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Abstract.

The campaign to eradicate dracunculiasis (Guinea worm [GW] disease) and its causative pathogen Dra-

cunculus medinensis (GW) in Chad is challenged by infections in domestic dogs, which far outnumber the dwindling
number of human infections. We present an agent-based simulation that models transmission of GW between a shared
water source and a large population of dogs. The simulation incorporates various potential factors driving the infections
including external factors and two currently used interventions, namely, tethering and larvicide water treatments. By
defining and estimating infectivity parameters and seasonality factors, we test the simulation model on scenarios where
seasonal patterns of dog infections could be driven by the parasite’s life cycle alone or with environmental factors (e.g.,
temperature and rainfall) that could also affect human or dog behaviors (e.g., fishing versus farming seasons). We show
that the best-fitting model includes external factors in addition to the pathogen’s life cycle. From the simulation, we
estimate that the basic reproductive number, Ry, is approximately 2.0; our results also show that an infected dog can
transmit the infection to 3.6 other dogs, on average, during the month of peak infectivity (April). The simulation results shed
light on the transmission dynamics of GWs to dogs and lay the groundwork for reducing the number of infections and

eventually interrupting transmission of GW.

INTRODUCTION

The campaign to eradicate Guinea worm (GW) disease in
humans has made much progress since 1986 when the annual
burden of the disease in 21 countries (19 countries of the Af-
rican Sahel, plus India and Pakistan in Asia) was estimated to
be 3.5 million cases. During 2018, only 28 human cases were
reported worldwide: 17 from Chad, 10 from South Sudan, and
one from Angola. However, Chad also reported 1,040 do-
mestic dogs with GW infections during 2018."

Dracunculus medinensis, more commonly referred to as
GW, is a parasitic nematode. The GW’s definitive host (e.g.,
humans and dogs) becomes infected via ingestion of fresh
water copepods (the intermediate host) harboring infective
GW third-stage larvae, referred to as L3s, for example, con-
sumed through drinking water or improperly cooked/cured
aquatic animals harboring L3s in their somatic tissue.T After
mating in the definitive host, a gravid female worm emerges
from the host’s skin after about a year. While emerging, if the
worm is submerged in a source of water, the worm releases
tens of thousands of first-stage larvae, some of which are
ingested by copepods, thus restarting the life cycle.

Human cases of GW disease were confirmed in Chad during
2010, 10 years after the last reported human infection. At the
request of Chad’s government, the Carter Center supported
the Chad Guinea Worm Eradication Program (GWEPY) to be
relaunched in April 2012, including an active village-based
surveillance system in about 700 villages and the investigation
of reports of alleged cases for information leading to confir-
mation of cases of GW disease. Whereas human infections
remained low (less than 20 per year), dog infections doubled
annually, reaching 1,011 cases across 271 villages in 2016. By
the end of 2017, the Chad GWEP was monitoring human and
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T This refers to either paratenic or transport hosts, which may play an
important role in Guinea worm transmission in Chadian dogs.?™

T https://www.cartercenter.org/health/guinea_worm/index.html.
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animal GW infections in 1,860 villages.® To date, infections in
dogs are not fully understood.

We develop a detailed simulation model to capture the dy-
namics of GW transmission in dogs, considering the GW life
cycle, seasonality, and interventions. Computer simulation
models have been used to understand the epidemiology of
diseases such as influenza,”® HIV/AIDS,® and malaria,'®"
among others. Few publications include mathematical models
on GW infections; these are mostly deterministic compart-
mental models, do not always use empirical data for calibra-
tion and validation'?~'* or consider only human hosts, and do
not capture the dynamics of transmission in dogs, which is
paramount in the current epidemic in Chad."®"”

The model by Ghosh et al.'* includes a representation of a dog
population and accounts for annual infection rates for both dogs
and humans. Their results suggest that dogs are more important for
the continued propagation of GWs in Chad than humans. However,
their model does not capture the significant seasonal dynamics of
GW transmission. In this article, we present a stochastic agent-
based simulation model for GW transmission in dogs, incorporating
seasonality and interventions into the model.

