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ABSTRACT

Objectives: The objective of this study is to build and evaluate a natural language processing approach to iden-

tify medication mentions in primary care visit conversations between patients and physicians.

Materials and Methods: Eight clinicians contributed to a data set of 85 clinic visit transcripts, and 10 transcripts

were randomly selected from this data set as a development set. Our approach utilizes Apache cTAKES and

Unified Medical Language System controlled vocabulary to generate a list of medication candidates in the tran-

scribed text and then performs multiple customized filters to exclude common false positives from this list

while including some additional common mentions of the supplements and immunizations.

Results: Sixty-five transcripts with 1121 medication mentions were randomly selected as an evaluation set. Our

proposed method achieved an F-score of 85.0% for identifying the medication mentions in the test set, signifi-

cantly outperforming existing medication information extraction systems for medical records with F-scores

ranging from 42.9% to 68.9% on the same test set.

Discussion: Our medication information extraction approach for primary care visit conversations showed prom-

ising results, extracting about 27% more medication mentions from our evaluation set while eliminating many

false positives in comparison to existing baseline systems. We made our approach publicly available on the

web as an open-source software.

Conclusion: Integration of our annotation system with clinical recording applications has the potential to im-

prove patients’ understanding and recall of key information from their clinic visits, and, in turn, to positively im-

pact health outcomes.
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BACKGROUND AND SIGNIFICANCE

Forty to 80% of healthcare information is forgotten immediately by

patients postvisit.1–4 Poor recall and understanding of medical con-

cepts have been identified as significant barriers to self-management,

a central component of the Chronic Care Model, resulting in poorer

health outcomes.5–7 These barriers are amplified in older adults with

multimorbidity,8–11 where reduced cognitive capacity,12–14 low

health literacy,15,16 and complex treatment plans are common.17–19

Older adults with multimorbidity account for 96% of Medicare

expenditures, and in the absence of optimal self-management, they

experience a lower quality of life and greater functional de-

cline.10,11,20–26

An after-visit summary, shared via a patient portal, is a common

strategy to improve recall of visit information.27–29 Open notes is a

current trend in healthcare that encourages clinicians to share the

visit notes with patients. Sharing visit notes with patients not only

increases patients’ confidence in their ability to manage their health

and understanding of their care but also enhances the communica-

tion efficiency. Through accessing visit notes, patients can take med-

ications as prescribed and remember their healthcare plan

better.30,31 However, summaries impose a significant burden on

clinicians who must document the entire visit in terms that are un-

derstandable to patients, with low health literacy being com-

mon.32,33 Alternatively, audio recordings can provide a full account

of the clinic visit and are an effective modality—71% of patients lis-

ten to recordings and 68% share their recording with a caregiver.34

Clinic recordings improve patient understanding and recall of visit

information, reduce anxiety, increase satisfaction, and improve

treatment adherence.34–40 As patient demand for recordings

increases,41,42 a growing number of clinics across the United States

are offering audio recordings of clinic visits, and a recent survey

reveals that almost a third of clinicians in the United States have

shared a recording of a clinic visit with patients.43

Yet, unstructured clinic recordings may overwhelm patients.41,44

Advances in data science methods, such as natural language process-

ing (NLP), can be used to identify patterns in unstructured data and

extract clinically meaningful information. These methods have been

used to predict hospital readmissions45 and future radiology utiliza-

tion,46 and to characterize the significance, change, and urgency of

clinical findings in medical records.47–51 As such, we have developed

a recording system for patients that applies NLP methods to un-

structured clinic visit recordings.52

In this article, we describe an approach to extract mentions of

medication names in transcripts of clinic visit audio recordings. An-

notating mentions of medications discussed during a clinic visit re-

cording can provide added value to the audio-recorded health

information. We use NLP to highlight medication mentions in tran-

scripts of clinic recordings. These annotations can be utilized to in-

dex the audio and aid visit recall by enabling key visit information

to be easily accessed. In addition, the indexed medical concepts can

be linked to credible and trustworthy online resources. These resour-

ces would provide additional information about medications to aid

in patient understanding. Such an approach could potentially in-

crease patient self-management, and, when shared with caregivers,

could increase their confidence in delivering care.

