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Abstract

Phylostratigraphy, originally designed for gene age estimation by BLAST-based protein homology searches of sequenced genomes,

has been widely used for studying patterns and inferring mechanisms of gene origination and evolution. We previously showed by

computer simulation that phylostratigraphy underestimates gene age for a nonnegligible fraction of genes and that the underesti-

mation is severer for genes with certain properties such as fast evolution and short protein sequences. Consequently, many pre-

viously reported age distributions of gene properties may have been methodological artifacts rather than biological realities.

Domazet-Lo�so and colleagues recently argued that our simulations were flawed and that phylostratigraphic bias does not impact

inferences about gene emergence and evolution. Here we discuss conceptual difficulties of phylostratigraphy, identify numerous

problems in Domazet-Lo�so et al.’s argument, reconfirm phylostratigraphic error using simulations suggested by Domazet-Lo�so and

colleagues, and demonstrate that a phylostratigraphic trend claimed to be robust to error disappears when genes likely to be error-

resistant are analyzed. We conclude that extreme caution is needed in interpreting phylostratigraphic results because of the inherent

biases of the method and that reanalysis using genes exhibiting no error in realistic simulations may help reduce spurious findings.
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Introduction

Phylostratigraphy was originally designed as a method for

estimating gene ages via homology detection programs,

most commonly the BLAST suite of algorithms (Domazet-

Lo�so et al. 2007). Once homologs of a gene are identified

in various species, the gene is said to be as old as the most

recent common ancestor of all species in which a homolog

is found. Phylostratigraphy is often applied to all genes in a

genome, followed by tests for correlations between the

estimated age of a gene and various properties of the

gene, such as whether it is a known disease-associated

gene (Domazet-Lo�so and Tautz 2008), its evolutionary

rate (Alb�a and Castresana 2005), and its expression level

and patterns (Domazet-Lo�so et al. 2007; Carvunis et al.

2012). Such correlations are commonly used in studying

patterns and mechanisms of gene origination and evolu-

tion (Toll-Riera et al. 2009; Domazet-Lo�so and Tautz

2010a, 2010b; Neme and Tautz 2013; Sestak et al. 2013;

Sestak and Domazet-Lo�so 2014).

The BLAST algorithm (Altschul et al. 1990; Camacho et al.

2009) dictates that homologs are not always correctly

identified (Elhaik et al. 2006; Alb�a and Castresana 2007),

because BLAST is designed to detect DNA or protein sequence

similarity rather than homology, but homology does not al-

ways mean detectable similarity. Specifically, homologs with

large sequence divergences may be missed by BLAST. In these

cases, a failure to detect homologs reflects the limit of reso-

lution of the BLAST algorithm rather than biological reality.

We call this BLAST error or phylostratigraphic error. How such

false negative errors impact phylostratigraphy-based infer-

ences of gene origination and evolution is an important sub-

ject. We previously addressed this question through the

simulation of protein sequence evolution using relevant

parameters estimated from extant sequences (Moyers and

Zhang 2015, 2016). We simulated all genes to be equally

old and hence no genuine correlation existed between gene

age and any gene property. We used BLAST to estimate gene

ages of the simulated proteins and correlated the estimated

gene ages with various gene properties. We demonstrated

not only that gene age estimation error was more common

than previously believed, but that several previously reported

biological trends for genes of different estimated ages are
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partially or wholly attributable to homology detection error

(Moyers and Zhang 2015, 2016).

Recently, a collaboration of researchers, many of whom

were authors of the criticized studies, rebutted our work

(Domazet-Lo�so et al. 2017). The rebuttal claimed that 1) using

real sequences as starting sequences, real evolutionary rates,

and real among-site rate heterogeneity patterns in simulation

is circular, and will by necessity recreate empirical phylostrati-

graphic trends; 2) associating gene features which are not

simulated is inappropriate and circular, and will reproduce

known phylostratigraphic trends; 3) homology detection error

is virtually nonexistent in some contexts, and if trends are

confirmed in these contexts, they must be real; 4) some

parameters used in prior simulations, particularly those of

the covarion model, are unrealistic; and 5) even in spite of

all of these objections, when error-prone genes are removed

from phylostratigraphic studies, the results remain un-

changed. By clarifying the logic and purpose of simulation

studies in general and our prior simulations in particular, con-

ducting new simulations suggested by Domazet-Lo�so et al.,

reassessing a phylostratigraphic observation claimed to be ro-

bust to error, and commenting on the theoretical basis of

phylostratigraphy laid out by Domazet-Lo�so and colleagues,

we demonstrate that none of the five claims is valid and that

the problems of phylostratigraphy as previously discovered

remain. We call for further studies in this area to rectify these

problems and discuss potential future directions.

