
Sensors 2014, 14, 21968-21980; doi:10.3390/s141121968 
 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Raman Imaging with a Fiber-Coupled  
Multichannel Spectrograph 

Elmar Schmälzlin 1,*, Benito Moralejo 1, Monika Rutowska 1, Ana Monreal-Ibero 1,2,  

Christer Sandin 1, Nicolae Tarcea 3, Jürgen Popp 3,4 and Martin M. Roth 1,5 

1 Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, Potsdam 14482, Germany; 

E-Mails: bmoralejo@aip.de (B.M.); mrutowska@aip.de (M.R.);  

ana.monreal-ibero@obspm.fr (A.M.-I.); csandin@aip.de (C.S.); mmroth@aip.de (M.M.R.) 
2 GEPI Observatoire de Paris, CNRS, Université Paris Diderot, Place Jules Janssen,  

Meudon 92190, France  
3 Institute of Physical Chemistry, Helmholtzweg 4, Jena 07743, Germany;  

E-Mails: nicolae.tarcea@uni-jena.de (N.T.); juergen.popp@ipht-jena.de (J.P.) 
4 Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena 07745, Germany  
5 Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24-25,  

Potsdam 14476, Germany 

* Author to whom correspondence should be addressed; E-Mail: eschmaelzlin@aip.de;  

Tel.: +49-331-7499-638; Fax: +49-331-7499-436. 

External Editor: Vittorio M.N. Passaro 

Received: 24 September 2014; in revised form: 4 November 2014 / Accepted: 11 November 2014 /  

Published: 20 November 2014 

 

Abstract: Until now, spatially resolved Raman Spectroscopy has required to scan a sample 

under investigation in a time-consuming step-by-step procedure. Here, we present a technique 

that allows the capture of an entire Raman image with only one single exposure. The Raman 

scattering arising from the sample was collected with a fiber-coupled high-performance 

astronomy spectrograph. The probe head consisting of an array of 20 × 20 multimode fibers 

was linked to the camera port of a microscope. To demonstrate the high potential of this new 

concept, Raman images of reference samples were recorded. Entire chemical maps were 

received without the need for a scanning procedure. 
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1. Introduction 

Laser Raman spectroscopy [1] is a powerful technique to determine chemical compositions.  

In combination with a microscope, high contrast chemical maps of the sample under investigation  

can be constructed. The Raman spectrum contains information about the intrinsic vibration levels of 

chemical compounds. Such spectral fingerprints can be used to identify certain molecules or chemical 

groups without labeling. There are many applications for Raman images, for example the inspection of 

pharmaceutical ingredients [2], detection of cancerous tissue [3], examination of crystalline structures [4], 

monitor drug distribution within cells [5], and the molecular imaging of cells [6]. A review of various 

modern Raman techniques, their use in microscopy and further examples of use can be found in [7]. 

Usually, a Raman image is recorded by scanning the sample spatially point by point. Other scanning 

techniques have been implemented using point/line scanning or continuous scanning coupled with 

different ways of synchronizing detector read-out and sample scanning. Broad laser beam illumination 

coupled with tunable band-pass filters have also been used for quick Raman imaging. The scanning 

procedure, however, has a severe disadvantage: Due to the small Raman scattering cross section,  

and consequently generally very low intensities of the Raman signal, for most samples even modern 

spectrometers usually need at least a few seconds to capture the signal at any single point. As a result, 

the recording of an entire Raman image may take up to several hours even at modest resolution. Such 

long data acquisition periods are not suitable for most applications, e.g., for medical in situ examinations 

of a patient, or for monitoring chemical reactions in real time. Furthermore, a step-by-step scanning 

procedure requires high-precision mechanics to shift either the sample or the focus of the excitation laser 

beam, which again is not practical for e.g., a clinical environment. Finally, long time measurements 

require high stabilities of laser source and optical components.  

Therefore, first experiments were devised to employ spatial multiplexing techniques in order to 

replace the cumbersome scanning procedure by an exposure of many spatially resolved elements 

simultaneously in “one shot” [8,9]. The multiplexing can be achieved e.g., by using a fiber bundle to 

sample the optical image of an extended source on one end, and feeding a rearranged linear array of  

the fibers at the output of the bundle to a spectrograph. The early experiments, however, were severely 

hampered by the limited field-of-view of standard laboratory spectrographs, hence a narrow free spectral 

range (~600 cm−1) and a disappointingly small number of spatial elements (<70) [8], or by low sensitivity 

of the instrument [9]. 

