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Dual solution framework 
for mixed convection flow 
of Maxwell nanofluid instigated 
by exponentially shrinking surface 
with thermal radiation
Qiu‑Hong Shi1, Bilal Ahmed2, Sohail Ahmad2, Sami Ullah Khan3, Kiran Sultan1, 
M. Nauman Bashir3, M. Ijaz Khan4,5, Nehad Ali Shah6,7* & Jae Dong Chung6

This paper presents the analysis of transfer of heat and mass characteristics in boundary layer flow 
of incompressible magnetohydrodynamic Maxwell nanofluid with thermal radiation effects confined 
by exponentially shrinking geometry. The effects of Brownian motion and thermophoresis are 
incorporated using Buongiorno model. The partial differential equations of the governing model 
are converted in non-dimensional track which are numerically inspected with proper appliances of 
Runge–Kutta fourth order scheme.The significant effects of heat and mass fluxes on the temperature 
and nanoparticles volume fractions are investigated. By the increases in Lewis number between 1.0 
to 2.0 , the decrease in nanoparticle volume fraction and temperature is noted. With the change in the 
Prandtl constant that varies between 0.7 to 1.5 , the nanoparticles volume fraction and temperature 
are dwindled. Nanoparticles volume fraction and temperature distribution increase is noted with 
applications of radiation constant. With consequent variation of thermophoresis parameter between 
0.1 to 0.8 , nanoparticles volume fraction and temperature distribution increases. It is also noted that 
the increase in thermophoresis parameter and Brownian parameter from 0.1 to 0.8 , nanoparticles 
volume fraction decreases while temperature distribution increases.

List of symbols
u	� Velocity component in x direction
v	� Velocity component in y direction
T	� Temperature
T∞	� Constant free stream temperature
υ	� Kinematic viscosity
(ρc)p	� Effective heat capacity of nanoparticles
(ρc)f 	� Heat capacity of the base fluid
N	� Nanoparticle volume fraction
DB	� Brownian diffusion coefficient
DT	� Thermophoresis diffusion coefficients
U 	� Shrinking velocity
qW (x)	� Variable surface heat flux
UO	� Reference velocity
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TO	� Temperature flux
qWo	� Heat flux
(ρc)P
(ρc)f

	� Ratio of effective heat capacities of nanoparticle to nanofluid
qnpo	� Surface nanoparticle flux
No	� Nanoparticle fraction
V(x)	� Velocity at the wall
vO	� Constant
B	� Variable magnetic field
BO	� Constant
k	� Thermal diffusivity
Pr	� Prandtl number
Le	� Lewis number
Rd	� Radiation parameter
qnp(x)	� Variable surface nanoparticle flux

Greek letters
α	� Thermal conductivity
β	� Coefficient of thermal expansion
σ	� Electrical conductivity
ρf 	� Base fluid’s density
�1	� Relaxation time