Materials and Methods

Randomization of Parameters for Simulation

We simulated human proteins in three different ways. First,

we simulated the sequences as described in Moyers and

Zhang (2015), with human sequences used as the ancestral

sequences to initiate evolution. Second, we shuffled all amino

acids in a human sequence and used the shuffled sequence as

the ancestral sequence to initiate evolution; the evolutionary

rates of individual amino acid positions, however, are

unshuffled. Third, we locked the relationship between an

amino acid and its evolutionary rate in a human sequence,

and then shuffled all amino acids in the sequence along with

their rates to generate the ancestral sequence to initiate evo-

lution. These second and third simulations were performed at

the suggestion of Domazet-Lo�so et al. (2017), who believe

that such simulations are less circular and hence are more

trustable.

Simulation of Sequence Evolution

Data used to initiate simulations were from Moyers and

Zhang (2015, 2016) unless otherwise mentioned.

Simulation procedures followed Moyers and Zhang (2015,

2016), with the exception of randomizing parameters as

described earlier. Briefly, we simulated through an

evolutionary guide tree based on the divergence times esti-

mated in TimeTree (Hedges et al. 2006), as shown in Moyers

and Zhang (2015). We simulated evolution using ROSE (Stoye

et al. 1998), which allows the evolutionary rate for each site to

be specified by the user. Additionally, following Alb�a and

Castresana (2007), we set an insertion and deletion (indel)

threshold to 0.0001. For each branch in the simulation, the

expected number of insertion attempts and the expected

number of deletion attempts both equal the expected num-

ber of amino acid substitutions for that branch times 0.0001.

A random location along the protein is chosen to place an

indel. If the amino acid substitution rate at the random loca-

tion is greater than the average substitution rate for the pro-

tein, the indel occurs; otherwise, the indel does not occur. A

proposed indel length between 1 and 14 amino acids is

decided based on a predetermined probability function. We

set the probability at 0.1 for any length between 1 and 6

amino acids and 0.05 for any length between 7 and 14 amino

acids, following our original methodology. In the case of a

deletion, only those sites with amino acid substitution rates

higher than the average for the protein will be deleted, with

the occurrence of a site with a lower-than-average rate trun-

cating the deletion. In the case of an insertion, all new sites are

set to have amino acid substitution rates equal to the average

substitution rate of the protein. For each protein, we simu-

lated its evolution using a JTT-f matrix with observed amino

acid frequencies from the alignment (Jones et al. 1992). We

calculated the mean evolutionary rate of a protein by the

number of substitutions per site per MY between human

and mouse. Based on TimeTree (Hedges et al. 2006), these

species diverged �92 Ma. The sequence provided as the start

sequence for evolution was the human sequence, unless

otherwise mentioned. The simulation of sequence evolution

was performed 9 times for each protein.

BLASTP Detection of Homologs

We downloaded BLASTP (version 2.2.28þ) from NCBI (ftp://

ftp.ncbi.nlm.nih.gov/blast/executables/blastþ/2.2.28/; last

accessed June 21, 2017), For each run, we used the

simulation-generated human database consisting of 5,217

protein sequences as query and performed BLASTP searches

against the simulation-generated sequence database consist-

ing of all other species for that run. We used an E-value cutoff

of 1E-3 unless otherwise mentioned. All BLAST hits were

stored, whether or not they represented a true homolog.

We then dated each gene to the most recent common an-

cestor of the query species and all taxa in which a hit was

found. This represented the “age” of the protein for that run.

Reanalysis of Empirical Data

The disease status and estimated ages of human genes were

acquired from Domazet-Lo�so and Tautz (2008), while yeast

data were obtained from Carvunis et al. (2012). For the
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human data, we identified genes which were 1) able to be

simulated in Moyers and Zhang (2015) and 2) found to be

error-resistant (i.e., simulated age correctly inferred by phylos-

tratigraphy of simulated sequences). We classified genes into

either error-resistant based on the above two criteria, or the

complementary set of these genes. After classifying genes in

this manner, we estimated the proportion of genes at each

phylostratigraphic age determined by Domazet-Lo�so and

Tautz (2008) in each subset (or the full data set) that were

associated with disease.

For the yeast data, we first identified those genes for which

1) parameters could be estimated (i.e., had five sensu stricto

Saccharomyces homologs), and 2) estimated phylostrati-

graphic ages of simulated proteins had no error (Moyers

and Zhang 2016). We also classified these genes into subsets

in the same manner as for the human genes. Once this was

done, we determined in each subset of genes (or in all genes)

correlation between ages as determined by Carvunis et al.