In contrast, a similar problem in modern astrophysics, namely spatially resolved spectroscopy of faint 

extended galaxies, has been solved by introducing the method of Integral-Field Spectroscopy (IFS) 

already more than two decades ago. First generation highly efficient integral field spectrographs have 

provided many spectra of order several hundreds to thousands over a full 2-dimensional field-of-view 

simultaneously in a single exposure [10]. Today, IFS is an established common-user technique at all 

major observatories. Second generation IFS instruments, e.g., VIRUS for the Hobby Eberly Telescope 
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in Texas [11], or MUSE (Multi Unit Spectroscopic Explorer) for the Very Large Telescope at the ESO 

Paranal Observatory in Chile [12], provide more than one order of magnitude more spatial elements. 

MUSE e.g., delivers a total of 90,000 individual spectra, resulting in spectral images of 300 × 300 spatial 

elements (“spaxels”). This instrument covers a free spectral range over one octave from 465 nm to  

930 nm with a spectral resolution of ~0.25 nm and unprecedented sensitivity. In order to master the 

extremely high multiplex gain and, consequently, the complexity of the instrument, a modular design 

was adopted. It incorporates, amongst various other subsystems, a total of 24 highly efficient identical 

spectrographs. MUSE was designed to discover the faintest galaxies of the universe that would be invisible 

by other methods. Very high efficiency is accomplished by an optimized high-throughput and low 

aberration refractive collimator-camera system, a volume phase holographic grating, and a graded-index 

AR-coating, liquid nitrogen-cooled 4096 × 4112 pixel CCD detector (CCD231, e2v, Saint-Egrève 

Cedex, France). A conceptual sketch of the instrument, that was commissioned at Unit Telescope 4 of 

the VLT in March 2014 and has undergone science verification in June 2014 [13], is shown in Figure 1. 

Figure 1. Layout of MUSE at the ESO VLT at Paranal Observatory, Chile (credit: CRAL, 

Lyon, France). 

 

As an attempt of technology transfer, we have adapted the concept of IFS to laboratory Raman 

spectroscopy by making an ad hoc combination of a fiber array with a copy of the high-end MUSE unit 

spectrograph, to record entire images without scanning [14]. In this paper, we present the first results 

that demonstrate the feasibility of this concept. 

2. Experimental Section 

2.1. MUSE Spectrograph and Fiber Bundle Probe Head 

The spectrograph, which was used to detect the Raman signal, is the 25th copy of the MUSE unit 

spectrographs. In the MUSE configuration, the imaging capability is achieved with a sophisticated image 

slicer in front of the collimator. However, in our laboratory experiment the MUSE spectrograph  
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was linked to a bundle of 400 110/132 µm step index multimode Fibers (Leoni FiberTech,  

Neuhaus-Schierschnitz, Germany) instead of the slicer. To form a probe head for recording images, the 

front surfaces of these fibers are arranged in a 20 × 20 matrix. Figure 2 shows the probe head as viewed 

face on. The pitch between the fiber centers was 0.5 mm, resulting in a square active surface with  

9.5 mm edge length. At the other end of the bundle, the fibers were arranged in one row to form a  

pseudo-slit for the spectrograph. The dimension of the row is designed to match the first collecting lens 

of the spectrograph collimator. It must be stressed that the fiber-collimator interfacing was less than 

optimal as the spectrograph is designed for slicers and anamorphic foreoptics module [15]. That said, 

the ad hoc combination worked surprisingly well. 

Figure 2. The probe head with 20 × 20 fibers optics matrix. Every black dot represents the 

front surface of the multimode fiber. 

 

The signals of all 400 fibers generate light traces (spectra) at the CCD that are modulated by the 

intensity distribution across the fiber array. A custom-developed open source data-reduction software, 

called p3d, was used to process the raw CCD image [16]. The software and the calibration procedures 

were described previously [17–19]. In brief: To subtract zero level signals of the CCD, a master bias 

with 0 s exposure time was recorded. To identify the light trace positions of each fiber at the CCD and 

to determine fiber-to-fiber sensitivity variations, the probe head was exposed to the flat signal arising 

from an integrating sphere, which in turn was linked to a continuum halogen lamp. For wavelength 

calibration, the integrating sphere was linked to a neon lamp. The software also cleans the data from 

cosmic ray hits. Finally, the p3d software converts the CCD image into a three-dimensional cube, where 

the first two dimensions contain the spatial information of the image, and the third dimension contains 

the spectral information at each spatial position. 

