstream
gastrointestinal dysfunction (i.e., diarrhea) of SARA cause
subsequent reductions in rumen function, microbial diversity,
host performance, and host immune function (Khafipour
et al., 2009; Hook et al., 2011; Petri et al., 2013; McCann
et al., 2016; Sato, 2016). Additionally, acidosis can lead to other
systemic health problems, such as liver abscesses or inflammation
(including laminitis) (reviewed in Plaizier et al., 2008). Moreover,
changes to the environmental and functional rumen ecosystems
(liquid-associated, solid/particle-associated, and host-epithelium
associated) drive changes to host gene expression and epithelial
function, as well as shifts in microbial diversity and functionality
(Steele et al., 2011; Petri et al., 2013; McCann et al., 2016; AlZahal
et al., 2017).

Dietary management is the most widely-used technique for
preventing the onset of SARA in cattle (Stone, 2004). The effects
of yeast supplementation on preventing or treating SARA, as
well as on bacterial diversity, have been previously characterized
(Khafipour et al., 2009; Petri et al., 2013; AlZahal et al., 2014,
2017; Uyeno et al., 2015; McCann et al., 2016). Yet almost
nothing is known about its effect on ruminal protozoal and fungal
diversity, despite their roles in fiber degradation (Williams and
Withers, 1993; Lee et al., 2000; Krause et al., 2003; Sun et al., 2006;
Belanche et al., 2012a,b).

Rumen microorganisms are highly susceptible to changes
in rumen pH driven by dietary carbohydrate profiles, which
has been well-characterized for bacteria (ex. Henderson et al.,
2015). High-fiber diets favor rumen fungal diversity (Belanche
et al., 2012a), as well as cellulolytic protozoal genera such
as Polyplastron, Eudiplodinium, and Epidinium (Michałowski
et al., 1991; Béra-Maillet et al., 2005; Kittelmann and Janssen,
2011). High-starch diets, on the other hand, favor the
protozoa Entodinium (Dehority and Odenyo, 2003), although
it should be noted that the Dehority and Odenyo results were
likely differential by species, as only some Entodinium (i.e.,
E. caudatum) have been shown to be amylolytic. High starch diets
have been shown to have no effect (Hristov et al., 2012; Boots
et al., 2013), to reduce total abundance (Belanche et al., 2012a),
to reduce diversity within three common genera (Denman et al.,
2008), and to reduce diversity in sequenced libraries (Kumar
et al., 2015; Tapio et al., 2017).

While fungi are negatively affected by a decrease in pH,
they may be positively affected by the reduction in bacteria
with which they are often in competition for nutrients (Møller
et al., 1999). For example, Neocallimastix frontalis, a cellulolytic
fungus, was inhibited by the cellulolytic bacterium Ruminococcus
flavefaciens (Bernalier et al., 1993). In vitro studies found
Saccharomyces cerevisiae yeast reduced bacterial protease activity
(Chaucheyras-Durand et al., 2005), and could clear Escherichia
coli from rumen fluid (Chaucheyras-Durand et al., 2010).
However, bacterial-fungal interactions can be rather positive,
and can even include cross-domain production of growth-
promoters (reviewed in Tarkka et al., 2009). In vivo studies
under SARA conditions showed treatment with S. cerevisiae
active-dry yeast (ADY) improved rumen pH (Bach et al., 2007;
Thrune et al., 2009; AlZahal et al., 2014), as well as adherent
bacteria (ex. Fibrobacter succinogenes) abundance, and total
microbial cellulolytic mRNA abundance (AlZahal et al., 2014,
2017).

Fungal abundance and cellulolytic potential were found to
increase in the presence of hydrogen-utilizing species, such
as methanogenic archaea (Joblin et al., 1990; Marvin-Sikkema
et al., 1990), presumably due to the pH-modulating effect. Many
species of rumen protozoa and methanogenic archaea are known
to interact symbiotically (Vogels et al., 1980; Sharp, 1998; Ohene-
Adjei et al., 2007), but there exists an antagonism between
fungi and protozoa. For example, many protozoa produce
hydrogen during fiber digestion (Krumholz et al., 1983), there is
competition for fiber substrates, some protozoal enzymes have
been shown to degrade fungal cell walls (reviewed in Gruninger
et al., 2014), while others consume fungal spores (Hsu et al.,
1991; Morgavi et al., 1994). Given the complexity of biological
interactions, as well as chemical reactions in the rumen, it may
be that dietary changes and ADY intervention cause indirect
changes to rumen community structure, which have implications
for rumen function recovery.