Historical data indicate seasonality for GW infections, n-
cluding in the recent cases of Chad dogs: it has been observed
that peak GW transmission in humans occurs during the rainy
season (May to August) in the Sahelian zone, whereas peak
transmission occurs during the dry season (September to Jan-
uary) in the humid savanna.2®2! Although infection data and
expert field experience support these observations for human
infections, the literature connecting environment and trans-
mission is outdated and neither focuses on Chad nor dog
behaviors.?'§ Even mathematical models that include a sea-
sonality component do so in an “arbitrary” fashion, that is,
without specific environmental data. Environment-driven sea-
sonality has been found to be critical to many diseases, including
influenza,? malaria,2® and cholera.2* We hypothesize that GW
transmission is driven in large part by environmental patterns,
which directly or indirectly affects the behaviors of humans and
dogs as well as the life cycle or availability of the parasite or other

18,19 i

§ Itis notable that dog behaviors are associated with human behaviors
(e.g., farming and fishing), but to what degree is unclear.
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Ficure 1. Data used in the simulation model. (A) averages of 2013-2017 environmental data. (B) worm emergence from 2014 to 2017 used for
initialization and parameter calibration. This figure appears in color at www.ajtmh.org.
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Ficure 2. Relevant time durations for Guinea worm life cycle in the model.
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Ficure 3. Simulation represents dogs, worms, and a single water
source. Because dogs interact with the water source, they acquire
infection with some probability (A), and dogs with emerging worms
increase the infectivity of the water source (B). This figure appears in
color at www.ajtmh.org.

hosts (e.g., intermediate or paratenic). We calibrate our model
using data from the Chad GWEP and monthly environmental
data in Chad, and we provide with plausible explanations for
observed patterns in dog infections.

Overall, our model provides a general framework for
studying GW transmission in dogs; it can be used to test
various hypothetical scenarios, contributes to the un-
derstanding of the disease, and lays the groundwork for future
studies, including, most pressingly, a formal assessment and
prioritization of intervention strategies.

MATERIALS AND METHODS

Data. Environmental data on daily precipitation and tem-
perature measurements were collected from 17 weather sta-
tions in Chad.2®> We used the average monthly rainfall and
temperature over the years 2013-2017; both are illustrated in
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Figure 1A (see Supplemental Appendix Section 1.1 for more
details). Note that the rainfall peaks in August, and the tem-
perature distribution is bimodal with a “heat wave” before and
after the rainy season.

Infection data were provided by the Chad GWEP, including the
number of worms emerging from dogs per month and the number
of dogs with an emerging worm per month for the years
2014-2017; the former is illustrated in Figure 1B. It is observed that
dog infections consistently peak in May or June, that is, before the
peak of the rainy season in Chad. In addition, the Chad GWEP
reported data for intervention coverage: the proportion of infected
dogs contained via tethering and the proportion of Abate applica-
tions made in response to water contamination events per year
during years 2014-2017.28

Simulation model. To estimate the prevalence of dog
infections over time and to understand transmission dynamics,
we developed a stochastic agent-based simulation. Unlike
a compartmental model, such as a susceptible-infected-
susceptible model, the stochastic agent-based simulation
model tracks the activities, behaviors, and health status of par-
ticipants (e.g., dogs) in the system at the individual level, cap-
turing variations and incorporating complex interactions with
transmission sources, interventions, and/or treatments.?”2® For
example, more than one worm may be consumed by oremerge
from a dog, separated in time, representing multiple, over-
lapping infections. In addition, an agent-based model provides
a framework for future analyses with even greater complexity.

The model simulates the life cycle of GWs, including pertinent
time periods (summarized in Figure 2), along with daily interactions
between the dogs, worms, and water source over multiple years.
The model is illustrated in Figure 3; see Supplemental Appendix
Section 1 for details.