(2012) and various gene properties provided by the same

authors. In these analyses, we universally excluded age group

0, because no phylostratigraphy was actually performed on

these genes in the original analysis.

Results

Simulating Random Sequence Evolution

The first two criticisms by Domazet-Lo�so et al. concerned the

way our simulations were conducted. The first is the sugges-

tion that it is inappropriate to use extant sequences and extant

sequence features in performing simulations. Domazet-Lo�so

et al. wrote, “In their simulations, Moyers and Zhang started

with real sequences—rather than in silico generated random

sequences—and let them evolve randomly according to rate

parameters inferred from real alignments among closely

related species. Hence, the true features of these sequences

are inherently still implied in the model, i.e., the same sequen-

ces that are short or fast-evolving in reality are also short or

fast-evolving in the simulations.” In our view, this criticism

reflects their failure in understanding the logic of our simula-

tion. In our simulation, all genes were artificially created in the

common ancestor of bacteria and eukaryotes. Thus, when a

simulated gene was inferred by phylostratigraphy to have a

younger age, it must have been a phylostratigraphic error.

Furthermore, all genes had the same age in our simulation

such that any significant correlation between a gene property

and estimated gene age must have been caused by phylos-

tratigraphic bias. These inferences do not depend on whether

the sequences used to initiate the simulation are real or ran-

dom, nor do they depend on whether a genuine phylostrati-

graphic trend exists in actual data or not. For example, even if

young genes truly tend to evolve rapidly, evolutionary rate

and estimated gene age should still be uncorrelated in our

simulation if phylostratigraphy is unbiased, because that is the

truth in our simulation. Using real protein sequences instead

of random sequences to initiate the simulation of evolution

should make the simulation more realistic and simulation

results biologically more relevant. It is inconsistent that some

of the same authors previously complained that Elhaik et al.’s

(2006) simulation on phylostratigraphy was unrealistic be-

cause they neglected among-site variation in evolutionary

rate that is common in proteins (Alb�a and Castresana

2007), but they now criticize our simulation for being too

realistic.

Despite that Domazet-Lo�so et al.’s criticism is theoretically

untenable, we followed their suggestion to perform a new

simulation of human gene evolution (Moyers and Zhang

2015) with random instead of actual sequences as starting

sequences (see “Materials and Methods” section). In the

simulation, the starting protein sequence for each gene was

created by randomly shuffling the original human sequence,

but the relative evolutionary rate of each position as well as

other parameters of the gene were unchanged. All genes

were simulated to have originated in the common ancestor

of human and bacteria, and homologs were simulated for all

extant organisms shown in figure 1. We repeated the simu-

lation 9 times. When human sequences were used to initiate

evolutionary simulations, a simulated bacterial homolog was

not detected for an average of 9.1% of simulated human

genes (fig. 1). When randomly shuffled sequences were

FIG. 1.—Proportions of simulated human genes with no detectable

homologs in various organisms, despite the presence of simulated homo-

logs in all organisms. Human: simulation using human sequences as an-

cestral sequences to initiate evolution. RandSeq: simulation using

randomly shuffled human sequences as ancestral sequences to initiate

evolution. RandSpecial: simulation using randomly shuffled human

sequences (along with co-shuffled relative evolutionary rates) as ancestral

sequences to initiate evolution. Presented are mean proportions 6 one SDs

from nine simulation replications.
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used to initiate the simulations, the above value rose slightly

but significantly to 9.6% (P¼ 4.6� 10�9, two-tailed t-test)

(fig. 1). This increase was likely due to the destruction of

any common motifs among proteins, and any latent paralogy

which survived simulation when starting from real protein

sequences. In addition, we performed a shuffling wherein

we locked the relative rate of a site with its associated amino

acid and then randomized the location of both the amino acid

and relative rate. Unsurprisingly, this randomization broke

blocks of conserved sites and consequently increased error

rates greatly (fig. 1). Examining homologs in other organisms

instead of bacteria yielded similar patterns (fig. 1). Hence, our

simulation following Domazet-Lo�so et al.’s suggestion directly

invalidates their criticism. Note that, although genes were

simulated to have the same age, our results are not restricted

to genes of equal ages, because age estimation for one gene

is independent from that of any other gene in

phylostratigraphy.

Domazet-Lo�so et al.’s second criticism is that associating

gene features which are not simulated is inappropriate and

circular, and will reproduce known phylostratigraphic trends.

