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Abstract. Gene expression data were analyzed in order to 
identify critical genes in breast invasive carcinoma (BRCA). 
Data from 1,073 BRCA samples and 99 normal samples were 
analyzed, which were obtained from The Cancer Genome 
Atlas. Differentially expressed genes (DEGs) were identi-
fied using the significance analysis of microarrays method 
and a functional enrichment analysis was performed using 
the Database for Annotation, Visualization and Integrated 
Discovery. Relevant microRNAs (miRNAs), transcription 
factors (TFs) and associated small molecule drugs were 
revealed by Fisher's exact test. Furthermore, protein‑protein 
interaction (PPI) information was downloaded from the 
Human Protein Reference Database. Interactions with a 
Pearson's correlation coefficient >0.5 were identified and PPI 
networks were subsequently constructed. A survival analysis 
was also conducted according to the Kaplan‑Meier method. 
Initially, the 1,073 BRCA samples were clustered into seven 
groups, and 5,394 DEGs that were identified in ≥4 groups 
were selected. These DEGs were involved in the cell cycle, 
ubiquitin‑mediated proteolysis, oxidative phosphorylation 
and human immunodeficiency virus infection. In addition, 
TFs, including Sp1 transcription factor, DAN domain BMP 
antagonist family member 5, MYCN proto‑oncogene, bHLH 
transcription factor and cAMP responsive element binding 
protein (CREB)1, were identified in the BRCA groups. Seven 
PPI networks were subsequently constructed and the top 10 
hub genes were acquired, including RB transcriptional core-
pressor 1, inhibitor of nuclear factor (NF)‑κB kinase subunit γ, 
NF‑κB subunit 2, transporter 1, ATP binding cassette 
subfamily B member, CREB binding protein and proteasome 
subunit α3. A significant difference in survival was observed 

between the two combined groups (groups‑2, ‑4 and ‑5 vs. 
groups‑1, ‑3, ‑6 and ‑7). In conclusion, numerous critical genes 
were detected in BRCA, and relevant miRNAs, TFs and small 
molecule drugs were identified. These findings may advance 
understanding regarding the pathogenesis of BRCA.

Introduction

Breast cancer is the most common cancer in women, affecting 
~12% of women worldwide (1). It is also the leading cause of 
cancer‑associated mortality in women (2,3). The main cause 
of breast cancer mortality is metastasis, which accounts for 
~90% of breast cancer‑associated mortality (4,5). Therefore, 
research has focused on breast cancer metastasis. The treat-
ment methods of breast cancer include surgery, radiation, 
chemotherapy, hormone blocking therapy (6), and monoclonal 
antibodies  (7). The choice of treatment for breast cancer 
depends on classification and special markers. Breast cancers 
are classified by several grading systems, such as histopa-
thology, grade, stage, receptor status, and protein and gene 
expression patterns (8).

Various signaling pathways have been implicated in 
metastasis regulation, including transforming growth factor‑β 
signaling  (9), Wnt signaling  (10), Notch signaling  (11) 
and epidermal growth factor signaling  (12). Numerous 
metastasis‑associated biomarkers have also been revealed. 
Parathyroid hormone‑related protein  (12‑48) is a plasma 
biomarker that is associated with breast cancer bone metas-
tasis (13). In addition, C‑C chemokine receptor type 7 and 
C‑X‑C chemokine receptor type 4 are biomarkers that exhibit 
predictive value for axillary lymph node metastasis in breast 
cancer  (14). MicroRNAs (miRNAs/miRs) serve important 
roles in the regulation of metastasis, including miR‑31 (15) 
and miR‑146 (16). Due to its complexity and heterogeneity, 
the molecular mechanisms underlying breast invasive carci-
noma (BRCA) have yet to be completely elucidated. The 
identification of critical genes is an essential step toward fully 
understanding the metastatic mechanism of BRCA and may 
also provide novel therapeutic targets against BRCA.

In the present study, BRCA gene expression data were 
acquired from The Cancer Genome Atlas (TCGA). Differential 
analysis, combined with network analysis, was performed 
to identify the critical genes in BRCA. In addition, relevant 
miRNAs, transcription factors (TFs) and associated small 
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molecule drugs were investigated, which may provide infor-
mation that aids the development of therapeutic strategies.