Intervention methods. The simulation incorporates two
existing/current interventions, 1) and 2) given as follows,
and a third generalized intervention, 3) (see Supplemental
Appendix Section 1.6 for details).

1. Tethering: Dogs are kept on a leash for 30 days after the GW
begins emergence to prevent the dog from spreading GW
larva and are provided safe food and water. In the simula-
tion, dogs are tethered with some probability, and we
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Ficure 4. Environmental factor scenarios plotted for comparison. EF-S0 is constant. EF-S1 is the normalized average monthly temperature. EF-
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http://www.ajtmh.org
http://www.ajtmh.org

AGENT-BASED SIMULATION FOR GUINEA WORM DISEASE IN DOGS

EFS0: Emerging Worms

EFS1: Emerging Worms
4004 - Empirical 4004 - Empirical
Simulation Simulation
300 300
200 200
1004 1004
o] A H o] -
g & £ & & & £ £ § & £ 8§ & ¥ £ 9 g & £ & £ & £ £ § & £ & & & £ 8
¥ 8 8 8 B 3 B8 B B 8 8 8 B 8 ¥ B ¥ 8 8 8 B 3 B B B 8 8 8 B 8 B8 B
N = > = & o @ o > > e > 3 3 N 3 N = > = & o @ o > > e > 3 3 N 3
EFS2: Emerging Worms EFS3: Emerging Worms
4004 - Empirical 4004 - Empirical
Simulation

3004

2004

1001

Simulation

3004

2004

1004

y d
04 B N B 041 T :
< & o o < o o o
g & £ § § & £ § § & £ 8 § & g § g & € & § & £ § § & £ 8§ § & g §
R 8 B B ® ® B 8 B B 3 8 B 3 B B 2 2 B B ® ® 8 8 B B 3 8 B 3 B B
2 2 2 ¢ g 2 2 g g g 2 g g g 2 2 2 2 2 g g 2 2 g g g 2 g g <9 2 2
IS I B IS o o a o > > o > N N ~ N IS IS = IS o o o o > > o > N N ~ J
EFS4: Emerging Worms
------ Empirical
4001 P :
Simulation
300

2001

1004

SL021dy -
shozine 4

<
&
5
R
3
o

vioguer 4
102y -
viozinr +
102100 -

SL0ZRO

9loguer 4

91021dy 4
9Lozine 4
910210
L10zuer 4
£1021dy -
zrozine 4
210200 4

Ficure 5. Simulated number of worms emerging from dogs for years 2014-2017, calibrated with each of the (fixed) environmental factor
scenarios. Error bars indicate 95% simulated intervals at each peak. (Simulated number of dogs with emerging worms is given in Supplemental

Appendix Section 3.1.) This figure appears in color at www.ajtmh.org.

assume that tethered dogs do not acquire new infections
during this time.*”

**In the field, tethered dogs maintain a small risk of contracting Guinea
worms because they are either not properly tethered or not provided
safe water and food during this period. We examine this imperfect
intervention under greater scrutiny in future work.

2. Abate treatment: An organophosphate larvicide teme-

phos (ABATE Larvicide, BASF [Ludwigshafen, Germany],
or just “Abate”) paralyzes, thus eventually killing, cope-
pods in the water; once applied, it is effective for up to
30 days. In the simulation, this intervention has two ef-
fects: it eliminates a proportion of the number of infected
copepods (and the corresponding L3s) in the water
source, thereby reducing infectivity of the water source,
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and it protects a proportion of the dogs from consuming
L3s, where the proportion of protected dogs depends on
the reported usage of Abate.

3. Other interventions: This generic category represents the
combined benefits of various efforts to prevent dogs from
consuming L3s, including public education efforts, providing
safe water to dogs, and preventing dogs from eating fish entrails
during food preparation (usually by burying); because the cov-
erage level is unknown, its parameter values (one per year) are
calibrated along with other parameters in the simulation.

