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Abstract: Nerve growth factor (NGF), a typical neurotrophin, has been characterized by the
regulation of neuronal cell differentiation and survival involved in learning and memory functions.
NGF has a main role in neurite extension and synapse formation by activating the cyclic adenosine
monophosphate-response-element-binding protein (CREB) in the hippocampus. The purpose of this
study was to determine whether a mixture of Gotu Kola, Cnidium fruit, and Goji berry (KYJ) enhances
memory function by inducing NGF-mediated actions both in vitro and in vivo. The KYJ combination
increased NGF concentration and neurite length in C6 glioma and N2a neuronal cells, respectively.
Additionally, we discovered memory-enhancing effects of KYJ through increased NGF-mediated
synapse maturation, CREB phosphorylation, and cell differentiation in the mouse hippocampus.
These findings suggest that this combination may be a potential nootropic cognitive enhancer via the
induction of NGF and NGF-dependent activities.
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1. Introduction

According to recent reports, the population of patients that suffer from dementia has gradually
increased worldwide [1]. The loss of memory and cognitive functions is one of the major symptoms
of dementia, is a leading cause of death in people over the age of 65, and is caused by various
factors including aging, Alzheimer’s disease (AD), and vascular damage [2]. The hippocampus is a
critical brain region in memory function, and its shrinkage due to neuronal cell loss is a histological
feature of patients with dementia [3]. The cholinergic system, which contains cholinergic neurons
and acetylcholine as a neurotransmitter, plays a vital role in the hippocampus and is mediated by
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neurotrophins such as nerve growth factor (NGF), which is essential for hippocampal plasticity and
memory consolidation [4,5].

The influence of nootropics, which are well-known compounds or herbal supplements that
enhance mental performance, including memory function, has been widely studied in the search for
brain-boosting agents or therapeutic candidates for memory impairment [6]. There are two types of
nootropics: synthetic compounds such as piracetam, and natural or herbal nootropics such as ginkgo
leaves. Some natural nootropics act as modulators of neurotransmitter release, neuroprotective agents,
and as an energy booster in the brain [7,8]. In addition, chronic treatment with nootropics has been
associated with significantly enhanced actions on memory function through the increase of NGF
expression in the hippocampus [9]. Thus, a natural nootropic that is involved in NGF synthesis might
be a potential cognitive enhancer.

As a multi-herbal mixture, KYJ is composed of three plants: Gotu Kola (the whole plant of
Centella asiatica (L.) Urb.), Cnidium fruit (the fruit of Cnidium monnieri (L.) Cuss.), and Goji berry
(the fruit of Lycium barbarum (L.)). Growing evidence shows that Gotu Kola extract ameliorated
memory deficits in 5XFAD AD mice [10], enhanced memory retention [11], protected brain neurons
from oxidative stress or amyloid-beta (Aβ) neurotoxicity [12,13], and prevented hippocampal damage
in diabetic rats [14]. Additionally, Cnidium fruit extract was shown to attenuate scopolamine-induced
amnesia [15]. In the case of Goji berry, chronic administration of its extract enhanced cognitive
performance in young healthy people [16] and reduced memory impairment through the reduction of
hippocampal Aβ1–42 levels in APP/PS1 double-transgenic AD mice [17].

In the present study, we aimed to investigate whether KYJ, the combination of three herbal extracts,
could affect NGF synthesis and memory performance as a potential natural nootropic both in vitro
and in vivo.

2. Materials and Methods

2.1. Materials

Dulbecco’s modified Eagle’s medium (DMEM), supplemented with fetal bovine serum (FBS)
and penicillin–streptomycin, was provided by Invitrogen (Carlsbad, CA, USA). Goat polyclonal
anti-doublecortin (DCX) and rabbit polyclonal anti-phospho-cAMP-response-element-binding protein
(CREB) (pCREB) were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Biotinylated
horse anti-goat antibody, biotinylated goat anti-rabbit antibody, and avidin–biotin complex (ABC) were
purchased from Vector Labs (Burlingame, CA, USA). Paraformaldehyde (PFA), 3,3-diaminobenzidine
(DAB), sucrose, phosphate-buffered saline (PBS), 30% hydrogen peroxide (H2O2), lipopolysaccharide
(LPS), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), dimethyl sulfoxide
(DMSO), piracetam, dibutylphthalate polystyrene xylene (DPX) histomount medium, and mouse
anti-synaptophysin were purchased from Sigma-Aldrich (St. Louis, MO, USA). Cerebrolysin was
purchased from Ever Neuro Pharma (GMBH, Austria). The enzyme-linked immunosorbent assay
(ELISA) development kit for NGF was purchased from R&D Systems (Minneapolis, MN, USA).