This study sought to (1) identify protozoal and fungal
diversity in cows fed a high-fiber diet in epimural, fluid,
and solid-associated fractions, (2) determine the changes
in protozoal and fungal diversity in the rumen of cows
with diet-induced SARA, (3) determine the effect of ADY
supplementation on rumen diversity under a high-fiber diet,
and (4) determine whether ADY treatment could rescue
protozoal and fungal diversity if it was negatively affected by
SARA. It was hypothesized that the shift in diet substrate
to a high-grain diet, and the resulting acidification of rumen
fluid, would shift the diversity of both microorganism types,
and that treatment with ADY would rescue rumen alpha-
diversity.
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METHODS

Animals, Feeding and Treatments, and
Rumen Sampling
This protocol has been detailed previously (AlZahal et al.,
2014, 2017). All experimental procedures were approved by
the University of Guelph Animal Care Committee (animal
utilization protocol 12R050), in accordance with the Canadian
Council on Animal Care (CCAC, 1993). In summary, 16
multiparous, second-lactation Holstein dairy cows (166 ± 30
DIM), ∼650–750 kg, with rumen cannula, were randomly
assigned to either a control group (n = 8) or a treatment group
(n = 8). The treatment group were given a yeast supplement
(S. cerevisiae; AB Vista, Marlborough, UK; 8× 1010 cfu/head per
day) which was applied as a top dressing, and which was prepared
weekly by mixing 4 g of ADY (2 × 1010 cfu/g of DM) with 250
g of ground dry corn (AlZahal et al., 2014). Either the ADY or
the ground corn carrier only (control) were administered to cows
daily for the entire 10 week study.

Prior to the trial, all cows had been maintained on TMR and
were naïve to the yeast supplement. For the first 6 weeks, all
cows received a high forage (HF) diet (77:23, forage:concentrate;
CP = 14.3, NDF = 45.0, NFC = 31.5, % of DM) (AlZahal et al.,
2014) to create optimal rumen conditions. All cows were abruptly
transitioned during a 24 h period in week 7 to a high grain
(HG) diet (49:51, forage:concentrate; CP = 16.4, NDF = 28.2,
NFC = 45.2, % of DM) (AlZahal et al., 2014) to induce SARA.
During the 24 h transition period, cows were only given 50% of
the grain ration; the following day cows received the full ration
and remained on the HG until the end of week 10. The four
groups (high-fiber control, HFC; high-fiber + yeast, HFY; high-
grain control, HGC; and high-grain + yeast, HGY) allowed for
multiple group comparisons to elucidate the effects of diet, yeast
supplementation, and diet + yeast supplementation on rumen
fungal and protozoal communities.

Feed intake, milk yields, and pH were recorded daily on an
individual basis and were previously reported (AlZahal et al.,
2014). Rumen samples for DNA-based analysis were collected
as detailed previously (AlZahal et al., 2017). Briefly, cows
were sampled at wk5 (HF) and wk10 (HG) at 1,600 h. Whole
contents were sampled via direct grab through the cannula
from the ventral sac of the rumen, with fluid and particle-
associated fractions separated by cheesecloth filtration and stored
independently at a 1:1 with 100% ethanol until bacterial genomic
DNA isolation (AlZahal et al., 2014). To obtain epimural samples,
the rumen was partially evacuated, and a small section halfway
into the ventral sac was washed with cold PBS to remove adherent
particles. The washed area was swabbed with a sterile toothbrush,
and the toothbrush was vortexed in a 50ml tube with 25ml
PBS to remove microorganisms. The epimural samples were then
fixed with 25ml of 100% ethanol (AlZahal et al., 2017).

DNA Extraction and Sequencing
Nucleic acids were extracted and prepared for Illumina MiSeq
(Illumina, SanDiego, CA) at the University of Guelph sequencing
facility as previously described (AlZahal et al., 2014, 2017)
using the repeated bead-beating method (Yu and Morrison,

2004). Protozoa were amplified using previous protocols (Ishaq
and Wright, 2014; Ishaq et al., 2015) that utilized the primers
P-SSU-316F (5′-GCTTTCGWTGGTAGTGTATT-3′) (Sylvester
et al., 2004) and GIC758R (5′-CAACTGTCTCTATKAAYCG-
3′) (Ishaq and Wright, 2014) which target the V3–V4 region
of the 18S rRNA gene and signature regions 3–4. The Internal
Transcribed Spacer 1 region (ITS1) of fungi was amplified
using the primers ITS5 (5′-GGAAGTAAAAGTCGTAACAAG
G-3′) and ITS2 (5′-GCTGCGTTCTTCATCGATGC-3′) (White
et al., 1990). Sequencing library prep was performed according
to previously published protocols using the KAPA HiFi HotStart
PCR kit (KAPA Biosystems, Wilmington, MA). PCR product
was cleaned and normalized with a SequalPrep Normalization
Kit (Invitrogen, ThermoFisher Scientific, US) (AlZahal et al.,
2016, 2017), and pooled at equimolar concentrations. All DNA
isolation, library preparation, and sequencing took place shortly
after the animal trial in 2014. Sequences are available from
NCBI under BioProject accession number PRJNA386328, for
both fungi (n = 95 samples) and protozoal (n = 89) community
datasets.