This again reflects their lack of understanding of the logic of

our simulation. As mentioned, if phylostratigraphy is un-

biased, no gene property should show a significant correlation

with estimated gene age in our simulation, because all genes

are simulated to be equally old. Many gene properties are

inter-correlated, and it is precisely these correlations that cre-

ate spurious results in phylostratigraphy for gene properties

that do not directly impact BLAST performance. For instance,

BLAST uses only protein (or DNA) sequences, so the expres-

sion level of a protein does not directly impact BLAST. But

because lowly expressed proteins tend to evolve rapidly in

sequence (Pal et al. 2001; Zhang and Yang 2015) and rapid

sequence evolution causes gene age underestimation by

BLAST (Moyers and Zhang 2015), phylostratigraphy is pre-

dicted to produce a spurious positive correlation between

estimated gene age and expression level, as observed in our

simulation (Moyers and Zhang 2016). Such observations dem-

onstrate that phylostratigraphy is biased rather than that the

simulation is wrong.

Reevaluating the Association between Gene Age and
Disease Status

Domazet-Lo�so and Tautz (2008) published a paper entitled

“An ancient evolutionary origin of genes associated with

human genetic diseases.” By a phylostratigraphic analysis of

human genes, they reported that “genes involved in genetic

diseases are not simply a random subset of all genes in the

genome but are biased toward ancient genes.” We subse-

quently showed that this trend can be recapitulated by simu-

lation where all genes are equally old, suggesting that the

original discovery results from phylostratigraphic bias

(Moyers and Zhang 2015). In their recent critique, Domazet-

Lo�so et al. (2017) claimed that the trend they discovered still

holds when genes found to be subject to BLAST error in simu-

lation are excluded. This control of error, however, is incom-

plete for the following reason. Our simulation required first

estimating various evolutionary parameters such as the rela-

tive evolutionary rate of each amino acid site of a protein. In

our study, we used protein alignments of 12 specific mam-

malian species, and only 5,217 proteins have such alignments,

because it is not uncommon that a human protein has no

detectable ortholog in one or more of the other 11 mammals

used. As a result, 17,628 of the 22,845 genes used in the

original study (Domazet-Lo�so and Tautz 2008) were not simu-

lated. Of the 5,217 simulated, we found a BLAST error rate of

�11%. There is no reason to believe that the 17,628 genes

not simulated are free of error. Therefore, in assessing the

influence of error on phylostratigraphy, one should not only

exclude genes found to be error-prone in simulation but also

those that are not simulated due to the lack of appropriate

parameters.

We performed a reanalysis using either all genes

(n¼ 22,845) or only those genes found by simulation to be

error-resistant (n¼ 4,587) (fig. 2). Note that the term “error-

resistant” means that our simulation found no evidence for

phylostratigraphic error for these genes, but does not imply

that they will never experience error in homology detection.

As expected from the previous finding (Domazet-Lo�so and

Tautz 2008), when all genes were analyzed together, we

observed a positive correlation between the estimated age

of a gene and the probability that it is a disease gene

FIG. 2.—Percentage of disease genes in each age group. Rank correl-

ation (q) between age group and percentage disease genes is shown for all

genes, error-resistant genes based on simulation, and non-error-resistant

genes, respectively.
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(Spearman’s rank correlation q¼ 0.851, P< 10�15).

Interestingly, the apparent trend became statistically nonsigni-

ficant (q¼ 0.286, P¼ 0.283), when only error-resistant genes

were analyzed. This was not a result of insufficient statistical

power, as a random selection of 4,587 genes from all genes

resulted in a significant positive correlation in 9,997 of 10,000

times (maximum P¼ 0.086, mean P¼ 0.001, mean

q¼ 0.732). Furthermore, restricting the analysis to the com-

plementary gene set� genes not simulated plus those found

to be error-prone in simulation� resulted in a close match

with the trend observed when all genes were used

(q¼ 0.760, P¼ 0.002). These results strongly suggest that

the phylostratigraphic observation that disease genes tend

to be older is a methodological artifact. Intriguingly, the me-

dian protein length is significantly greater for disease genes

(593 amino acids) than nondisease genes (513 amino acids)

among the 5,217 genes simulated (P¼ 3� 10�7), suggesting

that the difference in protein length, a known determinant of

BLAST error (Moyers and Zhang 2015), may underlie the

spurious result.

Reassessing Trends Supporting the Proto-Gene Model

Carvunis et al. (2012) proposed a model for frequent de novo

gene birth through intermediate proto-genes. Their empirical

evidence for the model was largely from phylostratigraphic

trends, such as the increases in protein length, expression

level, and probability of being targets of purifying selection

with estimated gene age. We demonstrated through simula-

tion that homology detection error alone could create these

statistical trends (Moyers and Zhang 2016). Our methodology

was conservative so that a reliable conclusion could be drawn.