At the time of this work, no prior work focused on extracting

medication information from clinic visit conversations and their

transcriptions. There has been some work on the extraction of medi-

cation names and also prescription-related attributes such as dosage

and frequency from the medical text (primarily clinical notes). These

systems have mainly focused on the extraction of medication infor-

mation from written clinical notes. In 2009, the Third i2b2 Shared-

Task on Challenges in Natural Language Processing for Clinical

Data Workshop focused on medication information extraction. The

challenge was to extract and label medication-related terms (medica-

tion name, dosage, frequency, etc.) from discharge summaries.53

Teams were given 696 summaries for development, and then 547

summaries were used for evaluation. Twenty teams submitted

entries to the challenge, with the top result for annotating medica-

tion names being an F-score of 90.3% on the evaluation data set,

utilizing a combination of a rule-based approach with two machine

learning models (conditional random field and support vector ma-

chine). This top approach also achieved an F-score of 90.81% on an

internal test set of 30 clinical records when evaluated by the system’s

authors.54

Since the 2009 i2b2 challenge, additional work has been done to

improve medication information extraction methods. Sohn et al.55

developed Medication Extraction and Normalization (MedXN) to

extract medication information and map it to the most specific

RxNorm concept possible. This group reported an F-score of 97.5%

for medication name on a test set of 26 clinical notes containing 397

medications. In 2014, MedEx, the system with the second-best

results in the i2b2 challenge, was reimplemented using Unstructured

Information Management Architecture (UIMA) to extract drug

names and map them to both generalized and specific RxNorm con-

cepts.56 This system, named MedEx-UIMA, achieved an F-score of

97.5% for extracting and mapping to the most generalized concept

and an F-score of 88.1% for mapping to the most specific concept,

evaluating on a set of 125 discharge summaries from the original

i2b2 challenge. The authors concluded that the new MedEx-UIMA

implementation was consistent with and sometimes outperformed

the original MedEx method. Most recently, PredMed was developed

to extract medication names and related terms from office visit
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notes.57 The comparison of PredMed for extracting medication

names to earlier versions of MedEx and MedXN on a test set of 50

visit encounter notes showed F-scores of 80.0% for PredMed,

74.8% for MedEx, and 83.9% for MedXN. Since MedEx-UIMA

and MedXN are available as open-source systems, we used these

systems as baselines for comparison in our study.

In another related work, Kim et al.58 developed a method for re-

trieval of biomedical terms in tele-health call notes. Their team iden-

tified two types of noise in these records, explicit—including

“spelling errors, unfinished sentences, omission of sentence marks,

etc.”—and implicit—“non-patient information and a patient’s

untrustworthy information”—and sought to remove that noise as

part of their method. Utilizing a bootstrapping-based pattern learn-

ing process to detect variations related to the explicit noise, and de-

pendency path-based filters to remove the implicit noise, their

system achieved an F-score of 77.33% for detecting biomedical

terms on evaluation data from 300 patients. This tool and its corre-

sponding codebase are not publicly available for comparison for this

study. Furthermore, recently, there has been additional work on the

analysis of medical conversations based on deep learning models.59–

63 However, unlike our open-source tool, the presented proprietary

tools and their corresponding test sets are not publicly available for

comparison to our approach. Of note, some of these previous works

are focused on relation extraction and were evaluated for identifying

relations between medications and their properties,59 rather than

finding medication mentions themselves. Also, the proposed deep

learning models require a large amount of data for training and fine-

tuning, including tens of thousands of doctor–patient annotated

conversations.60,61 On the other hand, our approach is developed

using only a fraction of those deep learning models’ training sets.

Considering the finite list of possible medications, our approach

could achieve high performance (F-score: 85%) by efficiently using

the proposed rules and filters without requiring large data sets and

computational resources.

MATERIALS AND METHODS

Our NLP pipeline was developed and validated to extract medica-

tion mentions in clinic visit transcripts. We define medication men-

tions as any place in the text that a term refers to a medication by a

specific or general name or common lay term. Our pipeline takes ad-

vantage of Apache clinical Text Analysis and Knowledge Extraction

System (cTAKES)64 to generate a primary candidate list of medica-

tion mentions. Subsequently, our approach filters out false-positive

medical mentions in this list and adds the medication mentions that

cTAKES misses in visit transcripts. Our workflow took the original

visit text transcripts and processed them through the cTAKES de-

fault clinical pipeline resulting in a set of corresponding UIMA CAS

XMI output files with the sentences, parts of speech, and all clinical

concepts annotated by cTAKES. The software we developed for our

approach utilizes the CAS XMI output from cTAKES and outputs

our final annotated medication mentions in a Knowtator file format.