Sequence and Statistical Analysis
Fungal ITS and protozoal 18S datasets were processed
independently of one another: each had barcodes and primers
removed with default parameters by the sequencing facility, and
were processed using mothur ver. 1.38 (Schloss et al., 2009). For
fungal data, paired-end sequences were separated from jointly-
run 16S sequences using trim.seqs in mothur to parse by primer,
and then sequences were culled if they contained ambiguous
bases, were shorter than 90 (Zimmerman and Vitousek, 2012) or
longer than 487 bases, or which did not align or classify to the
Findley fungal ITS database (Findley et al., 2013) which had been
de novo aligned in-house using MUSCLE (Edgar, 2004). An in-
house ruby script was used to truncate sequences at the reverse
primer or at homopolymers after 8 bases (Luo et al., 2012; Ishaq
et al., 2017). Significance between group means of taxonomic
relative abundance is listed in Supplementary Tables 1, 2, and
all standard error means were <0.07 for fungi and <0.05 for
protozoa (data not shown). Paired-end protozoal sequences were
assembled into contigs using PANDAseq (Masella et al., 2012),
and culled if they contained ambiguous bases or homopolymers
>8 bases, were shorter than 500 or longer than 550 bases, or
which did not align and classify to a rumen ciliate protozoal 18S
database (Ishaq and Wright, 2014).

For statistical analysis, protozoa were subsampled
(normalized) to 5,000 sequences/sample, and fungi were
subsampled to 500 sequences/sample due to low reads/sample
(Supplemental Table 3; Smith et al., 2014). As a comparison,
fungi were also subsampled at 1,000 reads/sample, which did not
dramatically alter clustering or statistical comparisons; however,
it more severely reduced the number of samples which could be
used for statistical comparison, thus the normalization was set
at 500 sequences. Both datasets were clustered using the nearest
neighbor method, protozoal at a 4% species-level cutoff (Ishaq
and Wright, 2014) and fungi at a 3% species-level cutoff (Blaalid
et al., 2013). Diversity was calculated using themothur-integrated
versions of CHAO (Chao and Shen, 2003), ACE (Chao and Shen,
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2010), Good’s Coverage (Etsy, 1986), Inverse Simpson (Simpson,
1949), and Shannon Diversity (Shannon and Weaver, 1949),
with significant differences (P < 0.05) calculated using Student’s
T-test for pairwise comparisons. Linear discriminant analysis
(Segata et al., 2011) was used to determine discriminatory OTUs
by treatment group, with significance at P < 0.05 usingWilcoxon
rank test. Bray-Curtis Dissimilarity was calculated using mothur
and used to compare samples, upon which analysis of molecular
variance (AMOVA), analysis of similarity (ANOSIM), and
UniFrac (Lozupone and Knight, 2005) were performed using
the mothur-integrated versions. Treatment effects were also
measured using PERMANOVA with a mixed-effects model
in PRIMER ver 6. (Clarke, 2006), following square-root
transformation and Bray-Curtis Dissimilarity. Non-Metric
Multidimensional Scaling Plots (NMDS) based off Bray-Curtis
Dissimilarity were visualized in R (R Core Team, 2015) using
ggplot2. A heatmap of significant Pearson’s correlations between
treatment parameters and OTU abundance was created in R
using the corrplot package, which generated correlations and
tested significance.

RESULTS

A total of 262 fungal genera were identified, with 103 having
a significant difference between at least two treatment groups
(Supplemental Table 1). Taxonomic diversity was significantly
different when comparing controls by diet (HFC and HGC)
and ADY treatments by diet (HFY and HGY) in all three
sample locations for fungi (Figure 1, Supplemental Table 1),
but less so when comparing control to ADY treatment within
either the HF or HG diet (C and Y). Taxonomic diversity was
also different between HFC and HGY, indicating that ADY
supplementation did not recover the initial fungal community.
The taxonomic diversity of fungi showed a dramatic increase in
the proportion of rare taxa (<1% abundance) from a HF to a
HG diet (Figure 1, shown as blank). When comparing control
to yeast treatment in the HF diet, Lewia and Neocallimastix spp.
relative abundance were notably increased with yeast treatment
in multiple fractions, while Phoma was increased in fluid.
Alternaria, Candida, Orpinomyces, and Piromyces spp. relative
abundance were decreased in HFY. Saccharomyces all classified
as S. cerevisiae, though to multiple strains (data not shown),
but were not found in >1% mean relative abundance in any
treatment group or significantly more abundant in any group.