2.2. Preparation of KYJ

A sample of each plant (2.7 kg) was crushed to a powder and mixed together in a 1:1:1 ratio,
extracted with 8 L of 70% ethanol at room temperature for 72 h (three times), and concentrated using a
rotary evaporator, resulting in a 405 g ethanol-soluble extract. The yield value of the mixture was 15%.

2.3. Cell Culture

In this study, three cell lines—C6 glioma, BV2 murine microglia, and mouse neuro2a (N2a)—were
used to study the neuroprotective and anti-neuroinflammatory effects of KYJ. The C6 glioma and
BV2 murine microglia were purchased from the Korean Cell Line Bank (Seoul, Korea), and the N2a
cells was obtained from American Type Culture Collection (Manassas, VA, USA). All cell lines were
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maintained in DMEM supplemented with 10% heat-inactivated FBS, 1% penicillin (1 × 105 U/L), and
streptomycin (100 mg/L) in a humidified incubator with 5% CO2 at 37 ◦C.

2.4. Measurement of NGF Concentration

Measurement of NGF concentration in vitro was conducted according to previously reported
methods [18,19]. For the quantitative measurement of secreted NGF, C6 glioma cells were seeded
in a 24 well plate at a density of 1 × 105 cells/well and incubated for 24 h. The cells were treated
with a specified concentration of the sample for 24 h, and the conditioned medium was collected and
centrifuged. The NGF produced in C6 glioma culture supernatants were measured using a competitive
ELISA kit in accordance with the manufacturer’s protocol.

2.5. Measurement of Neurite Outgrowth

To measure the effect of KYJ on neurite outgrowth, N2a cells were used according to previously
reported methods [18,20]. The N2a cells were seeded onto 6 well plates at a density of 1 × 104 cells/well
and treated with the KYJ extract for 24 h. These cells ceased to proliferate and began to differentiate,
as evidenced by neurite outgrowth, in response to serum starvation, cerebrolysin, or growth factors
such as neurotrophins and glial-cell-derived neurotrophic factor family ligands. Neurite lengths of
N2a cells were measured using an IncuCyte imaging system (Essen Instruments, Ann Arbor, MI, USA).

2.6. Animals and Sample Treatment

Animal treatment and maintenance were carried out in accordance with the Principles of
Laboratory Animal Care (NIH publication No. 85–23, revised 1985) and the Animal Care and Use
Guidelines of Kyung Hee University, Seoul, Korea (approval number: KHUASP(SE)-19-016). Male ICR
(Institute of Cancer Research) mice (5 weeks, 23–25 g) were purchased from the Daehan Biolink Co.
Ltd (Eumseong, Korea). Animals were randomly housed, had free access to water and food, and were
maintained under a constant temperature (23 ± 1 ◦C), humidity (60 ± 10%), and a 12 h light/dark
cycle. The mice were randomly divided into three groups (n = 10/group): (1) a vehicle-treated group,
(2) a piracetam (200 mg/kg/day)-treated group, and (3) a KYJ (200 mg/kg/day)-treated group. The KYJ
was dissolved in normal saline and administered orally once a day for 16 days. Piracetam was used as
a positive control and was administered intraperitoneally for 16 days. An equal volume of normal
saline was administered to the vehicle-treated group.

2.7. Behavioral Test

The Y-maze test was performed according to previously reported methods [21]. The Y-maze
apparatus is composed of three equal angle arms. One hour after the administration, mice were placed
in one arm, and were allowed to freely explore the maze. The spontaneous alternation and total entries
were manually measured for each mouse over an 8 min period through video analysis. An actual
alternation was defined as entry into all three arms consecutively (i.e., ABC, CAB, or BAC but not
ABA). The percentage of alternations was calculated as shown by the following equation: ((the number
of alternations)/(the total number of arm entries − 2)) × 100.

