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Abstract: The massive amount of available neurodata suggests the existence of a mathematical
backbone underlying neuronal oscillatory activities. For example, geometric constraints are powerful
enough to define cellular distribution and drive the embryonal development of the central nervous
system. We aim to elucidate whether underrated notions from geometry, topology, group theory
and category theory can assess neuronal issues and provide experimentally testable hypotheses. The
Monge’s theorem might contribute to our visual ability of depth perception and the brain connectome
can be tackled in terms of tunnelling nanotubes. The multisynaptic ascending fibers connecting the
peripheral receptors to the neocortical areas can be assessed in terms of knot theory/braid groups.
Presheaves from category theory permit the tackling of nervous phase spaces in terms of the theory of
infinity categories, highlighting an approach based on equivalence rather than equality. Further, the
physical concepts of soft-matter polymers and nematic colloids might shed new light on neurulation
in mammalian embryos. Hidden, unexpected multidisciplinary relationships can be found when
mathematics copes with neural phenomena, leading to novel answers for everlasting neuroscientific
questions. For instance, our framework leads to the conjecture that the development of the nervous
system might be correlated with the occurrence of local thermal changes in embryo–fetal tissues.

Keywords: monocular cue; microcolumn; infinity topoi; globular set; embryonal neurulation;
neurodata; geometry; topology; group theory; category theory

1. Introduction

Mathematics displays the curious operational feature to be able to describe and predict
biophysical issues, despite our scarce knowledge of the relationships between abstract
models and descriptive experimental results [1–3]. Mathematics works in the real world,
even if we do not know why [4–6]. It has also been used as a unifying language/framework
for the description of neuroscientific issues. Different mathematical fields have been used
to cope with neural matters and to tackle the cognitive functions of the brain. In par-
ticular, computational neuroscience has provided an effort to go through the intricate
matters of the neural activity at different coarse-grained levels [7–10]. Our approach in
this paper will be slightly different. Our objective is not to discuss mathematics applied to
neurodata. We will not consider the areas of calculus and analysis, i.e., the mathematical
branches encompassing multivariable calculus, functional analysis and numerical anal-
ysis that allow the computation of the ordinary/partial differential equations arising in
many neuroscientific applications. We will not focus on the mathematics subtending the
implementation of various neurotechniques such as EEG, fMRI, network reconstruction,
etc. [11–18]. Rather, our main objective is to highlight unnoticed relationships linking
mathematical abstract concepts to the neuronal activity which subtends the very function
of the central nervous system.

We will proceed as follows. Every chapter will be devoted to a different area of
neuroscience. Macro-, meso- and microneuroanatomy, nervous development and visual
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perception will be tackled in purely mathematical terms. In particular, approaches from
manifold mathematical branches, such as geometry, topology, group theory and category
theory will be used to tackle these issues. We will describe the neurobiological counterparts
of braid groups, elliptic curves, micronetworks, liquid crystals, Monge’s theorem, coho-
mology groups and shaves. We will provide a survey of mathematical methodologies and
their neuroscientific counterparts that might contribute to improve our knowledge of the
central nervous system. Furthermore, we will suggest next-to-come, feasible mathematical
developments which may prove potentially helpful in the experimental assessment of
brain dynamics.

2. Mathematics and the Anatomy on the Central Nervous System

In this chapter, we will describe how mathematical concepts might be useful to
quantitatively assess anatomical structures of the central and peripheral nervous systems.
We will provide three examples and different coarse-grained anatomic scales. First, we will
show how knots and braid groups provide a scarcely explored approach to elucidate the
arrangement of nervous fibers at the mesoscopic scales of the ascending pathways. Second,
we will show that the mathematical concept of elliptic curves might be used to evaluate
interhemispheric connections at mesoscopic scales. Third, we will show how the successful
mathematical approaches based on neural networks might be unexpectedly extended to
the microscopic scale of neuronal membranes.

2.1. Macroscopic Scale: Braid Groups, Nerve Fibers and Somatotopic Maps

Here the focus is focused on the anatomical intertwining of fibers in both the central
and peripheral nervous systems. The description of intermingling peripheral nerves and
mingling grey/white matter can be appraised in terms of knot theory and braid groups [19].
Knots can be turned one into another via three-dimensional space deformations, giving
rise to assemblies with associative and commutative properties [20]. A braid is a collection
of strands between two parallel planes [21]. Braids are termed isotopic when, keeping
their endpoints fixed, they can be twisted into each other without cutting the strands. The
operations of composition allow braids to be joined to achieve new ones. Given a set
of braids with a fixed number of strands, its group structure is provided by generators
and fusion rules such as, e.g., associativity, crossing, braiding/unbraiding, intertwining,
the composition and sequence of elementary braids, and so on. In algebraic topology, a
well-established link does exist between braids and knots. Is it always possible to transform
a knot into a closed braid? For example, the Alexander theorem states that every knot or
link in three-dimensional Euclidean space is the closure of a braid [22]. Nevertheless, the
correspondence between knots and braids is not one-to-one because a single knot may
have many braid representations. The Markov theorem provides the moves to relate closed
braids representing the same knot type [23].