A total of 44 protozoal species were identified, with 38
having a significant difference between at least two treatment
groups (Supplemental Table 2). The relative abundances
of the protozoa Entodinium furca monolobum, Entodinium
caudatum, and Polyplastron multivesiculatum were significantly
increased in all sample locations in the HG diet over
the HF diet (Figure 2, Supplemental Table 2). Likewise,
relative abundances of Ophryoscolex caudatus, Ostracodinium
trivesiculatum, Epidinium ecaudatum, Eremoplastron rostratum,
Eudiplodinium rostratum, and Dasytricha ruminantium were
significantly decreased in the HG diet. When comparing control
to yeast treatment in the HF diet, Isotricha intestinalis and other

Isotricha species’ abundances were increased, while E. furca spp.
were decreased. When comparing control to yeast treatment
in the HG diet, P. multivesiculatum and Entodinium spp. were
increased, while E. rostratum, Eremoplastron spp.,Ostracodinium
gracile, and other Ostracodinium spp. relative abundance were
decreased. Taxonomic diversity was also different between HFC
and HGY, indicating that ADY supplementation did not recover
the initial protozoal community.

Linear discriminant analysis was used to determine significant
OTUs by treatment group for fungi (Figure 3) and protozoa
(Figure 4). Diet was delineated by 59 fungal and 7 protozoal
OTUs, and location by 35 fungal and 45 OTUs. ADY was
delineated by 5 fungal OTUs; one genus Orpinomyces and
four family Neocallimastigaceae, and 1 protozoal OTU: genus
Entodinium.

Observed fungal OTUs were significantly higher in solid
fractions of HGY than HGC, and solid fractions of HFY trended
(P < 0.06) toward being significantly higher than HFC (Table 1).
ACE was higher in solid HFC than solid HGC for fungi. Inverse
Simpson and Shannon-Weiner Diversity were higher in epimural
and solid fractions of HFY than HFC, and HGC had higher
diversity than HFC in the epimural and solid fractions. HG
diets saw no fungal samples which had enough read coverage
to be statistically compared in the fluid fraction. Protozoal
samples showed greater differences in observed OTUs, CHAO,
and ACE by sample location and treatment group, with epimural
samples showing greater diversity than fluid or solid-associated
samples (Table 1). HFC had more OTUs than HGC in the
solid fraction; however, the HGY epimural fractions showed
higher OTUs as compared to HFY or HGC. Inverse Simpson
and Shannon Diversity showed multiple significant interactions
between treatments: yeast increased diversity in both diets, and
HF diet fractions were more diverse than HG fractions.

Multivariate analyses showed diet type was very significant
in driving diversity, followed by ADY treatment, for AMOVA,
ANOSIM, and weighted UniFrac (Table 2). The interactions
between treatment and diet were often location-specific, with
significant differences seen largely in epimural fractions and
occasionally in solid fractions. This was visually confirmed
using NMDS for both fungi (Figure 5) and protozoa (Figure 6).
PERMANOVA indicated that diet (P = 0.0001, MC) ADY
(P = 0.0452, MC), and location (P = 0.0068, MC) were
all significant factors for fungi. However, only location was
a significant factor (P = 0.001, Monte Carlo correction)
for protozoa using PERMANOVA repeated measures. When
comparing HFC to HGY to determine whether ADY treatment
rescued diversity, fungal communities were still distinct, while
protozoal populations were not significantly different (Table 2).
However, protozoal populations were not significantly different
for many comparisons, thus overlap between HFC and HGY
likely reflects that the treatment effects on protozoa were low
rather than a rescuing of diversity with ADY.

Pearson’s correlations indicate significant correlations
(P < 0.05) among fungi, among protozoa, between kingdoms,
and for both diet and ADY supplementation (Figure 7). Fungi
in the Neocallimastigaceae family were positively correlated with
HF and the fluid fraction, while the genera Emericella, Fusarium,
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FIGURE 1 | Relative abundance of rumen fungi genera for cows receiving a high fiber (HF) or high grain (HG) diet, with (Y) or without (C) yeast supplementation.

Treatments include high-fiber control (HFC), high-fiber yeast (HFY), high-grain control (HGC), and high-grain yeast (HGY).