The step-through passive avoidance test was conducted according to a previously modified
method [22]. Briefly, the bright box (21 × 21 × 21 cm) contained a 50 W electric lamp, while the floor of
the dark box (21 × 21 × 21 cm) consisted of 2 mm stainless steel rods spaced 1 cm apart. One hour
after the administration, mice were placed in the bright compartment, and the door separating the two
compartments was opened 10 s later. After the mouse fully entered the dark chamber, the guillotine
door was closed and an electrical foot shock (0.4 mA) was delivered through the grid floor for 3 s
(acquisition trial). Twenty-four hours after the acquisition trial, each mouse was placed in the bright
chamber for a retention trial. Latency was defined as the time it took for a mouse to enter the dark
chamber after the door opened (retention trial). Latency time was recorded for up to 600 s.
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2.8. Brain Tissue Preparation

We performed perfusion to obtain whole mouse brain samples without blood in accordance
with previously reported methods [23,24]. Twenty-four hours after the behavior tests, mice were
immediately anesthetized and transcardially perfused with 0.05 M PBS, and then fixed with 4% cold
PFA in a 0.1 M phosphate buffer (n = 6/group). Brains were removed and post-fixed in 0.1 M phosphate
buffer containing 4% PFA overnight 4 ◦C, and then immersed in a solution containing 30% sucrose in
0.05 M PBS for cryoprotection. Serial 30 µm thick coronal sections were cut on a freezing microtome
(Leica, Nussloch, Germany) and stored in cryoprotectant (25% ethylene glycol, 25% glycerol, 0.05 M
phosphate buffer) at 4 ◦C until their use for immunohistochemistry.

2.9. Immunohistochemistry

Brain sections were serially collected with five to six tissues per group from bregma −1.94 mm
to −2.30 mm according to the mouse brain atlas [25]. The free-floating sections were rinsed in PBS
buffer and treated with 1% H2O2 for 15 min. They were incubated with goat anti-DCX (1:100 dilution),
rabbit anti-pCREB (1:100 dilution), and mouse anti-synaptophysin (1:1000 dilution) overnight at 4 ◦C
in the presence of 0.3% triton X-100. After rinsing in PBS buffer, the sections were incubated with a
biotinylated anti-goat, anti-rabbit, and anti-mouse IgG (1:200 dilution) for 70 min, and then with ABC
(1:100 dilution) for 1 h at room temperature. Peroxidase activity was visualized by incubating sections
with DAB in 0.05 M tris-buffered saline (pH 7.6) and 0.03% H2O2. The reaction time of DAB staining
was applied equally to each marker to be stained, and the reaction time for each marker was as follows;
DCX staining for 70 sec, pCREB staining for 40 sec, and synaptophysin staining for 30 sec. After several
rinses with PBS, sections were mounted on gelatin-coated slices, dehydrated, and coverslipped in
histomount medium. The number of DCX- and pCREB-positive cells and the neurite length in
the dentate gyrus (DG) of the hippocampus were estimated by measuring at 200× magnification
using AnalySIS LS Research (Soft Imaging System Ltd., Münster, Germany). The optical density of
synaptophysin immunoreactivity in the CA3 region was analyzed with ImageJ software (Bethesda,
MD, USA). The images were photographed at 200×magnification using an optical light microscope
(Olympus Microscope System BX51; Olympus, Tokyo, Japan) equipped with a 20× objective lens.

2.10. Statistical Analysis

All statistical parameters were calculated using GraphPad Prism 5.0 software. Values were
expressed as the mean ± S.E.M. Data were analyzed by Student’s t-test. Differences with a p-value less
than 0.05 were considered statistically significant.

3. Results

3.1. KYJ Increased NGF Production in C6 Glioma

We investigated whether KYJ induced NGF production. We found that KYJ (124.36 ± 1.95%
at 10 µg/ml; 159.56 ± 7.14% at 25 µg/mL) significantly increased NGF production in C6 glioma
cells, which are representative cells of astrocytes (Figure 1A). We further found that KYJ showed
no cytotoxicity in C6 glioma cells (Figure 1B). A potent NGF stimulator, 6-shogaol, was used as the
positive control [26].
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Figure 1. The mixture of Gotu Kola, Cnidium fruit, and Goji berry (KYJ) stimulated the release of
nerve growth factor (NGF) in C6 cells. (A) Cells were treated with KYJ (10 and 25 µg/mL) or 6-shogaol
(20 µM, positive control), and the NGF concentration was measured in culture media. (B) The cell
viability was expressed as the result of MTT assay. Three independent experiments were performed.
*p < 0.05 and ***p < 0.001 vs. vehicle-treated group.

3.2. KYJ Induced Neurite Outgrowth in N2a Cells

The increase of NGF production has previously been directly correlated with the enhancement
of neurite outgrowth and the differentiation of neuronal cells [27]. With this in mind, N2a cells were
treated with KYJ (25 µg/mL) and analyzed for the induction of neurite outgrowth. As shown in
Figure 2, KYJ extract induced a significant increase in the length of neurites on the cell bodies of N2a.
Cerebrolysin was used as a positive control. KYJ treatment increased neurite length and outgrowth
compared with untreated cells and cerebrolysin, respectively.
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conducted at various time points until 36 h. (B) Neurite length was measured and representative
images were taken at 0 h and after 36 h. Scale bar = 50 µm.