Our approach and cTAKES baseline pipeline for identifying medica-

tions in this study do not utilize the outputted part of speech tags

from cTAKES. eHOST was used in this study to compute metrics

for our evaluation. Outputs from MedEx-UIMA and MedXN were

also converted to Knowtator format to compute evaluation metrics

using eHOST.

Visit transcripts data set
Transcripts of 85 patient visits with a primary care physician were

used as our data set in this study. These visits were audio-recorded

and transcribed by a HIPAA compliant commercial medical tran-

scription service. These recordings, which came from eight clini-

cians, were 31 min long on average, ranging from 5.5 to 70.5 min.

This study and the use of human subject data in this project were ap-

proved by the committee for the Protection of Human Subjects at

Dartmouth College (CPHS STUDY#30126) with informed consent.

Table 1 shows the demographics of the participants who had their

clinical visit recordings used in our study.

Ten transcripts were randomly selected from this data set as a

development set. Another ten of the visit transcripts were randomly

selected as a validation set for our model. The remaining 65 tran-

scripts were reserved as a held-out test set for evaluation.

Annotation for medication mentions
All the transcripts were independently annotated for medication

mentions by two second-year medical students using the Extensible

Human Oracle Suite of Tools (eHOST) software.65 The two annota-

tors initially worked through blocks of 5 or 10 transcripts, meeting

after annotating each block to track inter-annotator agreement

(IAA) on the identified medication mentions, discuss disagreements,

and improve their accuracy in this annotation task, which led to

steadily higher IAA over time. Our IAA calculation considers over-

lapping annotations as a match, allowing a flexible annotation ar-

rangement for compound medication names. Once the annotators

reached over 80% IAA, we considered them trained in this annota-

tion task. Subsequently, they annotated the entire set of transcripts.

Inter-annotator agreement for medication mentions between our

annotators for the 65 transcripts in the evaluation data set was

84.6%. In that data set, Annotator 1 annotated 1076 instances of

medication mentions, and Annotator 2 annotated 1048 instances of

medication mentions.

For evaluation, we created a set of gold standard medication

mentions in our evaluation data set based on the work of our expert

annotators. Our labels are based on overlapping annotations of two

annotator experts. All medication mentions in our evaluation set

that were agreed upon by the two expert annotators were kept in

this gold standard set. A physician, trained in the method used by

the annotators, served as an adjudicator to resolve disagreements be-

tween our annotators. A disagreement in the annotations would oc-

cur when one annotator had annotated a medication mention while

the other had not. Disagreements were resolved by the adjudicating

physician either choosing to keep the annotation from a single anno-

tator in the gold standard set, or choosing to reject it. The adjudicat-

ing physician also reviewed disagreements between the output from

our model and the set of annotations from the human adjudicator to

identify true positives and false positives for evaluating our model

by either choosing to keep the annotation from either source or

rejecting it. As a result, a small number of medication mentions that

were missed by both annotators were thus added to our gold stan-

dard set. The resulting gold standard evaluation data set contained

1121 medication mentions.

cTAKES baseline for annotating medications in

transcripts
Our baseline approach was to utilize Apache cTAKES64 to identify

the medication mentions in the transcripts. cTAKES is an open-

source widely-used NLP system for biomedical text processing. As
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one of its NLP capabilities, cTAKES is able to annotate and extract

medical information from the free text of clinical reports. We uti-

lized the Default Clinical Pipeline of cTAKES (version 4.0.0) and its

Language System (UMLS) Metathesaurus66 fast dictionary lookup

functionality. cTAKES’ UMLS fast dictionary lookup, by default,

uses sentences as a lookup window for matching, covering the text

of the entire document. For our dictionary, we used the provided

prebuilt cTAKES dictionary, which includes RxNorm and

SNOMED-CT. SNOMED-CT provides extensive coverage of labo-

ratory tests and clinical measurements, while RxNorm focuses on

drug names and codes. Our only modification to the default

cTAKES configuration was to utilize its PrecisionTermConsumer

function, which refines annotations to the most specific variation

(eg, if it finds the text “colon cancer” in a report, it only annotates

“colon cancer” but not “colon” nor “cancer”). Since cTAKES is

designed to work with medical record-free text, there is an assump-

tion that input text is a clinical note, written by an individual with a

medical background. In contrast, the visit transcripts are typically a

dyadic conversation between a patient and their physician.