Monascus, and Pichia were positively correlated with HG and
the solid fraction. None of the top 20 fungal OTUs, and only one
protozoa Entodinium sp., was positively correlated with ADY.
Protozoa were correlated with a HF diet, with the exception of
E. furca monolobum. All the top OTUs identified as protozoal
Isotricha spp., were positively associated with the epimural

fraction, along with a few other species. Fungal-protozoal
correlations were largely positive. E. furca monolobum had
several negative fungal correlations, but this was likely due to its
correlation with HG. Polyplastron multivesiculatum; however,
had several negative fungal correlations which were independent
of diet.

Frontiers in Microbiology | www.frontiersin.org 5 October 2017 | Volume 8 | Article 1943

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Ishaq et al. Yeast Supplementation and Rumen Diversity

FIGURE 2 | Relative abundance of rumen protozoal species for cows receiving a high fiber (HF) or high grain (HG) diet, with (Y) or without (C) yeast supplementation.

Treatments include high-fiber control (HFC), high-fiber yeast (HFY), high-grain control (HGC), and high-grain yeast (HGY).

DISCUSSION

In the present study, rumen protozoal and fungal diversity was
reported in dairy cows fed a high-fiber diet in epimural, fluid, and
solid-associated fractions to describe baseline populations under
normal rumen conditions (objective 1). Protozoal sequences were
identified in epimural fractions, contrary to a previous study
which used a different variable region of the 18S rRNA gene
(Shin et al., 2004). Following diet-induced SARA, the diversity of

protozoal was reduced, especially in fractions associated with the
rumen wall, and the fiber-degrading species were notably altered
(objective 2). However, in the present study, diet-induced SARA
increased fungal diversity, which is contrary to some previous
findings which showed no effect (Hristov et al., 2012; Boots et al.,
2013), a reduction in total abundance (Belanche et al., 2012a),
a reduction of diversity within three common genera (Denman
et al., 2008), and a reduced diversity in sequenced libraries
(Kumar et al., 2015; Tapio et al., 2017). This disparity may
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FIGURE 3 | Linear Discriminant Analysis of significant fungal OTUs in the epimural (E), fluid (F), and solid (S) fractions for cows receiving two dietary treatments with or

without yeast supplementation under SARA conditions. Error bars represent standard deviation for OTUs with multiple LDA values. Treatments include high-fiber

control (HFC), high-fiber yeast (HFY), high-grain control (HGC), and high-grain yeast (HGY).
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FIGURE 4 | Linear Discriminant Analysis of significant protozoal OTUs in the epimural (E), fluid (F), and solid (S) fractions for cows receiving two dietary treatments with

or without yeast supplementation under SARA conditions. Error bars represent standard deviation for OTUs with multiple LDA values. Treatments include high-fiber

control (HFC), high-fiber yeast (HFY), high-grain control (HGC), and high-grain yeast (HGY).

be a function of setting a biologically inappropriate minimum
sequence length cutoff during quality assurance steps, as some
fungal ITS sequences are 100–150 bases, ex. Pichia, which would
otherwise be removed. Pichia and Candida both contain species
which utilize lactic-acid (Mendes de Almeida et al., 2012; Sirisan
et al., 2013), and both of which were increased on a high-grain
diet in the current study. Likewise, entodiniomorphid protozoa

consume lactate (Newbold et al., 1987), thus acidosis does not
affect all species similarly.

Grain is generally considered to be a source of fungal spores
for livestock, and a number of species have been identified in
feed (reviewed inDicostanzo andMurphy, 2012).While the grain
feed was not tested for fungal diversity, Alternaria and Mucor
spp. were both increased post-feeding the HG diet in the present
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TABLE 1 | Statistical diversity for rumen fungi and protozoa for cows receiving two dietary treatments with or without yeast supplementation under SARA conditions.