Biology suggests several examples of living structures that stand for feasible counter-
parts of mathematical knots and braids. For example, tissue morphogenesis is produced by
coordinated regional changes in cell shape driven by localized contractions of actomyosin
“braids” [24]. The existence of a wire-like flow of electrons and ions along cytoskeletal
elements conveying messages from the cell membrane to the nucleus has been demon-
strated [25]. The three-dimensional space of neural connections is severely constrained by
physical factors, such as the anatomical overlap of neuronal arbors and the available axonal
space to make synapses. Indeed, specific neuron-type patterns of distance-dependent
connectivity are correlated with peculiar overlaps between the dendritic and axonal ramifi-
cations, so that the diverse branching patterns of individual arbors of the same neuronal
type is able to influence higher-order connections [26,27].

Incorporating the mathematical/topological perspective of knot theory in neuroscience
appears particularly relevant for understanding peculiar brain functions such as, e.g., how
the brain represents and processes environmental stimuli. The arrangement of nervous
fibers might stand for an example of isotopic braids describing the evolution of multi-
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particle systems with two spatiotemporal extremities: a beginning and an end. Just as
the knots are embeddings of closed lines in the three-dimensional space and cannot be
reduced to simple circles by a continuous deformation [28], the nerves are structures that
do not completely disentangle after being pulled from both ends. The nervous fibers
connecting distinct structures of the peripheral and the central nervous systems are shaped
as braids. For example, consider the sensory inputs from the external world detected
by the peripheral nervous fibers: these inputs follow a multisynaptic, ascending path
towards the more proximal areas of the central nervous system. See Figure 1A,B for further
details. This means that, if we term “braid group” as the whole nervous tract between the
peripheral receptors and cortical areas, we are allowed to term “knots” as the intermediate
multisynaptic steps. Figure 1C tells us that the anatomical nervous structures studied by
tractography can also be described in terms of braids.

The overwhelming complexity of the mammalian nervous system makes It extremely
difficult to map nervous anatomical structures to mathematical manifolds equipped with
knots and braids. Given the objective obstacle to find the proper group generators, why
should we care to describe the nervous paths in the tricky terms of braid groups? What
are the (methodological, philosophical, explanatory, medical) benefits? Our suggestion
is twofold:

(a) Simple changes in the location and arrangement of nerves could explain the activity
of the central nervous system.

(b) The external inputs follow specific nervous paths which are assessable in the mathe-
matical terms of braid groups.

The theoretical occurrence of a link between the anatomical conformation of the nerves
expressed in terms of knots/braids and brain activity would mean that different braiding
rules might give rise to different nervous functions. Fully different perceptions such as
olfactive, auditory, tactile and visive perceptions could be explained by diverse config-
urations of the braids connecting every external receptor to the corresponding sensitive
cortex. In touch with the suggestion that sensitive pathway conformations might affect
cue perception, Guillamón-Vivancos et al. [29] suggest that, despite the tactile information
simultaneously activating the tactile and visual neural pathways during the embryonic
stage, the pathways reorganize after birth to permit the separate processing of visual and
tactile information.

It is well-established that neural pathways are topographically organized in maps
that are highly preserved from the periphery to the cortex [30]. This could be explained
by the occurrence of isotopic braids in nervous fibers: as the strands between the starting
and the ending points (i.e., the nervous fibers between the peripheral receptor and the
corresponding cortical projection) display the same intermingled conformation, they might
carry the same message. This hypothesis does not require that the external message
stands strictly in a 1:1 relationship with the corresponding cortical area. Due to the braid
rules, the relationship between the two extremities of the braids could be either injective
or surjective, bijective and so on. Therefore, in a mathematical braid framework, the
arrangement of the cortical somatotopic maps could be correlated with the arrangement of
the peripheral nervous fibers. The connections between the two extremities might give rise
to reversible or irreversible topological knots, respectively, standing for labile functional
activities and stable anatomical tracts. This means that at least a part of human brain
diseases might depend on the anatomical configuration of peripheral nerve fibers. Instead
of looking for alterations in the central nervous systems, it would be reasonable to look for
neuropathological features in the braids and knots of the peripheral nervous fibers.