Factors driving seasonality. Dog infections exhibit sea-
sonality (Figure 1B), which could be directly because of envi-
ronmental factors (EFs) or indirectly because of modified
human or dog behaviors. In the simulation, we include 12 pa-
rameters (1 per month), which we call the EF coefficients. A
lower EF coefficient in a given month results in alower infectivity
of the water source in the simulation. We test the following five
hypothetical EF scenarios, as depicted in Figure 4 (see
Supplemental Appendix Section 1.8 for details, including ex-
act formulas). Note that we test several different hypothetical
scenarios to cover a wide variety of potential explanations.

1. EF-S0: External seasonality has no effect on infectivity, that is,
seasonality is driven solely by the life cycle of GWs.

2. EF-S1: Infectivity increases as temperature increases, for
example, because of the higher likelihood of dogs to drink
from potentially infected water sources or the increase in
the availability of hosts (e.g., copepods).

3. EF-S2: Infectivity increases as rainfall increases, which may
be related to the availability of hosts.

4. EF-S3: Infectivity decreases as annual rainfall accumulates,
for example, because of the decrease in the density of L3s in
water sources or change in the availability of other hosts,
which is supported by data in Hunter.?®

5. EF-S4: Infectivity is greatest before the rainy season and
when temperature is high, which combines EF-S1 and EF-
S3. The water sources are likely to be most infective in the
months before the peak of the rainy season (before water
bodies have gotten too large), and dogs are more likely to
drink infected water after the largest heat wave, which is
consistent with discussions in Watts?'t1 and Hunter.?°+1

Parameter calibration. We compute the error for the
number of worms emerging per month and the number of
dogs with emerging worms per month as the difference be-
tween the simulation outcome and the empirical data. We
calibrate the model parameters by minimizing weighted mean
square error (WMSE). During calibration, we penalize un-
derestimation twice more than overestimation because field

11 “In other villages [in Ghana], water can be obtained from perennial
ponds and maximum disease transmission occurs when the water
level is lowest, at the end of the dry season, and continues until the
water level rises in the early wet season.” (Watts?')

1t “As ponds shrinkin along dry season, use-rates escalate in the few
remaining water sources and water contact by infective carriers (in
endemic zones) produces greater rates of infection of the water fleas.
In addition, as ponds shrink in volume, in the dry season, water flea
densities increase commensurably. . . Accordingly, pond users are not
only at greater risk to dracunculiasis, they also become unwitting
collaborators by consuming greater volumes of water.” (Hunter®®)

TaBLE 1

Average WMSE is given for the calibrated simulation model with either
the EF distribution fixed (second column) or calibrated (third column)

Fixed or initial scenario Fixed EF Calibrated EF
EF-SO0 (none) 1,069.88 1,068.87
EF-S1 (temperature) 620.35* 342.45*
EF-S2 (rainfall) 1,259.65 360.95*
EF-S3 (cumulative rainfall) 538.52* 426.53
EF-S4 (temperature and rainfall) 444.68* 352.76*

EF = environmental factor; WMSE = weighted mean square error. The best-performing
scenario (i.e., least WMSE) is indicated by double asterisks (**), and the next best scenarios are
indicated by single asterisks (*).

experts believe that empirical data are more likely to be
underreported than overreported.

Additional analyses. L3 burden analysis. Intuitively, when
there are few L3s in a water source, EFs can have limited
impact, whereas when there are many L3s, it has the potential
for greater effect on total infectivity. Thus, for the best-
performing EFs, we record the L3 burden in the water per
month over multiple replications of the simulation, which al-
lows us to compare the EFs in a more meaningful way.

Ro analysis. We use the simulation model to estimate the
basic reproductive number, often denoted by Ry, which is
defined as the average number of secondary infections pro-
duced by an infected individual in an otherwise susceptible host
population.*® We do this by parametrizing the basic reproductive
number with respect to the month that the worm emerges,
denoted by Ro(m) for m=1, 2,...,12. For a given month m,
Ro(m) is computed by modeling a population of 800 dogs (ap-
proximately the largest dog population within a village with a
history of GW infections) to which is introduced a single infected
dog, whose worm emerges in the mth month. The outcome
measure is the number of dogs that have acquired an infection by
the following year. The simulation is used without interventions,
and the average over 100 replications is taken as Ry (m) for each
value of m. We finally estimate R as the sum of monthly Ro(m)
values weighted by the relative L3 burden per month.