#samples CHAO ACE OTUs Good’s coverage Inverse simpson Shannon-Weiner

FUNGAL ITS

HFC

Epimural (7) 89 ± 14 154 ± 67 53 ± 7 95% ± 1a 12 ± 4a 2.88 ± 0.2ac

Fluid (8) 124 ± 94 110 ± 35 51 ± 8 96% ± 0 13 ± 3 2.97 ± 0.2

Solid (5) 97 ± 20 129 ± 27a 54 ± 8T 95% ± 1T 11 ± 3b 2.91 ± 0.3b

HFY

Epimural (8) 111 ± 31 136 ± 40 58 ± 7 95% ± 1 15 ± 3 3.12 ± 0.2c

Fluid (8) 108 ± 45 113 ± 54 54 ± 7 96% ± 1 14 ± 3 3.08 ± 0.2

Solid (3) 102 ± 20 167 ± 66 62 ± 9T 94% ± 1 11 ± 4 2.94 ± 0.2

HGC

Epimural (6) 103 ± 29 108 ± 38 68 ± 8 94% ± 2a 19 ± 4a 3.38 ± 0.1a

Fluid (0) – – – – – –

Solid (8) 91 ± 28 92 ± 29a 61 ± 6a 96% ± 1T 18 ± 4b 3.29 ± 0.2b

HGY

Epimural (7) 102 ± 18 129 ± 24 64 ± 12 95% ± 1 19 ± 9 3.14 ± 0.5

Fluid (0) – – – – – –

Solid (8) 111 ± 33 131 ± 56 62 ± 5a 95% ± 1 15 ± 5 3.14 ± 0.3

PROTOZOAL 18S

HFC

Epimural (6) 876 ± 207 1773 ± 646 271 ± 38 93% ± 2 3 ± 1c 2.13 ± 0.2d

Fluid (8) 28 ± 64 65 ± 173 15 ± 28 99.5% ± 1 2 ± 1d 0.63 ± 0.5e

Solid (8) 9 ± 3a 6 ± 5a 9 ± 3a 100% ± 0.1 3 ± 2a 1.39 ± 0.5a

HFY

Epimural (7) 992 ± 245 2070 ± 647 298 ± 50b 92% ± 2a 5 ± 2c 2.48 ± 0.4d

Fluid (7) 283 ± 484 511 ± 889 115 ± 189 96% ± 7 5 ± 5d 1.77 ± 1.4b,e

Solid (7) 9 ± 2b 4 ± 5 9 ± 2c 100% ± 0.0 4 ± 2b 1.53 ± 0.4c

HGC

Epimural (8) 961 ± 206 2134 ± 981 282 ± 56d 93% ± 2.4b 2 ± 1d 1.67 ± 0.7f

Fluid (7) 5 ± 2 3 ± 3 5 ± 2 100% ± 0.1 2 ± 1 0.50 ± 0.4

Solid (8) 6 ± 2a 2 ± 3a 5 ± 2a 100% ± 0.3 2 ± 1a 0.85 ± 0.5a

HGY

Epimural (7) 1000 ± 146 1773 ± 583 381 ± 47b,d 90% ± 1.7a,b 5 ± 2d 2.88 ± 0.5f

Fluid (7) 4 ± 2 1 ± 2 4 ± 2 100% ± 0.0 2 ± 1 0.57 ± 0.5b

Solid (7) 6 ± 2b 4 ± 3 6 ± 2c 100% ± 0.0 2 ± 1b 0.88 ± 0.5c

Superscripts represent significant (P < 0.05) differences by Student’s T-Test, for fungal and protozoal diversity separately, compared by row for each measure. T indicates a trending

P-value; 0.05 < T <0.06.

Treatments include high-fiber control (HFC), high-fiber yeast (HFY), high-grain control (HGC), and high-grain yeast (HGY). Error is presented as standard deviation.

study and have been previously identified in grain (Abe et al.,
2015; Lee et al., 2015). In addition to changing the profile of the
carbohydrates available in the rumen, switching to a HG diet
reduced the pH of the rumen, as previously discussed (AlZahal
et al., 2014, 2017), both of which select differential diversity.
Diet-induced SARA can cause damage to the rumen epithelium
(Steele et al., 2011) and increase the expression of host genes
responsible for rumen epithelial barrier function (McCann et al.,
2016). Any changes to the structure and function of the rumen
epithelium, including those triggered by SARA, may negatively
impact the diversity and density of rumen fungi living there.
Fungi have the slowest life cycles of rumen microorganisms
(24–32 h) (Theodorou et al., 1996; Hobson and Fonty, 1997),
and association with the rumen epithelium may help cells avoid

wash-out. Fungi (Warner, 1966; Orpin, 1975; Gruninger et al.,
2014) and protozoa (Hook et al., 2012; Williams and Coleman,
2012) are known to associate with rumen epithelial cells until
chemotaxis draws them into the liquid and solid fractions. In the
present study, the greatest changes to diversity and community
occurred in epithelial fractions. Any epithelial damage accrued
during SARAmay then have larger consequences for the recovery
of fungal and protozoal diversity and functionality.

Cellulase enzyme activity requires acid catalysis, and as such
cellulase activity most often occurs extracellularly in the rumen,
is sensitive to local pH, and works best in a slightly acidic
environment (pH 6–7) (Weimer, 1993; Russell andWilson, 1996;
Sung et al., 2007). Yet, many cellulolytic microorganisms are
not acid tolerant, and the maintenance of a neutral or basic
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TABLE 2 | Comparison of treatments by AMOVA, ANOSIM, and UniFrac, for rumen fungi and protozoa for cows receiving two dietary treatments with or without yeast

supplementation under SARA conditions.