3.3. KYJ Induced Memory Enhancement in Mice

To investigate whether KYJ enhanced memory function, we conducted two behavioral tests after
administration. First, spatial memory performance was assessed by the spontaneous alternation (%)
in the Y-maze test. The KYJ-treated group (72.88 ± 1.99%; **p < 0.01) showed a significant increase
in spontaneous alternation compared to the vehicle-treated group (61.07 ± 3.28%). Additionally,
the piracetam-treated group showed significant elevation of spontaneous alternation (72.56 ± 3.04%;
*p < 0.05 vs. vehicle-treated group; Figure 3A).

Fear-conditioned memory functions were assessed by analyzing the retention latency time of the
mice in the passive avoidance test. There was no difference in the latency time between groups in the
acquisition trial, but the retention latency time in the KYJ-treated group (353.62 ± 41.31 sec; **p < 0.01)
and piracetam-treated group (398.88 ± 58.39 sec; **p < 0.01) was significantly longer than that of the
vehicle-treated group (178.51 ± 21.46 sec; Figure 3B). These results indicate that the administration of
KYJ could enhance memory function.
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Figure 3. KYJ enhanced memory functions in mice. Y-maze test and passive avoidance test were
performed 13 to 15 days after the administration of piracetam or KYJ, respectively. (A) The spontaneous
alternations (%) in the Y-maze test and (B) the latency time (s) to enter the dark compartment during
the acquisition trial (white) and 24 h later during the retention trial (gray) in passive avoidance test.
*p < 0.05 and **p < 0.01 vs. the vehicle-treated group.

3.4. KYJ Triggered the Phosphorylation of CREB in the Mouse Hippocampus

The activation of CREB via its phosphorylation plays a key role in memory enhancement [28];
thus, we investigated the effects of KYJ on hippocampal CREB activation in mice by analyzing
the number of pCREB-immunostained cells in the granule cell layer (GCL) region. As shown in
Figure 4, the quantification results for pCREB-positive cells exhibited a marked elevation following
treatment with KYJ (12,835.93 ± 1192.34 cells/mm3; *p < 0.05) compared to the vehicle-treated
group (9072.62 ± 1027.09 cells/mm3). The piracetam-treated group further showed a similar pattern
to the KYJ-treated group (12,481.03 ± 1072.52 cells/mm3; *p < 0.05). These findings show that
the memory-enhancing effects of KYJ may be closely related to its actions on CREB activation in
the hippocampus.
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group, (C) piracetam 200 mg/kg/day (Intraperitoneal injection; i.p.) group. (D) The number of
pCREB-positive cells (black arrow) in the GCL region was quantified via stereological counting.
*p < 0.05 vs. the vehicle-treated group.

3.5. KYJ Promoted Synaptic Formation in the Mouse Hippocampus

Synaptophysin, a potential marker for synaptic vesicles in the integration and connectivity
between synaptic terminals, is involved in regulating synapse formation in hippocampal neurons,
leading to memory consolidation [29,30]. We explored whether KYJ modulates the synapse formation
in the mouse hippocampus by measuring the optical density of synaptophysin-positive CA3 regions.
The percentage of synaptophysin-positive intensity in CA3 was significantly higher in both the
piracetam- (109.33 ± 2.31%; *p < 0.05) and KYJ-treated groups (108.53 ± 2.92%; *p < 0.05) than in
the vehicle-treated group (Figure 5). These results suggest that KYJ treatment could induce the
strengthening of hippocampal synapse formation that contributes to memory enhancement.
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Figure 5. KYJ reinforced synapse formation in the mouse hippocampus. (A–C) Representative images
of each group are shown: (A) vehicle-treated group, (B) KYJ 200 mg/kg/day p.o. group, (C) piracetam
200 mg/kg/day i.p. group. (D) The optical density of synaptophysin immunoreactivity in CA3 region
was measured. *p < 0.05 vs. the vehicle-treated group.