Our model for annotating medications in transcripts
After initial experiments with cTAKES and UMLS as a means to

find medications mentioned in transcribed clinic visit conversations,

we explored additional methods to filter out common false positives

from the output generated by cTAKES. For this purpose, we took an

iterative approach, looking at the most common errors in cTAKES

outcomes for identification of medication mentions in our develop-

ment set and developed new rule-based filters to detect and remove

those from the cTAKES output. As our accuracy on the development

set improved by filtering out many types of false positives (described

in detail below), we ran our model against our validation set, finding

that immunizations along with herbs and supplements persisted as

typical errors. cTAKES had difficulty differentiating immunizations

from diagnoses (eg, chickenpox vaccine vs chickenpox). Also,

cTAKES did not annotate some commonly used herbs and supple-

ments. In the next sections, we describe how our approach adds

annotations for immunizations, herbs, and supplements, while filter-

ing out false positives for medication mentions. An overview of this

approach is shown in Figure 1. We have made our code for this ap-

proach publicly available on GitHub (https://github.com/BMIRDS/

HealthTranscriptAnnotator).

Common word filtering
Since many of the words appearing as false positives in the cTAKES

output for medication annotations are common conversational

words that have second meanings as medication names or acronyms

(eg, “today” is also ToDAY, a name for an antibiotic primarily in

veterinary use that appears in UMLS), we decided to utilize a large

dictionary of common words to filter out these occurrences. We

chose to use a dictionary of the 10 000 most common English words

from Google’s Trillion Word Corpus (https://github.com/first20-

hours/google-10000-english).67 If any of those 10 000 words were

annotated by cTAKES as a medication, our model removes that an-

notation, with a small subset of exceptions. From the 10 000 com-

mon words list, there were 24 words that are considered as

exceptions and are allowed to remain annotated as medications.

These words fit into three categories: (1) names of common medica-

tions (eg, “Ambien”, “Insulin”, etc., which accounted for 17 of the

Table 1. Participant demographics for transcribed visit recordings (SD: standard deviation)

Development data set (%) Validation data set (%) Evaluation data set (%) Total (%)

Number of recordings in

data set

10 10 65 85

Participants with demo-

graphic dataa

9a (90.0) 10 (100.0) 54a (83.1) 73a (85.9)

Gender

Female 4 (40.0) 6 (60.0) 34 (52.3) 44 (51.8)

Male 5 (50.0) 4 (40.0) 20 (30.8) 29 (34.1)

Mean age (SD) [range] 50.00 (18.57) 58.60 (18.95) 54.65 (15.61) [25–92] 54.62 (16.35)

[23–87] [20–77] [20–92]

Race

White 9 (90.0) 10 (100.0) 54 (83.1) 73 (85.9)

Ethnicity

Not Hispanic or Latino 9 (90.0) 10 (100.0) 52 (80.0) 71 (83.5)

Declines to list – – 2 (3.1) 2 (2.4)

Language spoken

English 9 (90.0) 10 (100.0) 54 (83.1) 73 (85.9)

Recording length (SD)

[range]

36.46 (17.37) [17.55–70.39] 37.07 (10.00) [20.16–49.41] 28.36 (11.95) [5.42–55.33] 30.55 (12.85) [5.42–70.39]

Visit type

Annual physical estab-

lished patient

3 (30.0) 6 (60.0) 8 (12.3) 17 (20.0)

Established patient fol-

low-up

2 (20.0) 3 (30.0) 29 (44.6) 34 (40.0)

Same day add-on 2 (20.0) 1 (10.0) 11 (16.9) 14 (16.5)

New patient workup 2 (20.0) – 1 (1.5) 3 (3.5)

History and physical – – 2 (3.1) 2 (2.4)

Otherb – – 3 (4.6) 3 (3.5)

aDemographic data was not captured for 12 of the 85 transcripts.
b“Other” includes “Res-visit 20” and diabetic follow-up.
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24); (2) generic terms (eg, “herb”, “supplement”, and “vitamin”,

along with their plurals); and (3) the word “flu”, which can refer to

either a diagnosis or an immunization.