Fungal ITS Protozoal 18S

AMOVA ANOSIM Weighted UniFrac AMOVA ANOSIM Weighted UniFrac

P R P W P P R P W P

Location ** 0.13 * 0.65 ** * 0.08 ** 0.87 **

Epimural × Fluid ** 0.05 ns 0.65 ** ** 0.10 * 0.99 **

Epimural × Solid Ta 0.06 ns 0.55 ** * 0.08 * 1 **

Fluid × Solid ** 0.28 ** 0.77 ** * 0.07 * 0.61 **

HF × HG ** 0.93 ** 1 ** ** 0.10 ** 0.65 **

C × Y ns 0.01 ns 0.48 ** ns 0.00 ns 0.61 **

Treatment ** 0.51 ** 0.83 * ** 0.15 ** 0.87 **

HFC × HGC

Epimural ** 0.91 ** 1 ** ns 0.40 * 1 **

Fluid n/a n/a n/a n/a n/a ns 0.00 ns 0.65 **

Solid ** 0.95 ** 1 ** ns 0.11 ns 0.74 **

HFY × HGY

Epimural ** 0.82 ** 1 ** ns 0.31 * 1 ns

Fluid n/a n/a n/a n/a n/a ns 0.19 * 0.5 **

Solid Ta 0.85 T1 1 ** ns 0.00 ns 0.85 **

HFC × HFY

Epimural ns 0.03 ns 0.61 * ns −1.8 ns 0.96 **

Fluid ns 0.01 ns 0.55 * ns 0.03 ns 0.66 **

Solid ns 0.00 ns 0.79 * ns 0.00 ns 0.65 **

HGC × HGY

Epimural ns 0.02 ns 0.74 ** ns 0.31 * 0.95 *

Fluid n/a n/a n/a n/a n/a ns 0.00 ns 0.72 **

Solid ns 0.00 ns 0.63 ** ns 0.02 ns 0.67 **

HFC × HGY

Epimural ** 0.84 ** 1 ** * 0.32 Ta 0.95 *

Fluid n/a n/a n/a n/a n/a ns 0.00 ns 0.53 **

Solid ** 0.84 ** 1 ** ns 0.00 ns 0.74 **

aValues were significant only before Bonferroni correction.

Diets include high fiber (HF) or high grain (HG), locations include Epimural (E), fluid (F), or solid (S), and treatments include yeast (Y) or Control (C). Significance is determined as P < 0.05,

*P < 0.001, **P > 0.05 (ns), or not enough comparisons to make (n/a). Significance was adjusted by Bonferroni where appropriate.

intracellular pH in the context of an acidic extracellular pH
can cause some acidic volatile fatty acids to disperse into cells
and accumulate to toxic levels as intracellular anions (Russell
and Diez-Gonzalez, 1998). Once rumen pH is below 6.0, the
extent and duration of the lowered pH will differentially affect
the ability of cellulolytic bacteria to attach to fiber particles
(Roger et al., 1990; Mouriño et al., 2001; Sung et al., 2007). This
window in functionality during acidosis events may account for
why diversity of fungi and protozoa was not always significantly
changed in solid fractions in the current study, as pH was less
delineating between pre- and post-SARA groups than expected
because individual pH variation was high (AlZahal et al., 2014).

Under normal rumen conditions and HF diet, the daily
addition of ADY modified rumen communities (objective 3).
Supplementation with ADY mitigated the reduction in protozoal
diversity caused by diet or pH (objective 4), consistent with

previous studies on bacteria (AlZahal et al., 2017). The
cellulolytic fungi Neocallimastix, and the protozoa I. intestinalis
were all increased by ADY supplementation, even as the
cellulolytic fungi Orpinomyces and protozoa E. furca spp. were
decreased. A meta-analysis of S. cerevisiae supplementation
indicated that it would increase protozoal growth (Desnoyers
et al., 2009). Isotrichids have been shown to associate with plant
particles due to chemotaxis toward a variety of sugars (Orpin
and Letcher, 1978; Diaz et al., 2014a,b), thus their increase in
the present study with ADY treatment may result from the
associated improvement in fiber digestion and availability of
sugars (AlZahal et al., 2014).

In the present study, the reduction in protozoal diversity
could be attributed to the change in pH or the change in
substrate as grain and concentrate diets often reduce microbial
diversity (Wu et al., 2011; Belanche et al., 2012a; Li et al.,
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FIGURE 5 | Non-metric Multidimensional Scaling (nMDS) plot for rumen fungi from cows receiving two dietary treatments with or without yeast supplementation

under SARA conditions. Lowest stress = 0.13, R2 = 0.93.