Study of nano-materials configured by shrinking/stretching sheet with different parameters is observed rapidly 
in past few decades. The interest of scholars and scientists to study the field of nanofluid is increased due to vast 
applications of nanofluid in the industrial and contemporary technology. For the first time the boundary layer 
flow over plane stretching sheet was analysed by Crane1, the transfer of heat and mass for different conditions 
was than included as an extension in the work of Crane by Gupta et al.2, Chen and Char3 and Dutta and co-
investigators4. In the investigations of these scholars mentioned above the occurrence of flow of fluid was caused 
due to stretching velocity produced by shrinking sheet. As industries and metallurgy are the need of an hour, the 
magneto hydrodynamics and transfer of heat in boundary layer flow is the focus of study for different researchers. 
These factors are also studied for different applications in engineering fields such as extraction of geothermal 
energy, growing of crystals, planting the power houses, study of plasma, production of papers and generators 
with MHD phenomena. For the history of study of stretching sheet the first name that comes ahead is Sakiadis5–7. 
He presented the flow of fluid produced due to stretching surface. The flow due to nonlinear and linear stretch-
ing surface became the focus that was investigated by Zheng8, Zheng et al.9, Zheng et al.10. The exponentially 
stretching sheet became the focus of study for the different researchers. Sajid and Hayat11, Magyari and Keller12 
analysed the thermal radiation over exponentially stretching surface, which opened a new gateway for different 
researcher. Mukhophadhyay13,14 investigated the thermally stratified and porous medium in an exponentially 
stretching surface. This type of flow was then analysed for different type of fluids by different researchers15,16. 
The effects as viscous dissipation, double diffusion and mixed convection for such flow over stretching surface 
were then analysed by Patil et al.17. The references from18–26 reflect the study of transfer and flow of heat in a 
viscid and non-viscous fluid for exponentially stretching sheet. The distinct outcomes of non-Newtonian mate-
rials presented the platform to researches recently. This is due to the vast usage of non-Newtonian fluids in the 
industrial areas. Types of non-Newtonian fluid are categorized in integral, differential and rate types. Maxwell 
fluids are rate type non-Newtonian, non-viscid fluid. The exact solutions for flow of Maxwell fluid is analysed by 
Fetecau27. The Maxwell fluid mechanism in porous space has beenanalyzed by Wang and Hayat28. The Maxwell 
fluid flow in unsteady space was directed by Fetecau et al.29. A 2-D MHD Maxwell fluid flow was analysed by 
Hayat et al.30. As predicted from above study that the flow simulations against mass/heat transportation over per-
meable medium or sheet has gained attraction of different investigators with fact of its vast industrial applications 
and in technology. To increase the rate of transfer of heat on surface the porous material is mainly considered. 
Nanotechnology became of eyes of researchers in few past years. It has become a new exciting frontier in the 
fields of technology. It is because the applications exerted from the nanofluids. Nanofluid is a fluid containing a 
base fluid with Nano size particles that helps to increases the thermal conductivity of various solids and liquids. 
Nano fluids shows great thermo physical properties such as thermal diffusion, thermal conductivity, it hence the 
rate of transfer of heat, reduces viscosity and much more. But the key feature of the nanofluid is superior thermal 
conductivity, which reduces many problems. Nano-fluids offer us quite efficient and greener solution to our 
current technological problems. Nano-fluid is the next possible replacement for enhancement and effectiveness 
of technology. The outcomes for thermodiffusion and Brownian aspects in nanofluids with the heat and mass 
fluxes were represented by Mukhphadyay and Ghosh31. Bachok et al.32 studied the transfer of heat of nanofluid 
over porous stretching and shrinking sheet and represented the dual solutions for them. MHD stagnation point 
unsteady flow and transfer of heat of nanofluids on shrinking and stretching sheet were analysed by Khalili 
et al.33. Sreedevi et al.34 presented the analysis of single and multi-wall nano tubes over vertical cone under the 
inducement of magnetic field. In another investigation Sreedevi et al.35 discussed the hat and mass transfer of 
the flow of nano fluid over a cone saturated in porous medium to present the effects pf suction and injection 
phenomenon. Sreedevi and Reddy36 studied the flow of hydromagnetic nano-Maxwell fluid sandwiched between 
two rotating stretchable disks. Under the assumptions of boundary layer approximation the flow of nano fluid 
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over a cone with chemical reaction was studied by Reddy et al.37. Recently, many investigation38–42 were made in 
order to resent the analysis of nanofluid in a different physical situations.

Our present work is about the study of the transfer of heat and flow of Maxwell nanofluids with heat and mass 
fluxes over porous exponentially shrinking sheet with MHD and thermal radiation effects. Going deep in the 
literature of research we found out that Maxwell non-Newtonian fluids are not discussed and analysed before 
on the shrinking sheet.It is difficult to handle the solutions of Maxwell non-Newtonian fluids with shrinking 
effect of sheet. This is why it is not analysed till now. The purpose of the present study is to provide mathematical 
modelling, numerical simulation and analysis of the existence of the dual solution of the flow of Maxwell nano-
fluid over a shrinking sheet under the inducement of magnetic field.

Problem formulation
Consider a two-dimensional, two-directional flow of a Maxwell nanofluid which is electrically conducting 
amassed incompressible over an exponentially shrinking sheet. The magnetic field consequences are accounted 
perpendicular to the flow zone as shown in Fig. 1. The assumptions of low magnetic Reynolds number lead to 
abandon of induced magnetic features. The flow is intended in x-direction while y-axis is considered normally.

