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The SRY (Sex Determining Region Y)-related HMG box of DNA binding proteins,

referred to as SOX transcription factors, were first identified as critical regulators of

male sex determination but are now known to play an important role in vascular

development and disease. SOX7, 17, and 18 are essential in endothelial differentiation

and SOX2 has emerged as an essential mediator of endothelial-mesenchymal transitions

(EndMTs), a mechanism that enables the endothelium to contribute cells with abnormal

cell differentiation to vascular disease such as calcific vasculopathy. In the following

paper, we review published information on the SOX transcription factors in endothelial

differentiation and hypothesize that SOX2 acts as a mediator of EndMTs that contribute

to vascular calcification.

Keywords: vascular calcification, sex determining region y-box, endothelial-mesenchymal transition, endothelium,

differentiation

INTRODUCTION

Appropriate endothelial cell (EC) differentiation is essential to support vascularization of tissues
and maintain proper vascular homeostasis. In coordination with tissue development, ECs are
derived from progenitor cells that undergo endothelial lineage differentiation to form functional
vascular networks (1, 2). In fully developed tissues, quiescent endothelium can be converted to
active endothelium as needed for tissue regeneration or repair, and mature endothelial lineage is
required to return to and maintain normal vasculature (3). Disease often borrows elements from
development such as excessive production of morphogenic factors (4), dysregulation of stem cells
(5), abnormal angiogenesis (6), and ectopic cell differentiation (7). Albeit a normal process in neural
crest development and cardiac valves and neovascularization (8, 9), endothelial-mesenchymal
transitions (EndMTs) contribute to vascular disease when the transitions re-emerge in atypical
locations (10–16). EndMTs have been revealed as novel sources of calcifying cells for vascular
calcification, which is considered to be a form of ectopic bone formation and involves multipotent
cells and networks of growth factors and transcription factors (10). The SOX transcription factors
have been shown to be essential mediators in vascular development. Here, we review the SOX
factors in endothelial differentiation and EndMTs and include some of our results to support
previous studies. In addition, we briefly review the SOX factors in EndMTs, and argue that SOX2
induces EndMTs and serves as a novel cellular source in vascular calcification.
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VASCULAR SOX
TRANSCRIPTION FACTORS

The sex-determining region of the Y-chromosome, the SRY gene,
was initially discovered as a testis-determining gene in human
and mice (17, 18). It led to the discovery of the family of SRY
(Sex Determining Region Y)-related HMG box of DNA binding
proteins, referred to as SOX transcription factors, which consists
of more than 20 Sox genes (19).

The SOX transcription factors are characterized by the
evolutionarily conserved high mobility group (HMG) box, a
79-amino-acid DNA-binding motif that binds to a common
consensus site with variable efficiency (19) and are regulated
by multiple signaling pathways during vascular development
(19–21). They are subdivided into the A-J groups based on
phylogenetic analysis of the HMG box sequences, protein
structure, gene organization, and function within developmental
programs (19, 22, 23). The SOX transcription factors that have
been associated with the vasculature are SOX7, SOX17, and
SOX18, members of the SOXF subgroup that appear in vascular
developmental programs (19–21), and SOX2, a member of the
SOXB subgroup that primarily has been associated with EndMTs.

SOX7, SOX17, AND SOX18

SOX7, SOX17, and SOX18 are active in early vasculogenesis
at the onset of endothelial differentiation and function
upstream of signaling cascades that regulate cell fate
decisions (19–21). Already on embryonic day (E) 7.5 in
mice, ETV2+/FLK1+/CD41– cell populations enriched for
endothelial progenitor cells show SOX7 expression in 97%,
SOX18 expression in 50%, and SOX17 expression in 75% of
the cells (21). SOX7 and SOX18 continue to be expressed in
the dorsal aorta, cardinal vein and intersomitic vessels by E8.25
and throughout the developing vascular network at later dates
(21, 24, 25). SOX17, on the other hand is detected in EphrinB2+
arterial cells by E10.5, suggesting arterial specificity already at
this stage (21, 26, 27). Post-natally, SOX7 and SOX18 continue
to be expressed in both arterial and venous endothelium in
mice, whereas SOX17 expression is restricted to the arterial
endothelium (28). Studies in zebrafish have confirmed similar
roles of Sox7 and Sox18 in vascular regulation [reviewed in (21)],
whereas Sox17 is not expressed in the developing vasculature
of zebrafish.