For instance, for 619 genes whose alignments were unavail-

able because homologs were unfound in certain species, we

randomly assigned their evolutionary rates using rates esti-

mated from proteins with alignments. In their recent criticism,

Domazet-Lo�so et al. did not consider this fact. As a result,

their conclusion that the original phylostratigraphic trends

hold upon the removal of error-prone genes is unreliable.

We therefore reanalyzed the data after restricting to genes

simulated using their own parameters and found to be error-

resistant in the simulation (table 1). We note that many of the

originally reported trends remain intact, but are significantly

reduced in strength. For example, the correlation coeffi-

cient (q) between age and purifying selection is cut nearly

in half from 0.316 to 0.166. This change in the strength of

trends needs to be considered when assessing the evidence

for the proto-gene model. More importantly, we also pre-

sent the results when restricting to the complementary set

of genes, which were not simulated using their own

parameters or found in simulation to be error-prone. We

note that the trends observed are often stronger in the

complementary gene set than in all genes, which are in

turn often stronger than in error-resistant genes (table 1).

If these trends support the proto-gene model, as Carvunis

et al. (2012) and Domazet-Lo�so et al. (2017) concluded,

the support apparently largely originates from error-prone

genes. Our finding also emphasizes an important point: a

minority of error-prone genes can exert undue influence on

observed trends. Hence, caution is needed even when

interpreting trends observed from error-resistant genes,

because they could still include some genes that are subject

to error (see “Discussion” section).

Discussion

We have here further demonstrated that gene age underesti-

mation caused by BLAST error is a nonnegligible contributor

to observed phylostratigraphic trends. Additionally, there are

a number of problems surrounding the theoretical basis of

phylostratigraphy as proposed by Domazet-Lo�so and col-

leagues and in their recent critique of our work, which we

discuss below.

Definition of Novel Sequences

Domazet-Lo�so et al. (2017) wrote that “phylostratigraphy

infers the emergence of novel sequences at a particular phylo-

genetic node.” But, what exactly are novel sequences? How

different should a sequence be from all existing sequences for

it to be considered novel? Because phylostratigraphy is com-

monly used in empirical studies to date gene origins, the

above quotation appears to equate gene origination with

novel sequence emergence. But are they the same thing?

Gene origination is presumably a slow process; how do we

define the birthday of a gene? When the function of a gene

Table 1

Rank Correlations between Estimated Gene Age and Gene Properties for Yeast Genes

ORF

Length

RNA

Abundance

Proximity of

TF Binding

Sites or Not

Codon Adaptation

Index

Purifying Selection

or Not

Optimal AUG

Context

All ORFs (n ¼ 5,878) 0.386*** 0.261*** 0.077** 0.312*** 0.316*** 0.133***

Error-resistant (n ¼ 4,620) 0.179*** 0.093** 0.050* 0.208*** 0.166*** 0.045*

Non-error-resistant (n ¼ 1,258) 0.429*** 0.163** �0.002 0.324*** 0.331*** 0.212***

*P< 0.05, **P<10�10, ***P<10�100.

Phylostratigraphy Is Problematic GBE

Genome Biol. Evol. 1519–1527 doi:10.1093/gbe/evx109 Advance Access publication June 14, 2017 1523

Deleted Text: -
Deleted Text: t
Deleted Text: s
Deleted Text: p
Deleted Text: g
Deleted Text: m
Deleted Text:  (Carvunis et<?A3B2 show $146#?>al. 2012)
Deleted Text: DISCUSSION
Deleted Text: -
Deleted Text: n
Deleted Text: s
Deleted Text: .


changes in evolution, should the gene be considered a new

gene? How much functional change in a gene renders it a

new gene? Because functional changes and sequence

changes do not have linear or even monotonic relationships,

how are new genes related to novel sequences? Domazet-

Lo�so and colleagues answered none of these pertinent ques-

tions, nor did they offer any biological definition of “novelty”

or “novel sequences.” Domazet-Lo�so et al. (2017) also stated

that “phylostratigraphy aims to capture the time when the

sequence divergence took place, not necessarily the time of

origin of the ancestral gene.” But sequence divergence is a

continuous and gradual process for most genes, and how

phylostratigraphy captures this time is unclear. They com-

mented that phylostratigraphy is intended to detect “shifts

in sequence space by large evolutionary divergence,” but they

offered no concrete definition of sequence space shifts.

Phylostratigraphy as presently practiced regards a se-

quence as novel when it has no BLAST hit in a genome.

Thus, novel sequences are apparently operationally defined

in phylostratigraphy by a lack of BLAST hit. Because BLAST

results depend on the specific BLAST program (BLASTP,

BLASTN, and TBLASTN) and E-value cutoff, this operational

definition of novel sequences is not unique and is subjective.