In sum, braid groups could be the key to explaining the perceptual variations be-
tween different sensitive cues such as sight and hearing. Indeed, different braids confor-
mations might generate distinct computational processes in the corresponding primary
sensory cortex.
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tion in a ventral view (A), the central connections of the trigeminal nerve in a sagittal view (B) and 
their hypothetical braid counterparts. Modified from: [31] For further details, see [32]. (C). The ana-
tomical nervous structures detectable by tractography can be described in terms of braids. Modified 
from: [33]—“Brain dataset courtesy of Gordon Kindlmann at the Scientific Computing and Imaging 
Institute, University of Utah, and Andrew Alexander, W. M. Keck Laboratory for Functional Brain 
Imaging and Behavior, University of Wisconsin-Madison.”  
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sor imaging and diffusion tensor tractography, describe nervous structures (such as tracts, 
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equipped with intrinsic symmetries that are hidden at first sight. The occurrence of hidden 
symmetries would allow long-range, simultaneous activation of neurons located in dis-
tant brain areas. It is of note that half of the elliptic curves display a finite number of ra-
tional numbers, while the other half display an infinite number of rational numbers [38]. 
In operational terms, this means that half of the nervous patterns are continuous and half 
are discontinuous, i.e., arranged in discrete spatiotemporal steps. Last but not least, the 
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rus. 

Figure 1. (A,B). Comparison of nervous connections in the central/peripheral nervous systems
and mathematical examples of braid groups. The figures illustrate the retino–geniculo–cortical
projection in a ventral view (A), the central connections of the trigeminal nerve in a sagittal view
(B) and their hypothetical braid counterparts. Modified from: [31] For further details, see [32] (C).
The anatomical nervous structures detectable by tractography can be described in terms of braids.
Modified from: [33]—“Brain dataset courtesy of Gordon Kindlmann at the Scientific Computing and
Imaging Institute, University of Utah, and Andrew Alexander, W. M. Keck Laboratory for Functional
Brain Imaging and Behavior, University of Wisconsin-Madison”.

2.2. Mesoscopic Scale: Are There Elliptic Curves in the Brain?

Elliptic curves, generated through cubic equations, are characterized by two-dimensional
paths devoid of either cusps or intersections. Elliptic curves are enclosed in two-dimensional
finite algebraic fields. They can be defined in terms of points, integer numbers and rational
numbers [34,35]. Many neurotechniques, e.g., EEG, fMRI, diffusion tensor imaging and
diffusion tensor tractography, describe nervous structures (such as tracts, commissures,
fasciculi, radiations) arranged as arcs that roughly resemble elliptic curves [36]. Starting
from this remark, a mathematical account can be drawn which hypothesizes the occur-
rence of abstract structures underlying the anatomy and function of mesoscopic nervous
pathways. The question is: what for? What do elliptic curves bring to the table when
investigating nervous paths? Elliptic curves might stand for the abstract counterpart of
the anatomical neural projections endowed in the finite field of the central nervous system.
A brain including elliptic curves could be operationally partitioned in numbered areas
containing either integer or rational numbers. This approach would allow us to treat these
brain areas via the powerful weapons of algebraic geometry, complex analysis, number
theory and representation theory. Being elliptic curve abelian [37], they must be equipped
with intrinsic symmetries that are hidden at first sight. The occurrence of hidden sym-
metries would allow long-range, simultaneous activation of neurons located in distant
brain areas. It is of note that half of the elliptic curves display a finite number of rational
numbers, while the other half display an infinite number of rational numbers [38]. In
operational terms, this means that half of the nervous patterns are continuous and half
are discontinuous, i.e., arranged in discrete spatiotemporal steps. Last but not least, the
solutions of the elliptic cubic curve are confined to a spatial region that is topologically
equivalent to a torus. Therefore, as suggested by Tozzi et al. [39], the anatomical and
functional nervous trajectories could be assessed in terms of trajectories occurring inside
a torus.
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2.3. Microscopic Scale: Towards a Transient Microconnectome Made of Tunneling Nanotubes?