SOX7 haploinsufficiency has been linked to cardiac defects
and congenital diaphragmatic hernia, and is characterized by
microdeletions at 8p23.1 that include the Sox7 gene (29). Global
gene deletion of Sox7 in mice is associated with embryonic
lethality due to absence of the major vessels in the yolk sac
and cardiovascular failure (29). Global loss of Sox17 results
in depletion of the definitive endoderm and early embryonic
lethality (30). However, the cardiovascular defects in Sox17−/−

mice are more pronounced in mice with combined loss of
Sox17 and Sox18 (24), suggesting redundancy between these two
factors. Conditional endothelial-specific Sox17 deletion using

Tie2-Cre mice results in blocks in the vascular remodeling of the
yolk sac, absence of arteries, and fusion between the aorta and
the cardinal vein associated with loss of arteriovenous identity
(21, 27). It implies a connection between the SOX transcription
factors and Notch signaling that recognizes the important role
of Notch in arteriovenous differentiation (20). It has also been
shown that Notch signaling can suppress endothelial SOX17,
and that this repression induces venous genes such as CoupTFII,
while suppressing arterial genes such as EphrinB2, Notch4, and
Delta-like ligand (Dll)4 (20, 31). SOX17 may also be a mediator
of canonical Wnt signaling in arterial differentiation (32). Global
Sox18−/− mice on 129/Sv-CD1 mixed genetic background were
initially reported to be viable without gross abnormalities in
the cardiovascular system (33). However, Sox18−/− mice on
pure C57BL/6 background develop subcutaneous edema and
embryonic lethality due to interference in the lymphangiogenesis
(34, 35), which supports the hypothesis that SOX18 plays an
important role in lymphangiogenesis (21, 34, 35).

SOX2

SOX2 is essential for regulation of interactions between the
epithelium and the mesenchyme (36), differentiation of multiple
cell lineages (37–40) and cell fate transitions (41, 42). SOX2
may be best known as one of the four original pluripotent
factors that together with octamer-binding transcription factor
3/4 (Oct3/4), Kruppel-like factor 4 (Klf4), and c-Myc is used for
the reprogramming of cells (43) and serves as a marker of neural
stem cells (44, 45). SOX2 also enhances the reprogramming
capacity of cardiovascular cells, and has been shown to induce
endothelial differentiation in isolated adult mesoangioblasts (46)
and participate in the reprogramming of corneal endothelial
cells (47).

To study the role of SOX2 in the developing endothelium,
we used an embryonic stem cells (ESCs) model of endothelial
differentiation (48) and examined the temporal expression of
SOX2 and endothelial markers. The endothelial markers emerged
between day 3 and 6 of endothelial induction, as the expression of
SOX2 increased (Figure 1A), which suggested that involvement
of SOX2 might be required for EC differentiation. Therefore,
we depleted Sox2 transcripts in the ESCs on day 3 using
siRNA, and found that the reduction of SOX2 suppressed
EC differentiation (Figure 1B). Interestingly, the cells still kept
the ability to differentiate into other lineages after depletion
of Sox2, including neuronal differentiation (data not shown),
suggesting that suppression of Sox2 may alter the direction
of endothelial differentiation. Our results supported a role for
SOX2 in the endothelial integrity, although it is unknown
if SOX2 directly targets or interacts with early drivers of
endothelial differentiation.

SOX2 is also known to be a key regulator of neuronal
differentiation (37). In previous studies, we found ECs that
were double positive for the endothelial marker fetal liver
kinase 1 (Flk1) and SOX2 adjacent to differentiating brain cells
on E10.5 and E14 (49). Flow cytometric analysis of dissected
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FIGURE 1 | SOX2 plays a role in endothelial differentiation. Time course of

expression of (left panels) SOX2, and (right panels) fetal liver kinase 1 (Flk1),

VE-cadherin (VE-Cad) and cluster of differentiation 31 (CD31), as determined

by real-time PCR during endothelial cell derivation from wild type embryonic

stem cells (15 days). (A) Scrambled siRNA (SCR) or (B) specific Sox2 siRNAs

were transfected into the embryonic stem cells on day 3. Gene expression is

shown as fold change compared to the expression on day 0 (n = 5).