Materials and methods

Raw data and pretreatment. RNA‑seq data for BRCA 
were downloaded from TCGA (https://cancergenome.nih.
gov/) using TCGA‑Assembler  (17); the data were then 
normalized with package TCC (http://www.bioconductor.
org/packages/release/bioc/html/TCC.html). Data from 
1,073 BRCA samples and 99 normal samples, which were 
downloaded from TCGA, were included for further analysis. 
The RNA‑seq data was acquired from the platform Illumina 
HiSeq 2000 RNA Sequencing. The survival data were also 
collected from TCGA. Missing values were filled with ‘1’ and a 
log2 transformation was applied. BRCA samples were clustered 
using Algorithms and Framework for Nonnegative Matrix 
Factorization (NMF; https://cran.r‑project.org/web/pack-
ages/NMF/index.html) (18) and k value was set to generate 
optimal cophenetic correlation coefficient (19).

Screening of differentially expressed genes (DEGs). DEGs 
were identified using the significance analysis of microarrays 
method (20), which compensates for the false discovery rate 
in multiple testing. Adjusted P<0.05 and |log (fold change) |<1 
were set as the cut‑off criteria.

Functional enrichment analysis. Gene Ontology enrichment 
analysis and Kyoto Encyclopedia of Genes and Genomes 
pathway enrichment analysis were performed using the Database 
for Annotation, Visualization and Integration Discovery 
(http://david.abcc.ncifcrf.gov/) (21). The P‑value was adjusted by 
Bonferroni correction (22). Reactome analysis were performed 
using the Reactome Database (http://reactome.org/) (23).

Screening of relevant miRNAs, TFs and associated drugs. 
Regulatory relationships between miRNAs and target genes, and 
between TFs and target genes were downloaded from combi-
natorial Gene Regulatory Networks Builder (https://www.scbit.
org/cgrnb/) (24,25). A total of 197,906 miRNA‑target gene rela-
tionships were acquired, which included 699 mature miRNAs 
and 8,646 target genes. Furthermore, 210,637 TF‑target gene 
relationships were obtained, which included 207 TFs and 
16,862 target genes.

Relationships between small molecule drugs and target genes 
were downloaded from DrugBank (http://www.drugbank.ca/). 
A total of 6,108 relationships were acquired, which included 348 
small molecule drugs and 1,353 target genes.

Relevant miRNAs, TFs and drugs were identified by Fisher's 
exact test (26). For specific miRNAs, TFs or drugs the associ-
ated target genes were defined as M, whereas the DEGs were 
identified as N. The significance of the overlap between M and N 
was examined by Fisher's exact test: Where ‘a’ indicates genes 
included in M and N, ‘d’ indicates genes included in neither M 
nor N, ‘b’ indicates genes only included in M, and ‘c’ indicates 
genes only included in N. Relevant miRNAs, TFs and drugs 
with P<0.05 were selected for each group of BRCA samples.

Construction of interaction networks. Protein‑protein inter-
action (PPI) information was downloaded from the Human 

Protein Reference Database (http://www.hprd.org/)  (27). 
A total of 39,240 PPI interactions and 9,572 proteins were 
identified. Interactions with a Pearson's correlation coefficient 
>0.5 were selected and PPI networks were subsequently 
constructed.

Survival analysis. Difference in survival time among the 
various BRCA groups was analyzed using the Kaplan‑Meier 
(K‑M) method in the survival package (version 2.41‑3; 
https://cran.r‑project.org/web/packages/survival/index.html).

Results

Classification of BRCA samples. Box plots of normalized gene 
expression data are presented in Fig. 1. A good performance of 
normalization was achieved.

Coefficient of variation was calculated for the expression 
levels of each gene in the BRCA samples and the top 1,500 
genes, which were regarded as core genes, were selected 
for classification. Maximum cophenetic correlation coef-
ficient was obtained while the k value was set as 7 (Fig. 2). 
Accordingly, seven BRCA groups were identified from the 
1,052 samples using the NMF package. Group‑1 included 
53 samples, group‑2 included 227 samples, group‑3 included 
124 samples, group‑4 included 367 samples, group‑5 included 
134 samples, group‑6 included 32 samples and group‑7 
included 115 samples.