The steady boundary layer incompressible viscous MHD Maxwell nanofluid flow is studied over exponen-
tially shrinking sheet with mass and heat fluxes. The assumptions under considerations lead to following flow 
equations:

where u and v are velocity components of our considered nano-Maxwell fluid flow along x and y directions 
respectively, υ symbolized the kinematic viscosity, �1 is the relaxation time, σ is the factor showing that our fluid 
is electrically conducting, DB Browniandiffusion,B exhibit variable magnetic field,N nanoparticles volume frac-
tion,BO is a constant, collectively σB

2
0

ρf

[

�v ∂u
∂y + u

]

 is the Lorentz force,ρf  base fluid density, α exhibit thermal 
conductivity, (ρc)p is effective heat capacity of nanoparticles, (ρc)f   is nanoparticle volume fraction, T exhibits 
temperature, T∞ is a constant free stream temperature and DT is thermophoretic diffusion.

For the radiation heat flux, qr is used in Eq. (3),qr via Rosseland approximation is also written as qr = − 4σ ∗

3k∗
∂T4

∂y  . 
Here, σ ∗ is a Stephen Boltzmann constant and k∗ is mean absorption coefficient. Within the viscous fluid flow 
the less temperature gradient is assumed which expresses T4 as a linear function of temperature. Using Taylor’s 
series T4 is expanded about a free stream temperature T∞ as shown below.

(1)
∂u

∂x
+

∂v

∂y
= 0,

(2)u
∂u

∂x
+ v

∂u

∂y
= υ

∂2u

∂y2
−�1

[

u2
∂2u

∂x2
+ v2

∂2u

∂y2
+ 2uv

∂2u

∂x∂y

]

−
σB20
ρf

[

�1v
∂u

∂y
+ u

]

,

(3)u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

(ρc)P
(ρc)f

[

DB
∂N

∂y

∂T

∂y
+

DT

T∞

(

∂T

∂Y

)2
]

−
1

ρcp

∂qr

∂y
,

(4)u
∂N

∂x
+ v

∂N

∂y
= DB

∂2N

∂y2
+

DT

T∞

∂2T

∂y2
,

(5)T4 = T∞
4 + 4T∞

3(T − T∞)+ 6T∞
2(T − T∞)2 + . . .

(6)∴
∂qr
∂y = − 16σ ∗

3k∗ T∞
3 ∂2T
∂y2

.

Figure 1.   Schematic flow diagram.
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The subjected boundary conditions are

Here Uw = −U0e
x/L is shrinking velocity,UO is a reference velocity,V(x) = −voe

x/2L is a shrinking velocity 
at the wall, where vO is a constant.

Let us introduce the similarity transformation

where ψ and η are being stream function and similarity variable, respectively. After using Eq. (8) in Eqs. (1)-(4), 
we get

Here Eq. (1) is satisfied identically and the parameters Pr, Le,M,Nb,Nt , �,Rd, Sc, γ involved in the governing 
equations are Prandtl number, Lewis number, Hartmann number, Brownian motion and thermophoresis param-
eters, Deborah number, Radiation parameter, Schmidt number, Biot number respectively defined as followed

and M2 = σLBo
2/ρUOe

x
L is magnetic parameter. The developed boundary conditions are:

Here S = −vo/
√
νUw/2L is suction and injection parameter. When S < 0 , it indicates mass injection and 

when S > 0 , it indicates mass suction. The local Sherwood, wall shear forceand local Nusselt numbers are com-
municated below to indicate heat and mass transfer

Here ji , τi , qi are mass, momentum and heat fluxes from the surface. They are defined as

In the dimensionless form, Eq. (16) becomes

where Rex = Uwx
ν

 is the local Reynolds number.

Numerical simulation
The numerical procedure based on Runge–Kutta fourth order scheme with appliances of secant shooting scheme 
is employed in order to present the numerical simulations. The secant shooting approach is preferable over simple 
shooting procedure due to fact that simple shooting technique involves the derivative of the system and then 
approximates the missing condition while in the secant shooting method, missing condition can be approximated 
without finding the derivative of the whole system. With high range accuracy and convergence, the secant shoot-
ing scheme is the most effective approach for such types of nonlinear problems. This scheme is proceeded as:

Equations (10)–(12) are altered into first order system by adjusting f = f1 , θ = f4 and φ = f6 and we have
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and boundary condition becomes

The increment in L make the convergence procedure more effective and appropriate. Assuming the missing 
initial conditions as follows

	 (i)	 Integrating the Eqs. (19)–(25) subject to conditions given in (26) and (28) as an initial value system by 
providing the initial guess to mi say mi

(0) and mi
(1) where i = 1, 2, 3.