RESULTS

The first analysis calibrates the infectivity parameters while
keeping the EFs fixed to one of the five scenarios (Figure 4).
The average WMSE for each scenario is summarized in the
first column of Table 1. EF-S4 (combined rainfall and tem-
perature) scenario resulted in the best fit (lowest WMSE). EF-
S0 had the worst fit, with WMSE more than twice that of EF-S4.
Figure 5 illustrates the fit of all five models by comparing the
simulated number of worms emerging from dogs with the
corresponding empirical data.§§

The second analysis calibrates both the infectivity parameters
and the EF distribution when it is initialized to one of the five sce-
narios (Figure 4). The average WMSE for each scenario is sum-
marized in the second column of Table 1. The models with the best
fit according to WMSE resulted from the EF-S1 (temperature), EF-
S2 (rainfall), and EF-S4 (combined) scenarios. Figure 6 shows the
best fit model with respect to the number of emerging worms and
the number of dogs with emergent worms. Calibrated EF distri-
butions can be found in the Supplemental Appendix Section 3.1.

§§ The comparison between simulated number of dogs with emerging
worms and the associated empirical data is included in Supplemental
Appendix Section 3.1.
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Ficure 6. Best model when calibrating environmental factor (EF) distribution (initialized with EF-S1). The simulated number of worms emerging
from dogs for 2014-2017 is shown in (A), and the simulated number of dogs with emerging worms is shown in (B). Error bars indicate 95% simulated

intervals at each peak. This figure appears in color at www.ajtmh.org.

Under both analyses, EF-S0 performs substantially worse
compared with all other EF scenarios. When EF scenarios are
fixed, scenarios EF-S1, -S3, and -S4 perform the best,
whereas after calibrating the distributions, scenarios EF-S1,
-S2, and -S4 perform the best.

After calibrating the EF distributions, we compare the final dis-
tributions over the period of greatest L3 burden in the water. The
relative L3 burden per month is reported in Figure 7 for the cali-
brated EF-S1, -S3, and -S4 coefficients. Using 10% of the relative
L3 burden as a threshold, we say the burden is “high” between
April and August and “low” in the winter months (September

through March, indicated by gray in Figure 7). The calibrated EF-
S1, -S8, and -S4 coefficients are most similar from April to August,
with high values in April tending to decrease until October.
Results of the Ro(m) analysis, when using the model with
best fit parameters (including calibrated EF), are illustrated in
Figure 8. As expected, the shape of the monthly Ry(m) dis-
tribution follows the shape of the EF. It is observed that
Ro(m) is usually less than one for the winter months (m=2, 9,
10, 11, and 12) and reaches a maximum of 3.6 in April;
however, individual replications reached as many as 10
secondary cases in April. We estimate the basic
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month resulting from EF-S4, which is greatest from April to August, peaking in June. This figure appears in color at www.ajtmh.org.

reproductive number as the weighted average of these
monthly values, weighted by monthly L3 burden, which
yields Ry =2.0032 ~ 2.

DISCUSSION

Our results indicate external seasonality factors are impor-
tant, in addition to the life cycle and incubation period of the

pathogen. Of the hypothetical EF scenarios, the best fitting is
EF-S4 (combined rainfall and temperature) followed by EF-S3
(cumulative rainfall) and EF-S1 (temperature). Through calibra-
tion of the EF distributions, three converged to a similar distri-
bution. Furthermore, during the months with the highest L3
burden (April to August), the best-performing EFs have high
infectivity in April and then steadily decrease. Possible inter-
pretations include that these scenarios capture changes in
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availability of shallow pools of water with greater density of
copepods or other fauna, life cycles of fauna driven by EFs, or
human and dog behaviors. For example, the seasonality of hu-
man transmission in West Africa is commonly associated with
agricultural, fishing, and/or migratory behaviors,?'° and it may
be the case that related dog behaviors during these activities
also increase the risk of infection.