E12.5 embryonic brains confirmed the presence of cerebral
ECs that co-expressed the endothelial marker VE-cadherin and
SOX2 (49). This suggested that the ECs and the brain cells
originated from the same progenitor cells and the endothelial and
neuronal differentiation were coordinated. Similar observations
were made in other organs, such as the lungs and the liver
(49), suggesting the presence of differentiation “forks” involving
ECs and organ-specific cells that are aimed at coordinating the
developmental progression.

To further examine the potential role of SOX2 in such
a coordination, we induced neuronal differentiation in ESCs
(50). We found that the Sox2 depletion delayed the endothelial
marker induction and changed the temporal sequence of
neuronal and endothelial differentiation (Figure 2A). The results
showed that expression of SOX2 peaked twice during the
neuronal differentiation, on day 3 and day 6 (Figure 2B), which
differs from the SOX2 expression in endothelial differentiation
(Figure 1). We examined the expression of the neuronal lineage
markers SOX1, paired box protein (Pax6), and Nestin, together
with the endothelial markers VE-cadherin, Flk1, and cluster
of differentiation 31 (CD31) for up to 15 days. The results
showed that the endothelial markers were induced during
neuronal differentiation even without specific EC induction
(Figures 2C–F). The time course suggested that the two types
of differentiation were orchestrated, such that expression of
endothelial markers was high when expression of neuronal
markers was low, and vice versa (Figures 2C–F). The temporal

FIGURE 2 | Endothelial differentiation co-exists with neural differentiation. (A)

Schematic diagram of the temporal induction patterns of coordinated

endothelial (EC) and neuronal (NE) differentiation. (B–F) Marker expression

during neuronal differentiation in wild type embryonic stem cells with or without

suppression of SOX2 (n = 5). Scrambled siRNA (SCR) or specific Sox2 siRNAs

were transfected into the cells on day 3. Expression was determined by

real-time PCR and calculated as fold change compared to the expression on

day 0. (B–D) Time course of expression of SOX2, and the neural

progenitor markers SOX1, paired box protein (Pax6), and nestin. (E,F) Time

course expression of the endothelial markers VE-cadherin (VE-Cad), fetal liver

kinase 1 (Flk1) and cluster of differentiation 31 (CD31).

sequence in this cell model appeared to be neuronal-endothelial-
neuronal-endothelial (Figure 2A).

SOX2, EndMTs, AND
VASCULAR CALCIFICATION

Vascular calcification is a frequent complication of vascular
disease (7, 51–54) that exhibits multiple patterns of calcification
depending on the type of disease, the type of vessel and the
vascular layer that is affected (55). Several sources of calcifying
cells have been identified, including vascular medial cells such
as smooth muscle cells and pericytes, adventitial cells, ECs,
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various progenitor cells and osteoclast-like cells (55). Reports
of endothelial contributions to calcific lesions suggest that
EndMTsmediate direct contributions of osteogenic cells from the
endothelium, thereby giving the endothelium a direct role in the
development of vascular calcification.

EndMTs occur first in development and have been clearly
demonstrated during heart valve formation (8, 56, 57) and
recur in adult disease processes in the cardiac valves (8, 58),
pulmonary artery hypertension (59), atherosclerosis and vascular
calcification (59, 60). Several members of the transforming
growth factor (TGF)beta superfamily, such as TGFbeta and bone
morphogenetic proteins (BMPs) (61) have been shown to be
important regulators of EndMTs.

Abnormal TGFbeta signaling induces mesenchymal-like
phenotype in a variety of ECs (8, 59, 62–64) and both BMP4
and BMP6 have been implicated in EndMTs (65–67). Mutations
in the BMP receptor activin receptor-like kinase 2 (ALK2) are
causative in fibrodysplasia ossificans progressiva, where capillary
ECs contribute cells to calcific lesions through endothelial
transitions (13). Gene deletion of the BMP inhibitor matrix
Gla protein (MGP) results in excess BMP signaling and rapidly
developing arterial calcification (68) involving extensive EndMTs
(10, 65).

Several factors have emerged as important participants in
the crosstalk between TGFbeta and BMP signaling in EndMTs.
These include Notch signaling, which is essential in EndMTs in
heart development and valve formation [reviewed in (59, 69)],
hypoxia (70) and fibroblast growth factor (FGF) signaling (71).
Another factor is Wnt signaling, which is active in lymphatic ECs
responding to Wnt5b (72), valvular ECs responding to matrix
stiffness (73), and ECs transitioning to cardiac smooth muscle
cells and pericytes under the influence of paracrine Wnt ligands
(74). Interestingly, lack of primary cilia in a model of mouse
embryonic ECs has been shown to increase the propensity to
undergo EndMTs and osteogenesis in response to BMP signaling
(75), potentially due to altered responses to mechanical and
chemical stimuli.