	 (ii)	 Approximate the mi by using the secant method defined by

	 (iii)	 Repeat the steps (iii) and (iv) until significance convergence is achieved.
	 (iv)	 Simulations are performed with MATLAB algorithm.

Result and discussion
We will discuss the non-singular solutions for different values of participated parameters for f ′(η), θ(η) and φ(η) 
where f ′(η) represents velocity profile, θ(η) shows temperature distribution and φ(η) shows concentration. Here, 
we will deal with the gradient of velocity at wall, temperature near wall and nanofluid concentration at surface 
wall for distinct variation of participated parameters. Our presented graphs given in Figs. 2, 3, 4, 5, 6, 7, 8, 9 and 
10 will presents all these facts mentioned above.

Figure 2a–c presents the relative graph showing the variation of the suction/blowing parameter effects on dif-
ferent values of velocity f ′(η) , temperature θ(η) and concentration φ(η) fields. In Fig. 2a, it is noted that velocity 
f
′
(η) increases and decline in first and second zone of solutions, respectively. The observations regarding the 

nature of boundary layer revel that boundary layer is thinner and thicker in first and second branch respectively. 
Figure 3a–c signified the effects of suction/blowing parameter on temperature θ(η) and concentration φ(η) , which 
shows identical behaviour. It reveals that when suction parameter S is increased, θ(η) and φ(η) both reduces in 
both zones of solutions. Thus vorticity diffusion is confined when thickness of momentum boundary layer is 
decreased. This happens when suction fluid appeared to surface. Figure 3 illustrates the effects of different values 
of relaxation parameter � on different values of velocity, temperature and concentrationfields. In Fig. 3a, it is 
observed that by increasing relaxation parameter � , the velocity f ′(η) decreases and increases for first and second 
branch of solution respectively. Figure 3b indicates that by increasing relaxation parameter � , temperature θ(η) 
profile increases and depressed in first zone and second branch of solution respectively. Similarly by increasing 
relaxation parameter � , concentration φ(η) profile get increasing curve in first zone but declines in the second 
zone of solution. Figure 4a,b demonstrate effects of different values of Prandtl number Pr on temperature θ(η) 
and concentration φ(η) . These figures shows that with increase in Pr temperature and concentration decreases 
remarkably. As Pr is ratio of the viscous diffusion rate and thermal diffusion rate. Thermal diffusivity becomes 
weaker with the increase in Pr , consequently thermalboundary layer thickness dispirited in this phenomenon. 
It is remarked that nanoparticles volume fraction get slower when Prandtl number is increased. The outcomes 
for θ(η) and φ(η) due to Lewis number Le are claimed in Fig. 5a,b. Figure 5a analysed that by increases in Lewis 
number Le , temperature θ(η) decreased for both branch solutions, in case of, nanoparticle volume fraction φ(η) 
decreases remarkably for both branches of solution. As Lewis number is the ratio between thermal diffusivity to 
mass diffusivity or it can be expressed as ratio between Prandtl and Smith number, so nanoparticles increases, 
as shown in Fig. 5b.This figure also shows a weaker nanoparticles concentration because of lower Brownian dif-
fusion co-efficient by the increase in Lewis number. This is because Lewis number is associated with Brownian 
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diffusion coefficient. Figure 6 demonstrate effects of different values of Hartmann number M on different values 
of f ′(η) , θ(η) and φ(η) . In Fig. 6a reveals that by increasing Hartmann number M , the velocity f ′(η) increases 
and reduces in first and second zones, respectively. Figure 6b indicates that by increasing Hartmann number M , 
temperature θ(η) profile decreases and increases for first and second branch of solution respectively.