2.2. Free-Space Optical Setup 

Figure 3 shows a free-space optical setup, which was built to validate the usefulness of the MUSE 

spectrograph for Raman spectroscopy. As an excitation source, a 500 mW, 785 nm laser diode coupled  

with a 600 µm fiber was used. A 785 nm clean-up filter removed side bands of the laser emission. A 785 nm 

dichroic razor edge beam splitter directed the laser beam to the sample and let the stokes-shifted  

Raman signal pass. To remove the Rayleigh line, two 785 nm razor edge long pass filters were used.  

A 20× magnification, numerical aperture (NA) 0.4, IR-optimized objective (Mitutoyo lens) collects the 

Raman signal and guides the signal to the probe head. 
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Figure 3. Free-space optical setup to verify the suitability of the MUSE spectrograph for 

measuring Raman signals. 

 

2.3. Microscope Setup 

To improve the imaging quality, a second setup with use of a microscope was realized. The probe 

head with the fiber array was placed at the camera output of an inverted fluorescence microscope 

(Axiovert.A1 FL, Zeiss, Jena, Germany). Figure 4 shows a scheme of microscope setup. A fiber-coupled  

300 mW 785 nm diode laser from a commercially available Raman spectrometer (i-Raman, B&W Tek, 

Newark, DE, USA) was used as excitation light source. The laser light was coupled to the microscope 

via the fluorescence lamp port using a 105/125 µm multimode fiber and a collimator. The fluorescence 

filter cube of the microscope contained a 785 nm clean-up filter, a 785 nm notch beam splitter, and  

a 785 nm notch filter as emission filter. Additionally, a 785 nm long-pass filter was placed in the front 

of probe head. The microscope was equipped with 2.5× and 20× magnification objectives, which allow 

the capture of object fields with 10.0 and 1.2 mm diameters, respectively.  

Figure 4. Microscope-based setup for imaging Raman spectroscopy. Here, a schematic 

drawing of the body of the microscope. 
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3. Results and Discussion 

3.1. Measurements and Results Achieved with the Free-Space Setup 

Initially, the free-space setup was used with a piece of Teflon, a paracetamol tablet, and a silicon 

wafer. Figure 5 presents the collected Raman spectrum of Teflon. The curve represents the total signal 

of all 400 fibers. The exposure time was 60 s. The peaks at 292 cm−1 and 385 cm−1 (torsional and 

deformation vibrations of CF2), 734 cm−1 (symmetric CF2 stretching), 1218 cm−1 (antisymmetric CF2 

stretching), 1302 cm−1 and 1382 cm−1 (C-C stretching), match the values specified in the literature [20]. 

This consistence proves that the MUSE spectrograph is generally suitable for Raman spectroscopy. In 

addition, the Raman spectra received with the free-space setup for paracetamol and silicon match the 

literature values (data not shown) [21,22]. 

Figure 5. Raman spectrum of a Teflon sample. 

 

The detection of cancerous tissue is a potential future application [3]. As a tentative experiment,  

a piece of raw pork meat was examined, since the Raman signals of pork meat are expected to be similar 

to those of future tissue samples. Figure 6 shows the received Raman spectrum with well identifiable 

Raman signals. Again the curve represents the total signal of all 400 fibers. The exposure time was  

240 s. Fluorescence background was reduced by use of a fourth-degree polynomial fit. The most intense 

signal peaks are observed at 1656 cm−1, 1441 cm−1, 1300 cm−1, and 1064 cm−1. 1656 cm−1 and 1300 cm−1 

can be related to Amide I-helix and Amide III-helix, respectively [23]. 1441 cm−1 is linked to CH3, CH2, 

and CH groups, 1064 cm−1 to C-N and C-C bounds. 

Figure 7 shows the intensity distributions at certain Raman shifts at the position of the probe head. 

Although the free space setup was not optimized for imaging, patterns of a first Raman map could  

be observed. To receive the respective Raman signal intensities, the peaks at 1129 cm−1, 1449 cm−1, and 

1659 cm−1 were fit to Gaussian functions and converted into pseudo colors. In Figure 7 the red color 

represents the highest and blue the lowest signal intensity. White spots indicate damaged fibers, which 

did not provide an analyzable signal. 
  



Sensors 2014, 14 21974 

 

 

Figure 6. Raman spectrum of a pork sample. 

 

Figure 7. Intensity distribution of Raman signals of pork meat at the front surface of  

the probe head, (left) for 1129 cm−1; (middle) for 1449 cm−1; (right) for 1659 cm−1. 