Standard neuroscience textbooks tell us that neurons communicate via axons, den-
drites and synapses, generating a sort of holistic structure that can be assessed via the
mathematical weapons of network theory and dynamical systems theory. In dynamical
systems, simple elements spontaneously aggregate into larger and more ordered structures,
giving rise to different self-sustaining waves such as traveling waves, rotating waves and
standing and reflected waves/spirals [40]. In nonequilibrium systems characterized by the
self-organization of collective particles, input-driven local fluctuations lead to the emer-
gence of larger-scale ordering [41,42]. This is the case not just of artificial devices such as
shape-changing robotic active matter but also of biological assemblies [43]. For example,
cellular self-organization promotes the follicle pattern in avian skin [44]. Self-organization
generates processes such as crystallization which contributes to unusual self-assemblies of
small and rigid organic molecules (such as proteins, viruses, nucleic acids, nervous struc-
tures), to colloids gathering in liquid crystals, to gold nanocrystal superlattices, etc. [45]. It
has been suggested that the brain is a dynamical system at the edge of chaos characterized
by random fluctuations [46–50]. Here the human connectome comes into play, i.e., the hier-
archical anatomical and functional network of the cortical/subcortical structures that can be
mathematically described by net theory. The connectome is characterized by random walks,
preferential pathways for fast communication and winner-takes-all mechanisms [51–54].

Recently discovered microscopic entities could deeply modify the current paradigm
of the neural connectome. Tunneling nanotubes (TNTs) are F-actin-based, transient tubular
connections [55] that allow the active transfer of vesicles, organelles and small molecules be-
tween adjacent cells [56,57]. The occurrence of TNTs in primary neurons and astrocytes has
been theoretically correlated with the short-range transmission of electrical signals [58–60].
Developing neurons form transient TNTs that both enhance electrical coupling with distant
astrocytes and allow the transfer of polyglutamine aggregates between neuronal cells [61].
TNTs are not stable structures as their lengths vary with the distance between the connected
cells [60], and their lifetime may range from a few minutes up to several hours [62,63]. The
occurrence of TNTs with their peculiar transient features changes our notion of the human
connectome made of stable nodes/edges and long-standing connections between brain
areas [64]. Indeed, TNTs might provide a microscopic intercellular neural network with
peculiar features, namely, the nodes are not stable and the edges appear, modify and vanish
with passing time. As the extremities of TNTs link two cellular structures, the dogma of the
cell as an individual unit might be questioned [57]. A microscopic narrative of connectome
also provides an alternative explanation to the observation that some network branches are
visited more than others, generating nervous dynamics which are slightly nonergodic.

3. Mathematics and the Embryonic Development of the Nervous System

Soft-matter polymers and embryonal neurulation. The development of multicellular
living beings involves morphogenetic processes that shape embryo–fetal structures through
the self-organized activity of pluripotent stem cells [65]. The orchestrated movement of cel-
lular groups requires genetic as well as mechanical and molecular interactions between cells
and their surrounding environment [65,66]. Migrating cells respond to various stimuli such
as cortical tension, luminal pressure and size [67], local changes in tissue architecture [68] as
well as topographical, adhesive and chemoattractant cues [69–72] and duplication of exist-
ing regions [73]. Changes in substrate stiffness trigger collective cell migration, suggesting
that tissue mechanics combines with molecular effectors to coordinate morphogenesis [66].
We, focusing on the morphogenetic dynamical processes characterized by cooperative
interaction and the collective migration of numerous cellular units [41], describe here an
unnoticed biophysical process that might underlie the very structure of the systems of
vertebrates. The embryo–fetal development of the central and peripheral nervous systems
is of foremost importance as the growth of the neuronal tissue is correlated with the growth
of a wide range of non-nervous structures [74].
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Brain-derived signals are involved in embryogenetic regulation, providing long-range
interactions among separate structures. During embryogenesis, unexpected interactions
have been described between the nervous system and numerous craniofacial and trunk
skeletal elements [75,76]. For instance, multipotent Schwann cell precursors detach from
their nerve fiber commitment to become mesenchymal, chondroprogenitor and osteopro-
genitor cells [77]. In addition, a link has been found between two apparently unrelated
processes, gastrulation and neural crest migration, via changes in tissue mechanics [66].
In the sequel, we aim to portray embryonal neurulation in terms of condensed colloidal
self-matter and its liquid/crystalline phase.