DEGs and biological functions. The DEGs were identified in 
the BRCA group samples compared with the control samples. 
A total of 4,970 DEGs were identified in group‑1, 6,355 DEGs 
in group‑2, 6,008 DEGs in group‑3, 5,018 DEGs in group‑4, 
7,793 DEGs in group‑5, 4,976 DEGs in group‑6 and 3,581 
DEGs in group‑7 compared with the control samples. A 
considerable number of overlapping genes were observed 
among groups ‑1 to ‑4 and groups ‑4 to ‑7 (Fig. 3). A total of 
5,394 DEGs were identified in ≥4 groups and were selected 
and termed common DEGs. Functional enrichment analysis 

Figure 1. Box plot of gene expression data of 100 samples randomly selected 
from the 1,073 samples. A good performance of normalization was achieved.
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demonstrated that these genes were involved in the cell cycle, 
ubiquitin‑mediated proteolysis, oxidative phosphorylation and 
human immunodeficiency virus infection (Table I).

The top 500 DEGs ranked by adjusted P‑value were 
selected, which were used to generate a heatmap for the seven 
groups. Different expression patterns were observed among 
the seven groups (Fig. 4).

Relevant miRNAs, TFs and drugs. According to the threshold, 
129, 153, 11, 77, 37, 71 and 202 miRNAs were obtained from 
groups‑1 to ‑7, respectively. A total of 48, 56, 46, 45, 56, 49 
and 48 TFs were obtained from groups‑1 to ‑7, respectively. 
A total of 6, 1, 2, 1, 0, 1 and 2 small molecule drugs were 
unveiled in groups‑1 to ‑7, respectively. The top 5 miRNAs, 
TFs and small molecule drugs (ranked by P‑value) are listed 

Figure 2. (A) Evaluation of k value; (B) correlation matrix of breast invasive carcinoma groups; (C) heatmap of the 1,500 core genes.
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in  Table  II. Numerous TFs were observed in >1 group, 
including Sp1 transcription factor and DAN domain BMP 
antagonist family member 5. In addition, some TFs were 
unique to certain groups, including MYCN proto‑oncogene, 
bHLH transcription factor in group‑7 and cAMP responsive 
element binding protein 1 (CREB)1 in group‑4. Furthermore, 
different small molecule drugs were revealed between the 
groups.

PPI network. PPIs were identified among the 5,394 DEGs; 
PPIs with a Pearson's correlation coefficient >0.5 were selected 
and seven PPI networks were constructed. The PPI network 

Figure 3. Venn diagram showing the overlapping of differentially expressed 
genes in (A) groups‑1 to ‑4 and (B) groups‑4 to ‑7.

Figure 4. Heatmap of top 500 differentially expressed genes ranked by 
adjusted P‑value. X‑axis indicates breast invasive carcinoma samples from 
groups‑1 to ‑7, whereas Y‑axis indicates the 500 genes.

Table I. Biological functions over‑represented in the 5,394 differentially expressed genes.

Source	 Name	 Bonferroni‑adjusted P‑value

KEGG	 Ubiquitin‑mediated proteolysis	 2.35x10‑10

KEGG	 Non‑alcoholic fatty liver disease	 6.50x10‑10

KEGG	 Oxidative phosphorylation	 6.79x10‑10

KEGG	 Cell cycle	 9.26x10‑10

KEGG	 RNA transport	 1.69x10‑9

KEGG	 Proteasome	 3.30x10‑9

KEGG	 Spliceosome	 2.10x10‑8

KEGG	 Protein processing in endoplasmic reticulum	 9.19x10‑8

KEGG	 Human T lymphotropic virus type 1 infection	 9.34x10‑8

KEGG	 Ribosome biogenesis in eukaryotes	 9.34x10‑8

KEGG	 DNA replication	 1.06x10‑7

KEGG	 Shigellosis	 3.96x10‑7

REACTOME	 Cell cycle, mitotic	 4.29x10‑7

REACTOME	 Cell cycle	 5.01x10‑7

REACTOME	 Human immunodeficiency virus infection	 1.18x10‑6

KEGG, Kyoto Encyclopedia of Genes and Genomes.
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for group‑1 contained 711 interactions and 748 genes. The PPI 
network for group‑2 included 197 interactions and 256 genes. 
The PPI network for group‑3 included 473 interactions and 
533 genes. The PPI network for group‑4 included 207 interac-
tions and 258 genes. The PPI network for group‑5 included 
382 interactions and 453 genes. The PPI network for group‑6 
included 774 interactions and 830 genes. The PPI network for 
group‑7 included 416 interactions and 463 genes.