We present an estimate for the basic reproductive number,
varying monthly, for GWs in dogs, which is about 2.0 on average,
with an average of 3.6 for a worm emerging in April. The variability
of the estimated Ry value across months is insightful, as many
villages in Chad do, in fact, experience a wide range of secondary
cases in their first year of dog infections. We note that the R, value
for dogs is not necessarily representative of the Ry value for hu-
mans because the transmission characteristics may differ. The Ry
analysis provides further evidence of the most important time pe-
riods for intervention, that is, April, in particular. This can be used to
target interventions based on timing or related activities.

Our simulation of GW infections, with only modest adjust-
ments to the parameters and EF distribution, can be generalized
to almost any time period or population of definitive hosts (e.g.,
most mammals). Currently, surveillance systems in place for
mammal infections besides dogs are limited. Understanding
dog and other mammal infections will be critically important for
program managers, especially because the WHO certification
for eradication now includes the absence of GWs in dogs.

Limitations. In 2018, the number of dog infections increased
to the largest magnitude (in sum and at peak) seen since 2015.
However, the simulation model, calibrated to the data from
years 2014-2017 and with 2017 intervention levels held con-
stant for 2018, predicted a decrease in the peak number of dog
infections after 2017. In talking with public health experts, the
difference is most likely due to increasing surveillance over time.
There may also be some discrepancies in reported intervention
levels and their real-world effectiveness.

By their nature, mathematical models and computer simula-
tions are simplified versions of the real-world phenomenon
based on a number of assumptions. For example, we used
seasonal environmental data (i.e., rainfall and temperature) as
a proxy for related systems (e.g., surface water) and behaviors
(e.g., fishing and farming) that are not well quantified. Despite
the simplifications, the simulation model captures a reason-
able representation of the natural transmission pathway(s) of
GWs in Chad dogs, as shown by the strong fit.

This research study also lays the groundwork for future work
onthe transmission of GWs. Although our sensitivity analysis on
multiple water sources (see Supplemental Appendix Section
3.4) showed consistency with seasonality and the qualitative
conclusions in this study, it would be useful to construct a full-
scale model with multiple water sources. In addition, this study
captures the interventions that were put in place in Chad, while
setting a foundation to study the effect of interventions differing
in type or level in future studies. Ultimately, this will allow re-
searchers and health experts to assess what interventions can
help promote the reduction or eradication of GW disease.

Received June 19, 2019. Accepted for publication July 10, 2020.
Published online September 8, 2020.
Note: Supplemental appendix sections appear at www.ajtmh.org.

Financial support: This study was supported by a grant from the Carter
Center. This research was also supported in part by the Harold R. and
Mary Anne Nash Junior Faculty Endowment Fund and the following

Georgia Tech benefactors: Wiliam W. George, Andrea Laliberte,
Joseph C. Mello, Richard “Rick” E., and Charlene Zalesky.

Disclosure: P. K. is the William W. George chair and professor in the
H. Milton Stewart School of Industrial and Systems Engineering at
the Georgia Institute of Technology. J. S. is the department head and
A. Doug Allison distinguished professor of the Fitts Department of
Industrial and Systems Engineering at North Carolina State Uni-
versity. P. K. and J. S. are the co-founders of the Center for Health
and Humanitarian Systems, one of the first interdisciplinary research
centers on the Georgia Tech campus.

Authors’ addresses: Tyler Perini, Pinar Keskinocak, and Zihao Li,
Georgia Institute of Technology, Atlanta, GA, E-mails: perinita@
gatech.edu, pinar@isye.gatech.edu, and zihaogt@gmail.com. Ernesto
Ruiz-Tiben and Adam Weiss, The Carter Center, Atlanta, GA, E-mails:
jlswann@ncsu.edu and adam.weiss@cartercenter.org. Julie Swann,
North Carolina State University, Raleigh, NC, E-mail: jlswann@
ncsu.edu.