Cellular structures could be viewed as building blocks characterized by liquid/crystalline
phases of condensed soft matter, in which order and fluidity coexist [78]. Liquid–liquid
phase separation allows intracellular organization within distinct compartments of bacteria
and eukaryotes [79,80]. The phase transitions drive proteins to aggregate into cytoplasmatic
and nuclear-condensed fluid bodies, generating nonuniform localization patterns and
subcellular compartmentalization. Biomolecular condensates include membrane protein
clusters, cytoplasmic P granules [81], histone locus body, heterochromatin domains [82],
protoplasmic gelation [83], amyloid-like assemblies [84] and intrinsically disordered mixed-
charge domains. Liquid-phase condensates can be viewed as reaction centers where
some components become enriched for processing or storage within cells. For example,
Garcia Quiroz et al. [85] found that the keratinocytes of the stratified squamous epithelium
undergo a vinegar-in-oil type of liquid–liquid phase separation, crowding the cytoplasm
with increasingly viscous protein droplets able to drive squamous formation.

Compounds made of “liquid crystals” display properties between conventional liquids
and solid crystals that can be experimentally studied in vitro [86–90]. Mundoor et al. [91]
produced building blocks of a molecular–colloidal liquid crystal made of micrometer-
long inorganic silica-coated disks, dispersed in a crystalline fluid composed of molecular
rods. Field-induced motion caused by the magnetic fields elicited colloidal interactions be-
tween the disks in the nematic hosts and generated various symmetric conformations with
different tangential surface orientations (Figure 2A). Within a range of temperature and
concentration, the freely diffusing rods arranged themselves orthogonally to the solvent
molecules, producing a biaxial liquid crystal. Mundoor et al. [92] demonstrated that the
dispersion of the isotropic-charged colloidal disks in the nematic host composed of molec-
ular rods produces isotropic, nematic and smectic columnar organizations (Figure 2A).
While regular polymeric materials respond in a linear fashion to external stimuli such as
high temperature, liquid crystal polymers display nonlinear and much faster macroscopic
changes [93]. It is feasible to realize low symmetry condensed matter phases in systems
with building blocks of dissimilar shapes and sizes. During the embryo–fetal differentia-
tion of the central nervous system, the bodily architecture recalls isotropic, nematic and
smectic columnar arrangements [94]. See Figure 2B for further details. It is noteworthy
that biaxial nematics can be produced either through long inorganic nanorods and short
organic molecules, or board-like molecules or component mixtures, paving the way to
future approaches focused on organic structures. The experimental clues point towards a
relationship between the biological elements (in our case, the nervous elements) and the
phase changes, e.g., the assembly of the developing synaptic active zone requires the liquid
phase of the scaffold molecules [95].

Summarizing, we suggest investigating the relationship between the processes of
liquid crystals arrangements and the formation of embryonic nervous structures. To
further scrutinize this hypothetical correlation, we provide a testable hypothesis. The
collective phenomena of colloidal interactions between disks in the nematic hosts de-
scribed by Mundoor et al. [91,92] are thermotropic, i.e., they are temperature-driven and
temperature-dependent. Increases in temperature in the nematic colloidal fluids lead
to unusual transitions towards more ordered states. When the temperature is lowered,
symmetry-breaking phase transitions lead at first to the transition from isotropic liquid
to nematic phases and then to a liquid–crystal smectic phase [78]. In touch with classical
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polymer physics, Kießling et al. [96] observed a systematic deformation of the viscous cel-
lular matter upon temperature changes. This framework enables us to draw an intriguing
suggestion that correlates the differences in cellular temperature with the developmental
outcomes of the nervous system. Within biological cells, transient temperature spikes and
short-distance heat fluxes have been detected [97]. Such nonstationary local fluctuations in
cellular temperature are also worth exploring in the nervous system. Indeed, differences
exist between the temperatures of the cell body and neurites [98]. Further, the neocortex
displays thermal gradients at various spatiotemporal coarse graining [49]. The membrane
temperature can modify the neuronal activity via adjustments in the opening and closing
rates of ion channels [99]. Local changes in temperature can modulate presynaptic and
postsynaptic events, sensitive stimuli and memory encoding [100,101]. As fluctuations in
thermic flows are correlated with variations in thermodynamic/information entropies, a
correlation might also be hypothesized between temperature changes and the message
content [102,103].
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Figure 2. Comparison of two seemingly uncorrelated phenomena, i.e., liquid crystal phases and
embryonic development of the nervous system. (A) Mixtures of molecular/colloidal rods and disks
of fluid-condensed matter give rise to temperature-dependent columnar chains displaying different
uniaxial symmetries. Depending on the structural arrangement, we achieve isotropic, nematic and
smectic liquid crystals. For further details, see [91]. (B) Schematic transverse sections of neurulation
in the mouse embryo at different stages of development. While the primitive confined neuroectoderm
at E.75 recalls isotropic liquid crystals (left picture), the converging neural folds at E8.0 remind the
arrangement of nematic liquid crystals (middle picture). In turn, the spinal cord at E.9.0 evokes the
typical arrangement of smectic liquid crystals (right picture). For further details, see [94].