 

The simple disk-shaped intensity distribution is most likely due to the inhomogeneous intensity 

distribution of the excitation laser and to the shape of the sample, while Figure 7 suggests a more complex 

distribution, related to structures of the sample. However, with the given limitations we decided to use 

a microscope for any further measurements as the optical pathway is already optimized with regard  

to imaging. 

3.2. Measurements and Results Achieved with the Microscope Setup 

We investigated: (I) A mixture of 50 µm polystyrene beads (PS; Acros Organics, Geel, Belgium) and 

100 µm polymethyl methacrylate microbeads (PMMA; Acros Organics, Geel, Belgium) microbeads;  

(II) A sample made up from a half aspirin tablet (Paracetamol BC, Berlin Chemie, Berlin, Germany) and 

a half paracetamol tablet (ASS-ratiopharm 500, Ratiopharm, Ulm, Germany). The halves were polished 

and pushed together in a way that the boundary surface passed the center of the object field; (III) A 

combination drug painkilling tablet containing 50 mg caffeine, 200 mg paracetamol and 250 mg aspirin 

(Neuradinal N, Stada, Bad Vilbel, Germany). (I) was placed on a small metal plate. The beads stuck to 
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the metal surface even it was turned upside down; (II) and (III) were positioned over the hole of a 

perforated dish. This allowed a direct illumination without any cover slip in the light path. 

The exposure time was 120 s. For subtraction of background arising from optic components of  

the microscope, reference measurements without sample were performed. The intensity of the excitation 

laser light was inhomogeneously distributed at the sample surfaces. At the center, the signal intensity was 

about one order of magnitude higher than at the corners. To moderate the impact of the inhomogeneous 

laser intensity distribution within the object field, the intensities of the Raman signals of (I), (II), and (III) 

were normalized by the signal intensity arising from the CaF2 plate. To identify the locations of the  

Raman-active substances, for samples (I), (II), and (III), one characteristic signal peak for each substance, 
i.e., a peak which shows no or only slight overlap to the peaks of the other incorporated substances, was 

chosen. Table 1 shows the Raman shifts of the selected peaks specified in wavenumbers. 

Table 1. Raman shifts of characteristic signal peaks, which were used to identify the 

respective substances. 

Specimen PS PMMA Paracetamol Aspirin Caffeine 

Sample (I) 1035 cm−1 600 cm−1    
Sample (II) - - 800 cm−1 752 cm−1 - 
Sample (III) - - 860 cm−1 1047 cm−1 1703 cm−1 

The heights of each characteristic peak, which resulted after the normalization procedures, were taken 

as measures of the substance concentrations. Figure 8 shows the Raman spectra received from sample (I). 

Left part: Added up and background-corrected Raman spectra of PS (red line; total intensity from  

15 fibers positioned at the most intense regions of the image of the PS beads) and PMMA (black line; 

total intensity of 32 fibers positioned at the most intense region of the image of the PMMA bead). Right 

part: Two spectra from two single fibers as they were received from the spectrograph without further 

processing. The spectra are in accordance with literature values [24,25]. To remove background 

fluorescence, an automated algorithm for subtraction was used for all spectra. The chosen method is 

based on the modified polynomial curve fitting of Lieber and Mahadevan-Jansen [26] fitting the 

background with a fourth order polynomial retaining the minimum intensity value at each wavenumber 

at each iteration using a total of 15 iterations per spectrum. 

To receive chemical Raman maps, the spatial intensity distributions at 600 cm−1 (characteristic peak 

for PMMA) and 1035 cm−1 (characteristic peak for PS) were plotted as pseudo colors. Figures 9–11 

show the Raman maps in comparison to the corresponding camera pictures. 

The camera picture of sample (I) (Figure 9, left) shows one big sphere (ca. 120 µm diameter) and 

three smaller spheres (ca. 50 µm diameter) in immediate vicinity. A bit further afar, there are four more 

beads. Three of them are only half within the image field. The spot at the upper right is an anomaly of 

the surface of the metal plate. The corresponding Raman maps (Figure 9, middle and right) identify the 

big sphere as PMMA and the small ones as PS. The chemical map corresponds to the camera image. The 

PS Raman image may suggest a further sphere at the upper left, which is out of the camera field. This is 

due to slightly smaller image area of the camera in comparison of the area which is covered by the probe 

head. In spite of the normalization procedure, the PS spheres in the image center clearly show a stronger 

signal compared to the spheres at the border. The Raman map of the PMMA bead is somewhat cross 
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sensitive to signal of the PS beads. This can be explained by a certain overlap of the PMMA and PS 

Raman spectra at 600 cm−1 (Figure 8). 