FIGURE 6 | Non-metric Multidimensional Scaling (nMDS) plot for rumen protozoa from cows receiving two dietary treatments with or without yeast supplementation

under SARA conditions. Lowest stress = 0.19, R2 = 0.80.

2013; Fernandes et al., 2014; Kumar et al., 2015). Differentiating
between the effects of the availability of different feed substrates
and the acid-production potential of feeds (Kim et al., 2012) on
rumen microbial diversity is challenging, especially as different
feed substrates or formulations can cause varied amount of
saliva production, which can buffer rumen fluid pH. In vitro

investigation using fermentation chambers showed pH was a
larger driver of fermentative ability than substrate; low pH
reduced microbial fiber digestion, nitrogen circulation, and
volatile fatty acid production, especially acetate and butyrate
(Calsamiglia et al., 2007). S. cerevisiae not only buffers pH in
this (AlZahal et al., 2014) and previous studies (Bach et al., 2007;
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FIGURE 7 | Significant Pearson’s correlations between diet, active dry yeast supplementation, and rumen location, with the top 20 fungal and protozoa OTUs.

Thrune et al., 2009), but alters the redox potential of rumen
fluid, and with its ability to survive in the rumen allows for a
more continuous control of rumen pH, it has an advantage over
chemical pH buffering with sodium bicarbonate (Marden et al.,
2008).

Previous work has shown indirect competition between fungi
and protozoa for fiber and in dealing with hydrogen byproducts
(Krumholz et al., 1983), which is often mitigated by associated
methanogens (Joblin et al., 1990; Marvin-Sikkema et al., 1990).
Protozoa also appear to directly compete with fungi through
enzymatic destruction and predation (Hsu et al., 1991; Gruninger
et al., 2014), although a meta-analysis has suggested that
rumen defaunation more often causes a reduction in cellulolytic
microorganisms, including fungi (Newbold et al., 2015). In the
present study, fungal-protozoal correlations were largely positive.

As relatively few studies examine fungal-protozoal
interactions in the rumen, it is difficult to differentiate between
dietary effects and biotic interactions. For example, here,

E. furca monolobum was negatively correlated with fungi
in the Neocallimastigaceae family. E. furca monolobum and
Neocallimastix are cellulolytic and have been associated with
methanogens seeking hydrogen (Regensbogenova et al., 2004;
Wei et al., 2016), potentially they may be competing for fiber
substrate or hydrogentrophs in the rumen. On the other hand,
E. furca monolobum also had a negative correlation with the
HFD that was positively correlated with those fibrolytic species.
Polyplastron multivesiculatum; however, had several negative
fungal correlations which were independent of diet.

Moreover, there can be predatory competition between rumen
protozoal populations, especially from P. multivesiculatum
toward Entodinium, Epidinium, and Eudiplodinium spp., which
dominate Type B rumen populations and are often found
in domestic livestock (Eadie, 1967; Coleman et al., 1972;
Towne et al., 1988a). Polyplastron, along with Ophyroscolex and
Metadinium, dominate Type A rumen populations which are
common in wild ruminants (Towne et al., 1988a,b), and may
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represent a “wild-type community.” Type A will out-compete
Type B when added to naïve Type B (Eadie, 1967; Coleman
et al., 1972). Previous studies have also reported mixed A/B
populations in ruminants (Towne et al., 1988a,b), indicating a
potential for stasis in competition at the species’ level, as well
as Type O (Coleman, 1979), consisting only of Entodinium,
Isotricha, and Dasytricha which are more acid-tolerant (Lyle
et al., 1981; Dennis et al., 1983). Sheep have also been shown
to change from Type O to other types following diet changes
(Kittelmann et al., 2016). In the present study, cows on both diets
and treatments hosted a Type A/B population, despite a change
in diet and rumen pH.

This study provides an interesting consideration into the
effect on less abundant, yet functionally-critical rumen taxa,
namely fungi and protozoa, under conditions of diet change,
SARA, and supplementation with an ADY. However, a great
deal of additional work is needed to elucidate interactions
between microbial taxa in the rumen under normal and dysbiotic
conditions. Moreover, the definition of a healthy microbiome
has yet to be determined in ruminants, particularly where fungi
and protozoa are concerned, suffice that more diversity is widely
regarded as healthier. While ADY recovered total diversity in
some populations in the present study, and did improve the
abundance of some fibrolytic taxa; however, it did not rescue the
pre-SARA community. Based on previous results using ADY in
these particular cows, ADY was shown to improve cattle health
(AlZahal et al., 2014) and fibrolytic bacterial abundance (AlZahal
et al., 2017).
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