In our studies using the Mgp−/− and Ins2Akita/+ diabetic
mouse models of vascular calcification, we identified SOX2 as
a response gene to ectopic BMP activity and a master regulator
of EndMTs (10, 65). EndMTs are especially prominent in the
aortas of Mgp−/− mice (10–12, 65), where they contribute
to the rapid calcification. Observed through phase contrast
and transmission electron microscopy, the endothelium was
highly abnormal with a mixture of cells largely replacing
normal ECs, including chondroblast-like cells (65). EC-like cells
were surrounded by abnormal matrix and detached from the
internal elastic lamina (IEL). Transmission and scanning electron
microscopy showed a marked degradation of the IEL, usually
in close contact with endothelium [(65), Figure 3A]. Ultimately,
the IEL became undetectable with the EC-like cells positioned as
if migrating from the luminal side toward the calcifying lesions
(65). Endothelial markers were detected deep in the calcified
media, where they co-localized with osteogenic markers (65).
Further studies revealed that the degradation of the IEL resulted
from the induction of a complex of specific serine proteases
including elastase 1 and 2 and kallikrein 1, 5, and 6 (65).

The expression of these serine proteases increased dramatically
in association with the degradation of both the IEL and the
elastic lamellae in the media and induction of endothelial SOX2
as the Mgp−/− aortas calcified (Figures 3B,C). Assessment of
the proteolytic activity showed that the proteases are able to
degrade collagen I, II, III, and IV, fibronectin, fibrinogen, and
laminin (Figure 3D). In addition, the serine proteases were
able to induce endothelial SOX2 and activate EndMTs (65).
Both serine protease inhibition and Sox2 depletion in the
endothelium diminished EndMTs and vascular calcification in
vitro and in vivo (65). Similar results for SOX2 as a mediator
of vascular calcification were also found in atherosclerotic
and diabetic mice, which showed that genetically limiting
SOX2 in InsAkita/+ mice or inhibiting SOX2 by siRNA in
Apoe−/− mice fed a Western diet reduced vascular calcification
(11, 12). We argue that on one hand, the induction of the
serine proteases plays an initial role in triggering endothelial
SOX2 and activating EndMTs. On other hand, the local
milieu with excessive degradation of elastin and cell-matrix
allows the transitioning ECs to migrate and contribute to the
calcification (Figure 4).

Potential roles for other SOX transcription factors in acquired
vascular disease have not been well-studied. SOX17 has been
identified as a risk locus for intracranial aneurysms (76) and
SOX17 deficiency, which affects EC regeneration, may predispose
to stress-induced intracranial aneurysms in hypertensive mice
(77). SOX18 expression has been reported in advanced coronary
atherosclerotic lesions (78), where it is expressed in both ECs
and smooth muscle cells and may be involved in cell growth.
However, it is unknown if SOX2 interacts with other members
of SOX family to induce EndMTs.

Altogether, the SOX transcription factors are emerging as
increasingly important players in cellular transitions, endothelial
dysfunction and vascular disease. The SOX factors may be useful
targets for endothelial modulation in the prevention or treatment
of vascular calcification.

METHODS

Animals
Mgp+/− (B6.129S7-Mgptm1Kry/KbosJ) on C57BL/6J
background were obtained from the Jackson Laboratory.
Genotypes were confirmed by PCR (79), and experiments were
performed with generations F4-F6. Littermates were used as
wild type controls. All mice were fed a standard chow diet (Diet
8604, HarlanTeklad Laboratory). The studies were reviewed and
approved by the Institutional Review Board and conducted in
accordance with the animal care guidelines set by the University
of California, Los Angeles. The investigation conformed to
the National Research Council, Guide for the Care and Use
of Laboratory Animals, Eighth Edition (Washington, DC: The
National Academies Press, 2011).

Tissue Culture and Cell Differentiation
Wild type ESCs (C57BL/6J background) were obtained from
American Type Culture Collection (ATCC) (SCRC-1002).Mouse
ESCs were cultured and maintained as previously described (48,
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FIGURE 3 | Serine proteases degrade Mgp-/- aortic tissue (A) Wild type

(Mgp+/+) and Mgp−/− aortic endothelium at 4 weeks of age was examined

by scanning electron microscopy (magnification 5 × 102). The image shows

significant disruption of the Mgp−/− endothelium and elastic lamina (n = 3).