3.6. KYJ Stimulated Hippocampal Differentiation of Progenitor Cells and Neurite Extension in Mice

Accumulated evidence shows that NGF acts as a potent inducer of hippocampal cell differentiation
and neurite extension [31]. Thus, to investigate whether KYJ affects neuronal cell differentiation and
neurite extension in the hippocampal regions, we performed immunohistochemical analyses for
DCX, which is present in the cytoplasm of immature neurons located in the GCL of the DG in the
hippocampus. In this study, the number of DCX-positive cells in the GCL region of KYJ-treated
mice was significantly increased by 21,046.67 ± 1981.81 cells/mm3 (*p < 0.05) compared to those of
vehicle-treated mice (16,974.54 ± 615.81 cells/mm3; Figure 6D). In addition, piracetam or KYJ treatment
significantly increased the total sum of neurite length in DCX-positive immature neurons in the GCL
by 295.58 ± 4.99 and 293.32 ± 11.45 µm, compared to the vehicle-treated group (259.95 ± 11.95 µm;
Figure 6E), respectively. Collectively, these results suggest that KYJ is involved in the neuronal
differentiation of immature neurons and their neurite outgrowth in the mouse hippocampus.
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(A–C) Representative images are shown: (A) vehicle-treated group, (B) KYJ 200 mg/kg/day p.o.
group, (C) piracetam 200 mg/kg/day i.p. group. (D) The number of DCX-positive cells in the GCL region
was quantified via stereological counting. (E) The total neurite length was the sum of DCX-positive
cell’s neurite length. *p < 0.05 vs. the vehicle-treated group.

4. Discussion

This study was the first to demonstrate the memory-enhancing effects of KYJ, composed of three
well-known natural nootropics, by inducing NGF-mediated signaling, including CREB activation,
synapse formation, and progenitor cell differentiation in the mouse hippocampus. NGF, a neurotrophin
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factor continuously produced in the hippocampus, is critical for neuronal survival and development,
which requires neurite outgrowth [32]. Our in vitro results showed that KYJ treatment effectively
stimulated not only the increase of NGF production, but also the extension of neurite length. We found
that oral administration of KYJ reinforced memory functions in mice. These results can be explained by
the effects of KYJ on the release of NGF, which can modulate hippocampal plasticity which is directly
involved in learning and memory abilities [5]. Moreover, NGF triggers the phosphorylation of CREB
to stimulate cAMP-response-element-dependent transcription [33]. Treatment with KYJ resulted in
a significantly increased activation of CREB, an important transcription factor involved in memory
processing in the hippocampus [34,35].

Synaptogenesis, including synapse formation, stabilization, and maturation, plays a central
role in learning and memory [36]. Changes in synaptic strength are closely related to plasticity and
neurotransmission in the hippocampus [37]. In this study, we demonstrated a remarkable increase
of synaptic density in hippocampal regions of KYJ-treated mice through synaptophysin, one of the
most widely used markers for hippocampal plasticity and neurotransmission between synapses [38].
Furthermore, the results showed that KYJ increased the number of DCX-positive immature neurons
and neurite outgrowth in the hippocampus. We considered the elevated dendrites associated with
KYJ treatment to contribute to synaptic enhancement that is linked to boosting memory function.
However, further studies are required to examine whether KYJ may influence hippocampal long-term
potentiation, directly showing an enhancement of synaptic plasticity.

Several previous studies on the pharmacological effects of the standardized compounds of
each herb in KYJ may partly explain our results. It was reported that asiaticoside derived from
Gotu Kola prevented memory decline in senescence-accelerated mice by Aβ deposition [39] and
attenuated ischemia/reperfusion-induced memory deficits [40]. Osthole, an isolated compound
from Cndium fruit, improved hippocampal synaptic plasticity and cognitive functions in AD
rats [41], upregulated neurotrophins to promote hippocampal neurogenesis in APP/PS1 transgenic AD
mice [42,43], and inhibited hyperphosphorylation of tau in AD models [44]. Osthole further blocked
the reduction of NGF levels in experimental autoimmune encephalomyelitis mice [45]. In addition,
the effects of betaine in Goji berry on memory function have been demonstrated by accumulated
reports [46–48]. The pharmacological activities of these compounds may induce the NGF-mediated
memory-enhancing effects of KYJ.

In summary, our data showed that the treatment with KYJ, a mixed herbal formula composed of
Gotu Kola, Cnidium fruit, and Goji berry, could induce NGF release and improve memory functions
via NGF-mediated pharmacological activities in both in vitro and in vivo systems. There were also
several limitations in this study; for example, it is admitted that there are a lack of data on the main
active components of KYJ extract, or the exact mechanism in the KYJ that enhances memory function
when NGF production is induced. Even so, our results are meaningful enough from the perspective
that KYJ could be a potential candidate as a cognitive enhancer for the treatment of dementia. Thus,
we expect that our findings could contribute to the development of nootropics as one of mechanisms
of anti-dementia drugs.
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