More disturbingly, the relation between the operational def-

inition and biological definition of novel sequences is expected

to vary among genes, rendering the biological relevance of

the operational definition unclear and operational definition-

based analysis biologically meaningless. Even Domazet-Lo�so

and colleagues themselves admit that a gene with a novel

function (and which they argue should be considered a novel

gene) may nevertheless have a BLAST hit and be erroneously

regarded as nonnovel under the operational definition.

Furthermore, these authors also consider the false negative

error of BLAST as a failure of the operational definition. If

there is to be any progress in this field, the terms must be

clearly defined.

The Role of Simulation in Evolutionary Studies

Because evolution usually proceeds slowly over enormous

time spans, it is uncommon to observe evolution directly,

which makes computer simulation an essential tool in the

study of evolution. Obviously, simulations need to be as real-

istic as feasible to mimic actual evolution. In our previous two

studies (Moyers and Zhang 2015, 2016), we performed sim-

ulations using parameters estimated from many data sources,

each representing thousands of genes. In general, these sim-

ulations have been more realistic than those in previous stud-

ies, in which evolutionary parameters used did not represent

those for most genes in the genome (Elhaik et al. 2006; Alb�a

and Castresana 2007). We have also performed simulations

of less well-understood evolutionary processes as an explora-

tory measure without emphasizing these results as central.

One example is the covarion model (Fitch and Markowitz

1970), in which the evolutionary rate of a site changes in

evolution. Domazet-Lo�so et al. (2017) claimed that the cova-

rion rate we used was too high, compared with a previous

estimate of this rate from one protein (EF-Tu) that is found

across prokaryotes and eukaryotes (Wang et al. 2009).

Because having a high covarion rate drastically decreases

BLAST’s ability to detect remote homologs (Moyers and

Zhang 2015), it is highly likely that the low covarion rate

estimated from EF-Tu is simply unrepresentative of most

genes in the genome. This is the same kind of problem found

in prior simulations—they relied upon parameters estimated

from a few old, well-conserved proteins as opposed to a more

representative sampling of genes (Alb�a and Castresana 2007).

Note that although the exact covarion rates in protein evolu-

tion have not been estimated extensively, many studies have

found evidence for the covarion model of protein evolution

and its impact (Fitch and Markowitz 1970; Lopez et al. 1999,

2002; Penny et al. 2001; Huelsenbeck 2002; Guidon et al.

2004; Ané et al. 2005; Merlo et al. 2007; Wang et al. 2007;

Studer and Robinson-Rechavi 2010; Zhou et al. 2010). Hence,

it is almost certain that our primary simulations that did not

use the covarion model were conservative in estimating the

effect of BLAST error.

Despite the essential role of simulation in evolutionary stud-

ies, it is important to recognize that, because reality is almost

always more complicated than any model, simulations are

most useful for examining general trends and principles, as

opposed to particular and precise observations. Thus, estimat-

ing by simulation the exact percentage of genes subject to

BLAST error is less meaningful or relevant than examining

whether a statistical trend observed in actual data is possibly

caused by BLAST error. Because simulation models cannot be

identical to the actual mode of evolution, it is unclear whether

one is able to use simulations to identify all genes subject to

BLAST error. Consequently, removing genes identified by

simulation to be error-prone does not guarantee an error-

free data set. It remains possible that the statistically signifi-

cant associations with much reduced effect sizes for the

error-resistant genes in table 1 reflect residual effects of

BLAST errors. Consistent with this prediction, we found that,

even for the error-resistant genes, mean protein length is sig-

nificantly greater for age group 10 (1,711 amino acids, present

in the common ancestor of Saccharomyces cerevisiae and

Schizosaccharomyces pombe) than age group 9 (1,394 amino

acids, present in the common ancestor of S. cerevisiae and

Neurospora crassa) (P¼ 4.5� 10�10, t-test), which is almost

certainly a phylostratigraphic artifact because no reasonable

model has been proposed to explain why mean protein length

grows even hundreds of millions of years after gene birth.

Irrelevant Corrections

Domazet-Lo�so and colleagues offered a number of potential

corrections which they assert removes the problem of error.
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However, most are not relevant to the key problem of false

negative homology detection error.

In their commentary on the work of Carvunis et al. (2012),

they mentioned three corrections which we did not perform,

but none are relevant for the question of the influence of false

negative homology detection error. First, they mentioned that

correlations remain when requiring at least 80% sequence

overlaps between homologs. This is a method of controlling

for false positives, not false negatives. It makes homology de-

tection more restrictive, increasing false negative errors.