Degree was calculated for each node and the top 10 hub 
genes of the seven PPI networks are listed in Table III. Some 
hub genes were unique to certain groups, including RB 
transcriptional corepressor 1 (RB1) from group‑1, inhibitor 
of nuclear factor (NF)‑κB kinase subunit γ (IKBKG) from 
group‑2, transporter 1, ATP binding cassette subfamily B 
member from group‑4, small nuclear ribonucleoprotein 
polypeptide E from group‑5, and CREB binding protein from 
group‑6.

Survival analysis. A total of 101 cases succumbed to BRCA, 
as follows: 3 cases from group‑1, 32 from group‑2, 10 from 
group‑3, 38 from group‑4, 11 from group‑5, 1 from group‑6 
and 6 from group‑7. The survival analysis demonstrated that 
groups‑2, ‑4 and ‑5 had similar survival curves (Fig. 5A). 
Therefore, these groups were combined into m‑group‑2, 
whereas the remaining groups were combined into m‑group‑1. 
A significant difference was observed between the combined 
two groups (P=0.0484; Fig. 5B). According to the available 
data, no common features in m‑group‑1 and m‑group‑2, 
including gene expression patterns and clinical features, were 
observed.

Discussion

Expression data from 1,073 BRCA samples and 99 normal 
samples were analyzed in the present study. The BRCA samples 

Table II. Top five relevant microRNAs, transcription factors and small molecule drugs in each group.

Group	 MicroRNAs	 Transcription factors	 Drugs

1	 miR‑936, miR‑130a, miR‑26a, 	 DAND5, PSG1, SP1, 	 Basiliximab, Alemtuzumab, Efalizumab, 
	 miR‑30a, miR‑301a	 Elk‑1, EGR3	 Natalizumab, L‑Isoleucine
2	 miR‑506, miR‑1289, miR‑552, 	 DAND5, PSG1, SP1, 	 Bortezomib
	 miR‑590‑3p, miR‑214	 E2F, E2F1
3	 miR‑1207‑5p, miR‑1224‑3p, 	 E2F, E2F1, Elk‑1, 	 Bortezomib, Sunitinib
	 miR‑1275, miR‑518e*, miR‑765	 SP1, DAND5
4	 miR‑454, miR‑1245, miRr‑659, 	 DAND5, PSG1, SP1, 	 Carfilzomib
	 miR‑518a‑5p, miR‑340	 Elk‑1, CREB1
5	 miR‑663, miR‑519e, miR‑940, 	 DAND5, PSG1, SP1, 	 N/A
	 miR‑339‑5p, miR‑125a‑5p	 Elk‑1, PAX5
6	 miR‑214, miR‑1290, miR‑142‑3p, 	 SP1, DAND5, PSG1, 	 Biotin
	 miR‑607, miR‑134	 PAX5, Pax‑5
7	 miR‑590‑3p, miR‑376b, miR‑568, 	 SP1, DAND5, PSG1, 	 Spermine, L‑Glutamine
	 miR‑1200, miR‑302c*	 MYCN, E2F

Figure 5. Survival analysis result of the (A) seven groups and (B) two combined groups.
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were divided into seven groups, and a total of 5,394 common 
DEGs were obtained. The identified DEGs were involved in 
the cell cycle, ubiquitin‑mediated proteolysis and oxidative 
phosphorylation. Subsequently, PPI networks were constructed 
for the DEGs and hub genes were selected.

A combination of differential and network analyses was 
useful in identifying critical genes. Some of the identified hub 
genes have previously been implicated in breast cancer. TNF 
receptor‑associated factor 2 mediates the signal transduction 
from members of the TNF receptor superfamily and serves a 
role in regulation of breast cancer cell invasion (28,29). Spleen 
associated tyrosine kinase (SYK) is a tumor suppressor, the 
expression of which is often absent or reduced in invasive breast 
cancer tissues (30,31). SYK may exert its function through 
integrin‑mediated protein tyrosine phosphorylation  (32). 
Proliferating cell nuclear antigen is considered a potential 
biomarker of BRCA  (33). Polypyrimidine tract‑binding 
protein 1 (PTBP1) has been reported to serve a role in the 
maintenance of breast cancer cell growth and malignant 
properties (34). The stability of PTBP1 is increased in breast 
cancer cell lines compared with in matched controls  (35). 
FYN proto‑oncogene, Src family tyrosine kinase is a 
member of the protein‑tyrosine kinase oncogene family and 
is implicated in the control of cell growth. In addition, it is 
considered an important molecule in drug resistance in breast 
cancer (36), is induced by Ras/phosphoinositide 3‑kinase/Akt 
signaling and is required for enhanced invasion (37). RB1 is 
a negative regulator of the cell cycle and was the first iden-
tified tumor suppressor gene. In addition, RB1 is associated 
with epithelial‑to‑mesenchymal transition in triple‑negative 
breast cancer (38); therefore, it may be used to predict drug 

Table III. Top 10 hub genes of the seven groups.