Summarizing, the development of the central and peripheral nervous systems could
be correlated with the local thermal changes occurring in embryo–fetal tissues. The fact
that the embryonal neurulation occurs at different temperatures in different animals does
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not invalidate our theoretical account as every species-specific embryogenic temperature
might lead to anatomical modifications in the adult nervous system.

4. Mathematics and Visual Perception

In this chapter, we will describe how mathematical approaches might be helpful to
assess the features of visual perception. The research area of visual perception is huge,
including, e.g., the modelling and control of visual perception, visual perception learning,
static and motion-based visual illusions and visual–perception models related to the math-
ematical aspects of dynamic visual cryptography [104–110]. Here we will show how the
Monge’s theorem might provide a novel operational approach to the dazzling phenomenon
of depth perception (DP). DP, crucial for everyday action, is the visual ability of humans and
other sighted animals to perceive both the distance of an object and its three-dimensional
solid structure [111]. Many anatomical structures and sources of information contribute to
produce DP in different animals. Among the most important mechanisms subtending DP,
binocular and monocular perception are worth a mention [112].

Binocular depth perception relies on two main mechanisms, i.e., stereopsis and retinal
binocular disparity [113,114]. Stereopsis depends on the fact that many animals adjust
their two eyes to place the image of an object on the fovea, where acuity is the highest.
In turn, retinal binocular disparity suggests that, as our eyes are separated, the images
of the object fall at different locations on the left and right retinas [115]. The visual sys-
tem melts these two images to quantify the depth of the location of the object. In turn,
monocular depth perception provides depth information when viewing a scene with one
eye [116]. Many sources of information from the image and its surrounding environment
produce monocular DP, including, e.g., relative size (distant objects subtend smaller visual
angles than near objects), texture gradient, occlusion, contrast differences (e.g., texture
gradient, illumination and shading), motion parallax, etc. [117]. To make an example,
the first studies on DP involved aircraft pilots during take-off and landing, showing that
texture analysis and motion detection are the most relevant features for the perception of
solid structures [118]. For depth perception at close range, stereopsis is the most precise
mechanism but is available only to a few vertebrates. In turn, motion parallax is used by
many species, including vertebrates as well as invertebrates. Compared to other animals,
humans display the best performance regarding depth resolution [119].

In the last decades, it has been demonstrated that shape detection also depends on
higher cognitive activities such as previous experience/memory, context-dependent size
interpretation and whether the observer is “expecting” to see the shape. Accumulating
evidence suggests that the main three computational goals (determining surface depth
order, gauging depth intervals and representing three-dimensional surface geometry and
object shape) are provided by different hierarchical stages of cortical processing [120].
The integration of right and left eye information generates cortical three-dimensional
representations of the visual environment [121]. For instance, in mammals such as mice
that use stereoscopic cues to guide their behavior, neurons in the primary visual cortex
V1 are sensitive to binocular disparity. In sum, the complex response of DP is built
up from multiple environmental inputs and different intermingling distal and proximal
nervous processes.

Here we suggest another novel monocular mechanism that might contribute to DP.
Our approach is based on a theorem from geometry, the Monge’s theorem (MT). MT states
the following: given three nonoverlapping circles of distinct radii in a two-dimensional
Euclidean plane, the intersection points of each of the three pairs of external tangent lines
lie on a single line [122]. See Figure 3A for a pictorial rendering.

MT implies that the projections arising from three separated objects (i.e., two- or
three-dimensional circles) give rise to a line that is external to the three objects. MT has been
operationally used to calculate the correct camera position for the wearing examination of
the cutting edge of the hob, by calculating the inner points of the Monge cuboid and their
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parallel shifting (defined by the bijective Monge projections) bordered by a surface [123].
Further, MT is still valid even if the plane is equipped with non-Euclidean metrics [124].
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Figure 3. Monge’s theorem (MT) for the evaluation of depth perception. (A) Pictorial rendering
of MT. (B) MT can be used to investigate the physiological mechanism of depth perception. The
line on the eye lens corresponds to the line joining the projections from three objects embedded in
the environment. (C) A subject lying upon his sofa with his right eye closed. “In a frame formed
by the ridge of my eyebrow, by my nose and my moustache, appears a part of my body, so far as
visible, with its environment” [125]. (D) An example of the monocular depth perception of MT drawn
from (C). Three objects with different distances from the eye are projected to a black line on the eye
lens, according to the MT rules.