Figure 8. Raman spectra of PS (red line) and PMMA (black line). The heights of  

the peaks at 600 cm−1 and 1035 cm−1, respectively, were used to identify PS and PMMA. 

(Left) Background-corrected total spectra of PS and PMMA, received by adding up the 

signals arising from the positions of PS and PMMA beads, respectively; (Right) Unprocessed 

spectra received from two single fibers at the image positions of a PMMA and a PS beads, 

respectively (X, Y = 8, 9 and X, Y = 6, 12; compare Figure 9). 

 

Figure 9. Sample (I); plastic microbeads on a metal plate. (Left) image taken with an  

eye piece camera and a 20× objective; (Middle) Raman image of PMMA (600 cm−1);  

(Right) Raman image of PS (1035 cm−1). 

 

Figure 10 left shows the camera image of the sample made of two half pieces of pain relievers (II). 

The upper tablet half contains paracetamol as active pharmaceutical ingredient, the lower half aspirin. The 

received Raman maps (Figure 10, middle and right) again clearly correspond to the camera image, even if 

there seems to be some signal overlapping in the right part of the maps. This is likely due to overlaps of 

the Raman spectra and some defocusing because of the rough and uneven surfaces of the tablets. 
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Figure 10. Two half pieces of paracetamol and aspirin pain reliever tablets, respectively, 

which have been pushed together. (Left) image taken with an eye piece camera and a  

2.5× objective. Middle: Raman image of aspirin (800 cm−1); (Right) Raman image of 

paracetamol (752 cm−1). 

 

Figure 11 shows the results received from sample (III). The Raman map allows discrimination 

between regions dominated by paracetamol and dominated by aspirin. The accordance with the camera 

image is only moderate. On the one hand, surely fillers codetermine the structures of the camera image, 

on the other hand, substances, which are located below the surface and therefore cannot be seen within 

the camera image, will contribute to the signal composition. To illuminate the entire image field, the 

excitation laser is only moderately focused, which in turn causes a loss of resolution within the z-axis. 

Figure 11. Sample (III): pain reliever tablet with caffeine, aspirin, and paracetamol.  

(Upper left) camera image taken with a 20× objective; (Upper right) Overlay of the 

detected locations of caffeine (yellow), aspirin (green), and paracetamol (red) as contour 

color illustration. The brown diamond indicates the position of a defective fiber within the 

probe head. (Lower left) Raman image of caffeine (1703 cm−1); (Lower middle) Raman 

image of aspirin (1047 cm−1); (Lower right) Raman image of paracetamol (860 cm−1).  
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4. Conclusions and Outlook 

We have presented, to the best of our knowledge, the first validation of astronomical IFS as a tool  

for creating Raman maps simultaneously from a single exposure. The test was performed with an 

existing high performance MUSE spectrograph, however, that is not optimized for fiber-coupled Raman 

spectroscopy [15], meaning that the demonstrated performance must be considered a lower limit, and 

that there is room for optimization. While the initial free-space optics experiment was merely demonstrating 

the ability of taking good signal-to-noise Raman spectra, the measurements performed with the microscope 

clearly prove the Raman imaging capability of the setup. Although the uniformity of the sample 

illumination was not ideal, all Raman images recorded with the microscope setup are consistent with  

the camera image. This proves the high potential of this method. To receive information about the gain 

in time, preliminary comparison measurements with a commercial available Raman microscope (alpha  

300 R, Witec, Ulm, Germany) were performed recently. Applying the same excitation intensities per 

area and the same spatial resolution, Raman images were received more than ten times faster with the 

MUSE setup. It is worth mentioning that much intensity is wasted when the whole sample area is 

illuminated. The probe head has a total surface of 90 mm2, however, the total area of the fiber core front 

surfaces measures only 4 mm2. As a consequence, only about 4% of the image signal is detected. Ongoing 

work to improve the sample illumination is in progress. The use of a microlens array as realized in [9] 

is very promising. We believe that the recording speed can be further improved within the existing setup. 

However, we are currently developing a derivative of the MUSE spectrograph that is optimized for  

a fiber-coupled collimator input, also featuring a nominal wavelength range that is extended towards  

the blue for future Anti-Stokes experiments. These activities are aiming at the future development of  

label-free spatially resolved real-time monitoring of (bio-)chemical reactions. 
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