Group	 Gene	 Degree

1	 TRAF2	 11
	 SYK	 10
	 RB1	10
	 CEBPB	 10
	 CSNK2B	   9
	 PCNA	   8
	 STAT1	   8
	 MCM3	   8
	 COPS6	   8
	 MCM2	   8
2	 STAT1	   6
	 MCM3	   6
	 MCM7	   6
	 MCM2	   6
	 PCNA	   5
	 IKBKG	   5
	 PTBP1	   5
	 SNRPG	   5
	 NFKB2	   5
	 TAP2	   4
3	 ACTB	 14
	 COPS6	   9
	 LYN	7
	 NFKB2	   7
	 MCM3	   7
	 ARPC4	   7
	 FYN	   7
	 PSMB5	   7
	 SYK	   6
	 PCNA	   6
4	 FYN	 10
	 LYN	7
	 PCNA	   7
	 MCM6	   7
	 MCM2	   7
	 STAT1	   6
	 MCM3	   6
	 MCM7	   6
	 TAP1	   4
	 PSMA3	   4
5	 PCNA	   8
	 SNRPE	   8
	 SNRPF	   7
	 SNRPD2	   7
	 MCM2	   7
	 TAF1	   6
	 LSM2	   6
	 MCM3	   6
	 MCM6	   6
	 COPS6	   6

Table III. Continued.

Group	 Gene	 Degree

6	 COPS6	 14
	 TRAF2	 13
	 ACTB	 11
	 FYN	 11
	 CREBBP	 10
	 C14orf1	 10
	 STAT1	   9
	 CSNK2B	   9
	 PRPF40A	   9
	 LYN	8
7	 FYN	 11
	 COPS6	   9
	 ACTB	   9
	 LYN	8
	 SNRPD2	   8

	 SNRPF	   7
	 CSNK2B	   7
	 MCM2	   7
	 PCNA	   6
	 PSMA3	   6
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response (39) and long‑term survival (40). NFKB2 is a subunit 
of the transcription factor complex NF‑κB, whereas IKBKG 
is a regulatory subunit of the IκB kinase complex, which 
activates NF‑κB. Both NFKB2 and IKBKG are upregulated 
in inflammatory breast cancer and may serve important roles 
in the disease (41).

Relevant miRNAs, TFs and small molecule drugs were also 
identified in the present study. miR‑130a (42), miR‑26a (43) and 
miR‑30a (44) have been reported to suppress breast cancer cell 
proliferation and migration. Furthermore, miR‑340 inhibits 
breast cancer cell migration and invasion through targeting 
the oncoprotein c‑Met (45). Conversely, upregulated miR‑301a 
in breast cancer promotes tumor metastasis by targeting 
phosphatase and tensin homolog and activating Wnt/β‑catenin 
signaling (46). Furthermore, miR‑506 has been reported to 
regulate epithelial‑mesenchymal transition in breast cancer cell 
lines (47), whereas miR‑214 enhances the invasive ability of 
breast cancer cells by targeting p53 (48). The TF early growth 
response 3 is involved in the estrogen‑signaling pathway in 
breast cancer cells (49). E2F transcription factor 1 is a prolif-
erative marker of breast neoplasia (50). In addition, ELK1, 
ETS transcription factor, is a member of the ETS oncogene 
family, and is implicated in breast cancer cell survival (51). 
These factors may be used to develop novel therapies for the 
treatment of breast cancer. In addition, two small molecule 
drugs that are currently used to treat BRCA, were identified to 
be associated with the BRCA DEGs: Bortezomib (52,53) and 
sunitinib (54), thus suggesting the reliability of the DEGs.

In the present study, the two combined BRCA groups 
exhibited a significant difference in survival rate. Therefore, a 
comparative analysis of the two combined groups may disclose 
prognostic genes associated with breast cancer.

In conclusion, numerous critical genes were identified in 
BRCA. Further studies regarding these genes may improve 
understanding regarding the complex molecular mechanisms 
underlying BRCA and result in the identification of therapeutic 
targets. The identified relevant miRNAs and TFs in the present 
study may also provide information that aids future therapy 
development.
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