We suggest locating the line external to the three objects in the eye lens (Figure 3B).
This line is produced by three sensed objects located in the environment. Due to the MT, the
projections of the three objects on the eye lens are slightly far apart from one another. The
line is subsequently projected from the eye lens to the retina, giving rise to retinal objects
that are slightly far apart from each other. This simple, monocular mechanism might stand
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for a mathematical device that promotes our three-dimensional perception of the world
(Figure 3C,D).

5. Discussion

Our theoretical account emphasizes how mathematical rules might shape the structure
and activity of biological entities. The theoretical implications of our account suggest that
simple changes in the arrangement of the anatomical and functional nervous structures
might elucidate (at least partially) the activity of the central nervous system. In touch with
D’Arcy Thompson [65], it could be stated that the arrangement and the pattern contribute
to the biological function. Geometric constraints are powerful factors which are able to
define shape, size and cell distributions, drive crucial biological phenomena and give rise
to deterministic patterns that are predictable and reproducible. For example, methods to
develop the spatial and temporal control of stem cell-derived epithelial organoids have been
described, thereby rendering a stochastic process more deterministic [126]. A mathematical-
framed approach to scientific matters provides a metatheoretic starting point that might
be termed “testable rationalism”: sharp experimental previsions arising from top–down,
deductive mathematical approaches. Mathematical weapons such as group structure and
generator operations point towards a new approach to long-standing questions concerning
human sensation and perception. This leads to the hint that the very intermingling of
nervous structures might contribute to brain functions. As the dynamical processes of
living systems display cooperative interaction of many units, we are allowed to portray the
development of the central/peripheral nervous systems in terms of assemblies of building
blocks dictated by mathematical constraints.

We want to give a further theoretical suggestion, this time drawn from category theory
and group theory [127–130]. Once a wheat sheaf is sealed and tied up, the packed-down
straws display the same orientation. This trivial observation brings us into the realm of
presheaves/globular sets that allows a simple assessment of diverging and superimposing
functions. A mathematically well-founded assessment of elusive nervous activities in terms
of presheaves as well as the hierarchical information transmission inside globular sets
provide fresh insights on different neural issues. Presheaves also permit the tackling of
the nervous phase spaces in terms of the theory of infinity categories, i.e., an approach
founded on equivalence, rather than equality [131]. The key to unlocking the activity of
the brain does not lie in single neurons, or single neuronal assemblies or single neural
modules, rather in its abstract functional phase spaces where equivalence and not identity
holds. Here we will explain this time in technical terms, a novel theoretical approach to
nervous paths based on infinity topoi. This permits us to introduce Lurie’s theory of infinity
topoi [132] to describe and quantify the paths taking place inside the brain phase spaces.
As sheaf-theoretic methods are powerful and flexible enough to allow generalizations of
neural paths, Lurie’s theory enjoys formal properties that suggest novel functional phase
spaces where brain activities might take place.

Every category of sheaves of abelian groups contains derived functors called cohomol-
ogy groups [133] that can be defined as follows:

Hn (X,G)

where X is a topological space, and G an abelian group [131].
This means that the cohomology group Hn (X,G) can be defined in terms of sheaf

cohomology:
Hn

sheaf (X,G)

where G stands for the constant sheaf on X. Remember that a sheaf is a presheaf that
satisfies the gluing axiom.

Lurie [131] generalized this approach to non-abelian cohomology H1 (X,G), also taking
into account the fact that the coefficient system G is not constant and may display different
values. This is the case for the brain phase spaces. Specifying G is equivalent to specifying
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the Eilenberg–MacLane space K(G,1), together with a base point. This observation suggests
that the proper coefficients G for non-abelian cohomology H1 (X,G) are not groups but
rather homotopy types, i.e., purely combinatorial entities such as simplicial sets. Sheaves
of homotopy types on X can be used as coefficients, achieving a theory of infinite stacks (in
groupoids) on X. Stacks, that are required to satisfy a descent condition only for covering,
satisfy the Whitehead theorem: a pointed stack (E,η) can be achieved, for which πi(E,η) is
a trivial sheaf for all i > 0, such that E is not contractible. If K is a simplicial set, then the
cohomology of X with coefficients K can be defined as:

Hjj (X,K) = π0 (F(X))

where Hjj is the Joyal–Jardine homotopy theory of simplicial presheaves on X, and F is a
fibrant replacement for the constant simplicial presheaf with value K on X [131].