Top, schematic diagram indicating the locations of lumen and endothelium. (B)

Expression of elastase (ELA) 1 and 2 and kallikrein (KLK) 1, 5, and 6 and SOX2

in Mgp−/− aortas at 1–4 weeks of age, as determined by immunoblotting.

Beta-actin was used as a loading control (n = 3). (C) Immunofluorescent

staining of aortic elastin of wild type (Mgp+/+) and Mgp−/− mice at 1–4

weeks of age. The images reveal the degradation of Mgp−/− aortic elastin

starting at 2 weeks of age (n = 5). (D) Immunoblotting demonstrates that

kallikrein (KLK) 1, 5, and 6 degrade matrix components of aortic tissues

including collagen (Col) 1, II, III, and IV, fibronectin, fibrinogen and laminin in

vitro. One mg of substrate protein was mixed with 100 ng of enzyme or control

at 37◦C for 1 h before the samples were analyzed by immunoblotting (n = 3).

80). The derivation of endothelial cell differentiation from ESCs
was performed using previously published protocols (48, 81).
BMP-4, Activin A, FGF-2, and VEGF (all from R&D Systems)
were added to StemPro-34 R© medium prior to use. The process
of derivation lasted 14 days.

Neuronal differentiation in ESCs was performed using
previously published protocols (82). Briefly, mouse ESCs without
feeder cells were dispersed into a single cell suspension with
0.25% trypsin. Aggregation of ESCs was induced by preparing
hanging drops of medium (20 µL) on the lids of petri dishes
(2000 cells per drop) on day 0. After 2 days, embryonic bodies
were harvested in petri dishes, where they matured for 3
days. The medium was changed every 1–2 days based on the
number of dead cells. On day 5, the embryonic bodies were
plated on coated cell culture dishes. In order to increase the
adherence of embryonic bodies, the dishes were coated with
laminin for one day and D-lysine for another day before use.
The embryonic bodies were subsequently cultured for two more

FIGURE 4 | Schematic diagram of the hypothesis that SOX2 acts as a

mediator of endothelial-mesenchymal transitions (EndMTs).

days. The medium was changed on day 7, and every 1–2
days after that. Mature neurons were observed subsequently to
day 7.

Protease Assay
Kallikrein 1, 5, and 6 (all 10 ng/mL; Abnova) were individually
added to the purified proteins, collagen I, II, III, and IV,
fibronectin, fibrinogen, and laminin, and incubated at 37◦C
for 1 h. After the incubation, the mixtures were examined by
immunoblotting to assess the degradation of each protein using
specific antibodies. The carrier was used as a control.

RNA Analysis
Real-time PCR analysis was performed as previously described
(65). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was
used as a control gene (65). Primers and probes for mouse
SOX2, Flk1, CD31, VE-cadherin, SOX2, Pax6, and Nestin were
obtained from Applied Biosystems as part of Taqman R© Gene
Expression Assays.

Immunofluorescence
Immunofluorescence was performed as previously described
(65) with specific antibodies for elastin (Abcam). The
nuclei were stained with 4’,6-diamidino-2-phenylindole
(DAPI, Sigma-Aldrich).

Scanning Electron Microscopy
Aortic tissue samples were analyzed by scanning electron
microscopy as previously described (65).

Immunoblotting
Immunoblotting and immunoprecipitation were performed
as previously described (65). Equal amounts of tissue
lysates were analyzed, and the blots were incubated with
specific antibodies to elastase 1 (Sigma-Aldrich), elastase
2 (Abgent), kallikrein 1 (Sigma-Aldrich), kallikrein 2
(Abgent), kallikrein 5 (Acris Antibodies), kallikrein 6
(Sigma-Aldrich), and collagen I, II, III, IV, fibronectin,
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fibrinogen and laminin (all from Abcam) as previously
described (65). Beta-Actin (Sigma-Aldrich) was used as a
loading control.

Statistical Analysis
Data were analyzed for statistical significance by ANOVA
with post-hoc Tukey’s analysis. The analyses were
performed using GraphPad Instat R©, version 3.0 (GraphPad
Software). Experiments were repeated a minimum of
three times.
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