This is an open-access article distributed under the terms of the
Creative Commons Attribution (CC-BY) License, which permits un-
restricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

REFERENCES

1. World Health Organization, 2019. Weekly epidemiological record,
2019, vol. 94, 20. Wkly Epidemiol Rec 94: 233-252.

2. Eberhard ML, Cleveland CA, Zirimwabagabo H, Yabsley MJ,
Quakou PT, Ruiz-Tiben E, 2016. Guinea worm (Dracunculus
medinensis) infection in a wild-caught frog, Chad. Emerg Infect
Dis 22: 1961-1962.

3. Eberhard ML, Yabsley MJ, Zirimwabagabo H, Bishop H,
Cleveland CA, Maerz JC, Bringolf R, Ruiz-Tiben E, 2016. Pos-
sible role of fish and frogs as paratenic hosts of Dracunculus
medinensis, Chad. Emerg Infect Dis 22: 1428-1430.

4. Cleveland CA, Eberhard ML, Thompson AT, Smith SJ,
Zirimwabagabo H, Bringolf R, Yabsley MJ, 2017. Possible
role of fish as transport hosts for Dracunculus spp. larvae.
Emerg Infect Dis 23: 1590.

5. Cleveland CA, Eberhard ML, Thompson AT, Garrett KB,
Swanepoel L, Zirimwabagabo H, Moundai T, Ouakou PT, Ruiz-
Tiben E, Yabsle MJ, 2019. A search for tiny dragons (Dra-
cunculus medinensis third-stage larvae) in aquatic animals in
Chad, Africa. Sci Rep 9: 375.

6. Eberhard ML et al., 2014. The peculiar epidemiology of dra-
cunculiasis in Chad. Am J Trop Med Hyg 90: 61-70.

7. Shi P, Keskinocak P, Swann JL, Lee BY, 2010. The impact of
mass gatherings and holiday traveling on the course of an
influenza pandemic: a computational model. BMC Public
Health 10: 778.

8. Shi P, Keskinocak P, Swann JL, Lee BY, 2010. Modelling sea-
sonality and viral mutation to predict the course of an influenza
pandemic. Epidemiol Infect 138: 1472-1481.

9. Escudero DJ, Lurie MN, Mayer KH, King M, Galea S, Friedman SR,
Marshall BDL, 2017. The risk of HIV transmission at each step
of the HIV care continuum among people who inject drugs: a
modeling study. BMC Public Health 17: 614.

10. Dudley HJ, Goenka A, Orellana CJ, Martonosi SE, 2016. Multi-
year optimization of malaria intervention: a mathematical
model. Malar J 15: 133.

11. McKenzie FE, Wong RC, Bossert WH, 1998. Discrete-event
simulation models of Plasmodium falciparum malaria. Simula-
tion 71: 250-261.

12. Adewole MO, Onifade AA, 2013. A mathematical model of dra-
cunculiasis epidemic and eradication. IOSR J Math 8: 48-56.

13. Netshikweta R, Garira W, 2017. A multiscale model for the world’s
first parasitic disease targeted for eradication: Guinea worm
disease. Comput Math Methods Med 2017: 1473287.

14. Ghosh |, Tiwari PK, Mandal S, Martcheva M, Chattopadhyay J,
2018. A mathematical study to control Guinea worm disease: a
case study on Chad. J Biol Dyn 12: 846-871.

15. Smith RJ, Cloutier P, Harrison J, Desforges A, 2012. A mathe-
matical model for the eradication of Guinea worm disease.
Understanding the Dynamics of Emerging and Re-emerging


http://www.ajtmh.org
mailto:perinita@gatech.edu
mailto:perinita@gatech.edu
mailto:pinar@isye.gatech.edu
mailto:zihaogt@gmail.com
mailto:jlswann@ncsu.edu
mailto:adam.weiss@cartercenter.org
mailto:jlswann@ncsu.edu
mailto:jlswann@ncsu.edu
https://creativecommons.org/licenses/by/4.0/

1950

16.