Second, they commented that a series of partial correlations

were performed to control the known factors impacting BLAST

error rate, and findings held. However, Carvunis et al. (2012)

reported only a control for gene expression level and a separate

control for the power of their method in detecting selection in

short sequences when correlating the estimated gene age with

strength of purifying selection. The first control is based on the

observation that highly expressed genes are under stronger

purifying selection than lowly expressed ones (Pal et al. 2001;

Zhang and Yang 2015) and does not control homology detec-

tion error. The second control is due to reduced statistical

power in detecting selection in short sequences and does not

control homology detection error either. Third, they com-

mented that their correlation findings held when they restricted

to 50 genes in each age bin. It is unclear how this has any

bearing on false negative homology detection error.

Domazet-Lo�so et al. (2017) stated that Carvunis et al.

(2012) used an “orthogonal approach” to verify a 5% error

rate among their data set. This orthogonal approach was to

BLAST the full NCBI database as opposed to only the genomes

of Ascomycota fungi. What they discovered was that if a gene

appeared young in Ascomycota fungi, there was about a 5%

chance that it has a homolog outside of Ascomycota. This

approach tells us that the BLAST error rate is at least 5%,

not that it is 5%. Furthermore, this approach cannot exclude

the possibility that the observed statistical trends are due to

BLAST errors.

Domazet-Lo�so et al. (2017) suggested that the use of three

homology detection tools in Carvunis et al. (2012), as

opposed to the use of only BLASTP in our simulation, results

in necessarily more sensitive results. However, there are prob-

lems in this reasoning: BLASTP is the most sensitive of these

tools. In fact, some of these authors have explicitly com-

mented on the failings of nucleotide-based phylostratigraphy

(Alb�a and Castresana 2007) and were opposed to its use due

to simulations demonstrating high error. Domazet-Lo�so et al.

(2017) did not comment on whether or not age distributions

change substantially or at all when analysis was restricted to

only BLASTP results.

Conservative versus Liberal Methods

If one intends to reject a null hypothesis but there is no un-

biased method, the convention in the field of molecular

evolution as well as many other scientific fields is to use meth-

ods that are relatively conservative (i.e., less likely to reject the

null hypothesis) instead of those that are relatively liberal (i.e.,

more likely to reject the hypothesis) to ensure that a rejection

of the null hypothesis would be trustable. Carvunis et al.

(2012) attempted to demonstrate the high rate of de novo

gene origination by identifying S. cerevisiae-specific genes

that are under purifying selection. They reported 16 such

genes, but 15 of them are each overlapped with another

gene on the opposite strand and the overlapped regions con-

stitute between 73% and 93% of each of these 15 genes

(Moyers and Zhang 2016). When estimating gene age by

phylostratigraphy, they excluded the overlapped regions to

acquire underestimated ages. But when testing for purifying

selection, they included the overlapped regions to acquire

overestimated purifying selection that likely arises from the

selection on the overlapped genes. In other words, they

used liberal methods to find 16 S. cerevisiae-specific, selected

genes. When we used conservative methods by including the

overlapped regions in phylostratigraphy and excluding them

in purifying selection tests, no gene was found to be S. cer-

evisiae-specific and selected (Moyers and Zhang 2016). This is

not simply a discrepancy in results between two equally valid

approaches, as implied by Domazet-Lo�so et al. (2017). The

convention has always been to use the conservative method,

or at least both methods rather than just the liberal method.

Using only the liberal method is at the minimum misleading.

In the same vein, when we claimed the impact of phylos-

tratigraphic error, we used conservative methods. For in-

stance, we simulated only genes with sequence alignments

in the specified taxa, despite that genes missing in some taxa

are likely to evolve rapidly and exhibit higher phylostrati-

graphic errors. In our study of human disease genes, we

only had sufficient information to simulate 5,217 genes of

the 22,845 used by Domazet-Lo�so and Tautz (2008). A con-

servative re-evaluation of results would restrict analyses to

those genes whose evolution can be reliably simulated.

There is no reason to believe that the unsimulated 17,628

genes had a lower error rate, let alone were free from error.

Similarly, in our re-evaluation of yeast genes, 619 genes were

simulated using parameters not derived from their alignments

due to a lack of homologs to infer evolutionary parameters.

We also used a covarion rate of zero in our primary simula-

tions, despite that the covarion mode of evolution increases

phylostratigraphic error and has been found to be quite com-

mon (Fitch and Markowitz 1970; Lopez et al. 1999, 2002;

Penny et al. 2001; Huelsenbeck 2002; Guidon et al. 2004;

Ané et al. 2005; Merlo et al. 2007; Wang et al. 2007; Studer

and Robinson-Rechavi 2010; Zhou et al. 2010). The conser-

vativeness of our approach means that not all error-prone

genes are identified in our simulation, but only a lower limit.