Chemical element filtering
cTAKES also annotates all chemical elements as medication men-

tions; “gold,” for example, can also be taken as a medication. In our

approach, we systematically remove annotations for those chemical

elements that are not typically taken as a medication or as a supple-

ment. These chemical elements include actinium, aluminum, anti-

mony, argon, arsenic, astatine, barium, beryllium, bromine,

cadmium, carbon, cerium, cesium, chlorine, cobalt, copper, dyspro-

sium, erbium, europium, fluorine, francium, gallium, germanium,

gold, hafnium, helium, hydrogen, indium, iridium, krypton, lantha-

num, lead, lutetium, mercury, molybdenum, neodymium, neon,

Figure 1. Overview of our approach to annotate medication mentions in clinic visit transcripts.
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nickel, niobium, osmium, palladium, phosphorus, platinum, polo-

nium, potassium, promethium, protactinium, radium, radon, rhe-

nium, rubidium, ruthenium, samarium, scandium, silicon, silver,

strontium, tantalum, tellurium, terbium, thorium, thallium, tin, tita-

nium, tungsten, uranium, vanadium, xenon, ytterbium, yttrium, and

zirconium.

UMLS semantic type filtering
In our error analysis for cTAKES outputs, we also examined UMLS

semantic types for the terms that cTAKES annotated as medication

mentions. The six types shown in Table 2 generally produced false

positives and few to no true positives. Our approach removes these

semantic types as medication annotations from the cTAKES output

where they occur.

Allergen filtering
cTAKES annotates a number of food and food ingredient-related

terms (eg, “coconut”) as medication mentions, denoting them as an

allergenic. We identify those annotations that have the word

“allergenic” included in their preferred cTAKES text metadata, and

we remove those annotations from the output of cTAKES in our

model’s output.

Immunization additions
A small number of medication-related UMLS terms are considered

as both diagnoses and immunizations/vaccinations (eg, “flu” and

“pertussis”). As a result, cTAKES annotation outputs were inconsis-

tent about annotating these terms as immunizations/vaccinations or

diagnoses. To improve the annotation of immunizations as medica-

tions, we also investigated the cTAKES diagnosis annotations. Since

cTAKES segments the input text into sentences, we searched for the

words “vaccine,” “shot,” “booster,” and “pill” in the same sentence

as a diagnosis annotation, and if both co-occurred, we annotated

the diagnosis text as a medication.

Vitamin, herb, and supplement additions
cTAKES also produces inconsistent results for annotating herbs and

supplements. Our approach adds an additional dictionary of com-

mon herbs and supplements from MedlinePlus (https://medlineplus.

gov/druginfo/herb_All.html) to capture these.68

Evaluation
We applied our model on the evaluation data set containing 65 tran-

scripts to annotate medication mentions, in addition to capturing

the original medication mention annotation output from cTAKES

4.0.0’s default clinical pipeline. We also applied publicly available

MedEx-UIMA 1.3.7 and MedXN 1.0.1 software on the evaluation

data set to compare our results with their medication name annota-

tions as the baselines.

RESULTS

We calculated the standard evaluation metrics of precision, recall,

and F-score for our proposed approach and the baseline methods us-

ing the medication mention gold standards in our validation and

evaluation sets. These evaluation metrics are shown in Table 3. We

compared the results from cTAKES, MedEx-UIMA, MedXN, and

our proposed model for identification of the gold standard medica-

tion mentions for the 65 transcripts in the evaluation set. Table 4

shows this comparison.

DISCUSSION

Our results indicate that the proposed approach significantly re-

duced the number of false positives, with a relatively small drop in

the number of true positives and false negatives, in comparison to

the best of three baseline models. As highlighted in Table 4, our pro-

posed model has the best overall performance in comparison to the

other baseline methods, with all of its evaluation metrics falling in

the range of 83–87%. Overarching the finer aspects of our work is

the observation that extracting medical terms from conversational

dialogue between patients and their primary care physician has dis-

tinct challenges, such as more informal medical terms and unstruc-

tured content, in comparison to extracting terms from typical

clinical, note-like reports. To the best of our knowledge, the pro-

posed work in this article is the first attempt to extract medical ter-

minology from conversations between a patient and their physician.

Prior work for finding medication mentions has focused on written

clinical reports.47–51

Our error analysis suggests that baseline approaches, which rely

on dictionaries, struggle with patient-clinician conversational text

because of language like filler words (eg, “aha” and “hmm”) match-

ing with abbreviations for medications, and the fact that common

conversational words are often used as medication names. We also

observed, among the filters that we applied to the original cTAKES

outputs, that filtering out “hormone” semantic type had the most

impact on the improvement of the results. The most common

(n>10) false negatives by cTAKES were “flu shot” (36), “tetanus”

(14), and “inhaler” (11). Among annotations that were missed by

one of our two annotators, the most common (>10) cases were

“Vitamin D” (21), “flu shot” (13), and “Mirena” (11). The most

common (>10) false positives in the evaluation set annotated by our

approach were “clot” (15 occurrences) and “over-the-counter” (11

occurrences), and the most common (>10) false negatives missed by

our approach were “inhaler,” “calcium,” and “tetanus” (11 occur-

rences each). A slight but consistent majority of false positives in our

data set were from the discussion of lab test results, which will be a

focus of our future work to improve the current results.