Similarly by increasing Hartmann number M , concentration φ(η) profile decreases in first zone of solution 
and attained at maximum level in second solution branch. Figure 7 demonstrate effects of different values of 
radiation parameters Rd on θ(η) and φ(η) . It is noted that by the increase in radiation parameter Rd , both tem-
perature θ(η) and concentration φ(η) are increased.As we have Nt thermophoresis parameter which is ratio of 
diffusion of nanoparticles to the thermal diffusion on nanofluids. The convenient of thermophoresis parameter 
Nt on nanofluid temperature θ(η) and concentration φ(η) is proceeded in Fig. 8. The enhanced change in θ(η) 
and φ(η) is reflected with thermophoresis parameter (Fig. 8a,b). The thermophoretic force express the develop-
ment of particles movement from heated to cooler zone which enhanced with Nt , and subsequently nanoparticles 
volume fraction increased and the temperature between fluid and the sheet is also increased as the result, thermal 
boundary layer is also increased.

Figure 9a illustrates effects of variation of Brownian motion parameter Nb on temperature. It is noticed that 
increases in temperature for both solutions zones as Brownian parameter is increased. The graphical outcomes 
observed in Fig. 9b claim the impact of Brownian constant Nb on φ(η) . With the increases in Brownian motion 
parameter Nb the thermal boundary layer thickness increased. But in case of nanoparticle volume fraction φ(η) 
we noticed opposite effects. With change in Nb , φ(η)  decreases. Nanoparticles produces the Brownian motion. 
So Brownian motion is clearly effected by increasing Nb . For various values of suction parameters S , skin friction 
co-efficient, Nusselt number and Sherwood number are presented in Fig. 10. It gives clear picture of existence 
of dual solutions in all the graphs. For the first branch in Fig. 10a, with the increase in suction parameter S, skin 
friction co-efficient increases. Whereas for the second solution opposite nature of skin friction has been noticed. 
Similarly in Fig. 10b,c with the increase in suction parameter S , Nusselt number and Sherwood number increases 
in the first branch of solution whereas it is opposite for second branch of solution.

Figure 2.   Outcomes of S on (a) velocity, (b) temperature and (c) nanoparticles volume fraction.
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Conclusions
In the presence of heat and mass fluxes, the steady boundary layer flow and heat transfer of Maxwell nanofluid 
with MHD and thermal radiation effects is studied over an exponentially contracting porous sheet. The foremost 
objectives of this investigation are presented below:

•	 As compared to linear shrinking sheet, exponentially shrinking sheet generates greater vorticity.

Figure 3.   Outcomes of � on (a) velocity, (b) temperature and (c) nanoparticles volume fraction.

Figure 4.   Outcomes of Pr on (a) temperature and (b) nanoparticles volume fraction.
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•	 With increase in suction parameter, diffusion of vorticity stops and transfer of heat from surface to fluid is 
increased.

•	 The decrease in nanoparticles volume fraction and temperature is noted with the increase in Lewis number.
•	 With the increase in Prandtl number, thermal boundary layer thickness, nanoparticles volume fraction and 

temperature are declined.
•	 Increasing Brownian motion parameter acts differently for temperature and nanoparticles volume fraction. 

Nanoparticles volume fraction decreases and temperature increases. Temperature at the wall also increases 

Figure 5.   Outcomes of Le on (a) temperature and (b) nanoparticles volume fraction.

Figure 6.   Outcomes of M on (a) velocity, (b) temperature and (c) nanoparticles volume fraction.
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with the increase in Brownian motion parameter. With increase in thermophoresis parameter, nanoparticles 
volume fraction and temperature both increases. The nanofluid concentration and temperature get improved 
in this situation.

•	 With the increase in relaxation parameter, nanoparticles volume fraction and temperature distribution 
increases whereas velocity profile decreases.

Figure 7.   Outcomes of Rd on (a) temperature and (b) nanoparticles volume fraction.

Figure 8.   Outcomes of Nt on (a) temperature and (b) nanoparticles volume fraction.

Figure 9.   Outcomes of Nb on (a) temperature and (b) nanoparticles volume fraction.



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15944  | https://doi.org/10.1038/s41598-021-95548-9

www.nature.com/scientificreports/

•	 With the increase in Radiation parameter, nanoparticles volume fraction and temperature distribution 
increases.
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