By comparison, in their proposed correction for error,

Domazet-Lo�so and colleagues remove only those genes

which we were able to simulate and found to be error-
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prone. This is a liberal approach, as the majority of genes were

unable to be simulated, and so the error-prone status cannot

be assessed. Again, Domazet-Lo�so and colleagues use liberal

methods when it is more appropriate to be conservative.

Nonsensical Conclusions

There are at least two points in which Domazet-Lo�so et al.

(2017) presented evidence that is in direct contradiction to

their arguments, but they concluded that the evidence is in

their favor. First, they claimed that in their reanalysis of the

Carvunis et al. (2012) data, they performed Kruskal–Wallis

tests within each age group to quantify the significance of

differences between the original, simulated, and reduced ori-

ginal ORF sets (upon the removal of error-prone genes). They

reported that the “P value of the Kruskal–Wallis test was

smaller when comparing the original and simulated sets

than when comparing the original and reduced original sets

in the large majority of cases,” and concluded that “rather

than undermining the original conclusions, the simulation ap-

proach actually strengthens them.” The reported P values

only show that the original is more similar to the reduced

original than to the simulated. This does not strengthen their

conclusions. To demonstrate that the simulation approach

strengthens their conclusions, they would need to provide

evidence for lower P values in the reduced original data

than the original. Their table 1 shows exactly the opposite.

Second, Domazet-Lo�so et al. pointed out that 5 of the 15

genes Carvunis et al. (2012) determined to be S. cerevisiae-

specific turned out to not be species-specific when more sub-

stantial and appropriate analyses (Knowles and McLysaght

2009) than phylostratigraphy were performed. This is no small

point. This suggests an error rate of at least 33% in identifying

species-specific genes by phylostratigraphy, an observation

directly contrasting their claim that phylostratigraphy has

zero error when applied to closely related species. It echoes

the conclusion that findings of our study—which cannot

simulate the evolution of the fastest evolving genes—

represent lower bounds of phylostratigraphic error.

The Future of Phylostratigraphy

In summary, we pointed out the theoretical difficulty of phy-

lostratigraphy, demonstrated the robustness of our original

simulation results by performing additional simulations as sug-

gested by Domazet-Lo�so et al., showed that previously pub-

lished phylostratigraphic trends either disappear or become

much weakened when only error-resistant genes were ana-

lyzed, and explained why criticisms of our work by Domazet-

Lo�so et al. are untenable. Contrary to Domazet-Lo�so et al.’s

conclusion, our findings demonstrate that false-negative

errors are nonnegligible contributors to phylostratigraphic

trends and that they cannot be ignored in phylostratigraphic

studies. We further suggest a more robust methodology for

controlling for the effects of error by first restricting to those

genes which can be simulated and then removing those

genes which, through simulation, have been shown to be

error-prone. One cannot assume that unsimulated genes

have no error or a lower error rate than those with sufficient

information to be simulated. As we have here highlighted,

Domazet-Lo�so et al.’s own reanalysis of reportedly species-

specific genes in S. cerevisiae uncovered an error rate as high

as 33%. Thus, when one tries to demonstrate the robustness

of a phylostratigraphic result to error, removing only those

genes detected in conservative simulation to be error-prone,

as was done by Domazet-Lo�so et al. (2017), is obviously

insufficient.

Because simulation models cannot be identical to the ac-

tual mode of evolution, it is unclear whether one is able to use

simulations to identify all genes subject to BLAST error.

Consequently, removing genes identified by simulation to

be error-prone does not guarantee an error-free data set.

Even error-resistant genes may experience phylostratigraphic

error, depending on the context (e.g., the convarion model).

Nevertheless, considering only error-resistant genes should

reduce phylostratigraphic error and improve the reliability of

phylostratigraphic results. More importantly, if a trend disap-

pears when this error is controlled for, the trend is attributable

to error.

In the context of de novo gene origination, Domazet-Lo�so

et al. (2017) failed to offer a sensible explanation under the

proto-gene model for their observation of continuous

growths in mean protein length and other gene properties

hundreds of millions of years after gene origination, and a

recent article pointed out additional concerns about the phy-

lostratigraphy approach (McLysaght and Hurst 2016). Future

work should clarify the meaning of gene age if properties of

genes of different ages continue to be a subject of interest.

Aside from the conceptual issues with gene age, if one is to

use an operational definition of gene age (or novel sequence)

determined by a homology detection tool, one needs to iden-

tify and use a homology detection method that is much less

affected by gene properties so that correlations between the

estimated gene ages and gene properties are genuine rather

than artifactual. Until such methods are identified and

applied, one should remain suspicious about

phylostratigraphy-based findings.
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