17.

18.

19.

20.

21.

22.

23.

Infectious Diseases Using Mathematical Models. Kerala, India:
Transworld Research Network, 133-156.

Link K, Victor D, 2012. Guinea Worm Disease (Dracunculiasis):
Opening a Mathematical Can of Worms. Bryn Mawr College
Doctoral dissertation, M.Sc. Thesis, Bryn Mawr, PA.

Losio AA, Mushayabasa S, 2018. Modeling the effects of spatial
heterogeneity and seasonality on Guinea worm disease trans-
mission. J Appl Math 2018: 5084687 .

Cairncross S, Muller R, Zagaria N, 2002. dracunculiasis (Guinea
worm disease) and the eradication initiative. Clin Microbiol Rev
15:223.

Muller R, 1971. Dracunculus and dracunculiasis. Adv Parasitol 9:
73-151.

World Health Organization, 2017. Dracunculiasis. Available at:
https://www.who.int/dracunculiasis/disease/disease_more/en/.
Accessed November 2019.

Watts S, 1994. Seasonality and dracunculiasis transmission: the
relevance for global eradication. Health Policy Plann 9:
279-287.

Tamerius JD, Shaman J, Alonso WJ, Bloom-Feshbach K, Uejio
CK, Comrie A, Viboud C, 2013. Environmental predictors of
seasonal influenza epidemics across temperate and tropical
climates. PLoS Pathog 9: e1003194.

Parham PE, Michael E, 2009. Modeling the effects of weather and
climate change on malaria transmission. Environ Health Per-
spect 118: 620-626.

24.

25.

26.

27.

28.

20.

30.

PERINI AND OTHERS

Pascual M, Bouma MJ, Dobson AP, 2002. Cholera and climate:
revisiting the quantitative evidence. Microbes Infect 4:
237-245.

NNDC Climate Data Online, 2018. Climate Data Online. Ashe-
ville, NC: National Centers for Environmental Information.
Available at: https://www7.ncdc.noaa.gov/CDO/cdoselect.cmd?
datasetabbv=GSOD. Accessed January 21, 2018.

CDC, 2018. Guinea Worm Wrap-Up #253. Atlanta, GA: The Carter
Center and the Centers for Disease Control and Prevention.
Available at: https://www.cartercenter.org/resources/pdfs/news/
health_publications/guinea_worm/wrap-up/253.pdf. Accessed
March 9, 2018.

Patlolla P, Gunupudi V, Mikler AR, Jacob RT, 2006. Agent-based
simulation tools in computational epidemiology. Lect Notes
Comput Sci 3473: 212-223.

Macal C, North M, 2014. Introductory Tutorial: Agent-Based
Modeling and Simulation. Paper presented at: Proceedings of
the 2014 Winter Simulation Conference, December 7-10, 2014
in Savannah, GA.

Hunter JM, 1997. Geographical patterns of Guinea worm in-
festation in Ghana: an historical contribution. Soc Sci Med 44:
103-122.

Anderson RM, May RM, 1991. Infectious Diseases of Humans:
Dynamics and Control. Oxford, United Kingdom: Oxford Uni-
versity Press.


https://www.who.int/dracunculiasis/disease/disease_more/en/
https://www7.ncdc.noaa.gov/CDO/cdoselect.cmd?datasetabbv=GSOD
https://www7.ncdc.noaa.gov/CDO/cdoselect.cmd?datasetabbv=GSOD
https://www.cartercenter.org/resources/pdfs/news/health_publications/guinea_worm/wrap-up/253.pdf
https://www.cartercenter.org/resources/pdfs/news/health_publications/guinea_worm/wrap-up/253.pdf