In brain terms, if X stands for the manifold where nervous oscillations take place,
and G stands for an operation performed by the brain (say, the oscillatory activity), the
following conclusions can be drawn together with Lurie [131]:

(1) If X is paracompact, H (X, K) is the set of homotopy classes from X into K.
(2) If X is paracompact space of finite covering dimension, then Lurie’s theory of stacks is

equivalent to the Joyal–Jardine homotopy theory.

The definition of a sheaf depends just on the open sets of a topological space, rather
than the individual points; this means that open sets could be replaced by other objects. The
stalk Fx of a sheaf F captures the properties of a sheaf “around” a point x ∈ X, generalizing
the germs of functions.

In neuroscientific words, we can state the following: even if one looks at smaller and
smaller neighborhoods when single neuronal assemblies or tiny brain areas are investigated,
no single neighborhood is small enough such that some limit can be taken into account [134].
In terms of nervous issues, this means that a nervous object of investigation, e.g., either
the single neurons, or the single brain modules or an assembly of neural waves with the
same frequency, stand in relation to each other in many ways. Single neural structures do
not count anymore, rather the whole brain activity counts. Summarizing, an infinity topoi
approach to neural dynamics suggests that nervous activities can be described in terms
of sheaves and presheaves leading us into the realm of the ∞-topos, i.e., a ∞-category of
∞-stakes on a topological space that is correlated to ordinary topos. We are faced with two
entirely different approaches to brain dynamics:

(1) The customary concept of equality suggests the occurrence of a strict relationship
between two entities (say, two neurons or two neural waves on the brain surface).

(2) Lurie’s concept of equivalence of ∞-topos suggests that two entities (say, two neurons
or two neural waves on the brain surface) stand in relation to each other in many ways.

In this latter account, the relationships between the entities can be studied in terms of
the different forms correlated with homotopy paths, explaining why apparently matching
cortical oscillations give rise to highly different interindividual responses.

6. Conclusions

We went through unusual mathematical approaches to assess several aspects of the
nervous activity. The translational implications of our account are manifold. For instance,
the Monge’s theorem suggests a new methodological approach to cope with our visual
ability of depth perception. Further studies are required to confirm whether the human
brain might use this theorem to achieve visual depth through monocular vision. This would
lead to a better comprehension of the peripheral visual mechanisms and would suggest
that the peripheral receptors perform advanced computations previously believed to be
of exclusive pertinence to the central nervous structures. Our suggestion that the brain
connectome can be tackled in terms of tunnelling nanotubes sheds new light on the studies
concerning the human connectome. We propose that the human connectome can be tackled
not just at the macrolevel of the connection of brain areas or at the mesolevel of neurons
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linked by axons/dendrites but also at the microlevel of intermembrane connexions among
neuronal calls. This suggests a highly reductionistic approach where factors of the size
of angstrom may dictate macroscopic behavior and pathological outcomes. The fact that
the multisynaptic ascending fibers connecting the peripheral receptors to the neocortical
areas can be assessed in terms of knot theory/braid groups suggests a novel approach to
predict fiber regeneration during abnormal human nervous development and after trauma.
Further, the physical concepts of soft-matter polymers and nematic colloids applied to
neurulation in mammalian embryos lead to the conjecture that the development of the
nervous system might be correlated with local thermal changes in embryo–fetal tissues. It
suggests that the artificial embryos created for experimental and translational purposes can
be manipulated through the relatively simple local modification of temperature.

Showing that natural three-dimensional natural rock fragments reproduce the Plato’s
cube, Domokos et al. [135] found that distinct fragment patterns tend towards ubiqui-
tous, standard icosahedral and octahedral shapes which can be formulated in terms of
Archimedean lattices [136]. The spontaneous occurrence of distinctive self-assembled
artificial structures could be compared with the design of natural organic crystalline mate-
rials, such as the nervous structures. In particular, both artificial and natural quasicrystal
structures can generate fullerenic-like self-assemblies grounded on simple, overarching
geometric rules [45,137–145]. The same fullerenic structures have been recently proposed
to explain the features of cortical microcolumns that can be flattened to form fullerene-like,
two-dimensional lattices [146,147]. As a final remark, we would like to emphasize that
our experimental predictions can be demonstrated via current technologies. Concerning,
for example, the theoretical correlation between the embryonal mechanisms of nervous
growth and liquid crystals, the recent availability of artificial embryonic structures from
the aggregates of mammalian stem cells [148–152] provides an exciting possibility to study
in vitro the developmental processes.

In sum, we suggest that under-rated geometrical and topological concepts may not
just shed new light of the dynamics of the central and peripheral nervous systems but may
also provide hints towards feasible translational applications.
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