One advantage of our approach is that each portion of our pipe-

line was designed to generalize addressing issues seen during devel-

opment, so our approach was able to recognize terms outside the

development/validation data sets. Other rule-based and dictionary-

based systems have often relied on whitelisting/blacklisting terms

from their development data sets, which limits how they generalize

outside their development data. For example, our use of the 10 000

most common English words from Google’s Trillion Word Corpus

allows us to recognize and filter many common words. Our solu-

Table 2. UMLS semantic types in cTAKES annotations that are fil-

tered out in our approach

TUI Semantic type

T114 Nucleic acid, nucleoside, or nucleotide

T122 Biomedical or dental material

T123 Biologically active substance

T125 Hormone

T130 Indicator, reagent, or diagnostic aid

T197 Inorganic chemical
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tions to chemical elements, UMLS semantic types, allergens, immu-

nizations, and vitamins/herbs/supplements were also all designed to

potentially recognize terms outside what appeared in our develop-

ment data set.

Of note, our evaluation has limitations. Foremost, our evalua-

tion data set is relatively small and is from a single medical institu-

tion. We plan to extend our evaluation data set in future work to

test the generalizability of the proposed approach. In addition, be-

cause our gold standard was created by reaching consensus between

two medical annotators and carrying out our approach, it is possible

that other baseline methods, such as cTAKES, found a small number

of true positives that were not accounted for by any of the annota-

tors or our proposed method. That said, the sheer number of false

positives generated by cTAKES makes adjudication of its medication

mention output impractical. Also, our approach has been developed

to detect only medication mentions in primary care visit notes. Iden-

tifying other types of medical words and their properties in these

notes can significantly increase and broaden the utility of our ap-

proach. Especially, detecting additional information about medica-

tions, such as frequency, dose, refill, modifications, and side effects,

can benefit the patients. We plan to extend our approach to identify

additional information about medications and other semantics

types, such as disorders, in future work. Another limitation is that

clinical visit transcripts are more complex if English is not the

patient’s first language or if an interpreter is involved. Transcripts

do not reflect non-verbal communication, such as visible emotions

and body language. The transcripts do not include the assessment or

plan section of the visit note, which reflect the clinician’s summary

and reflection that may occur after the visit itself. Finally, our ap-

proach, which is based on controlled vocabulary and rule-based fil-

tering, does not consider word context and the corresponding

contextual semantics in different circumstances. Since one of our

goals is using these annotations to index segments of clinic visit con-

versations for end-users to review postvisit, we plan to conduct fu-

ture work with end-users to determine how these limitations may

impact the usability of the system. Future plans to integrate the pro-

posed information extraction methods in this study with a digital li-

brary of clinic visit recordings is expected to make patients and

caregivers more knowledgeable and confident of their health care

needs, resulting in greater self-management capabilities.

Notably, as we fine-tuned our model on the validation set, we

observed that context words in a sentence can be critical in our task,

for example, for determining mentions of immunizations/vaccina-

tions. Our result suggests that although the dictionary- and rule-

based methods can achieve a promising result (F-score ¼ 85%) for

identification of medication mentions in clinic visit conversations,

additional improvements in this domain will be gained through con-

sidering contextual semantics and machine learning models, which

our team will pursue in future work.

CONCLUSION

In this work, we developed an NLP pipeline for finding medication

mentions in primary care visit conversations. The proposed model

achieved promising results (Precision ¼ 86.3%, Recall ¼ 83.8%, F-

Score ¼ 85.0%) for identification of medication mentions in 65

clinic visit transcripts in our evaluation set. Since this is a first-of-a-

kind study with clinic visit transcripts, we compared our approach

to three existing systems used for extracting medication mentions

from clinical notes. This comparison shows our approach can ex-

tract about 27% more medication mentions while eliminating many

false positives in comparison to existing baseline systems. Integra-

tion of this annotation system with clinical recording applications

has the potential to improve patients’ understanding and recall of

key information from their clinic visits, and, in turn, behavioral and

health-related outcomes. We plan to explore this potential in future

trials of our system.
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