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Abstract: The kinetic entrapment of molecules in an amorphous phase is a common obstacle to
cocrystal screening using rapid solvent removal, especially for drugs with a moderate or high
glass-forming ability (GFA). The aim of this study was to elucidate the effects of the coformer’s
GFA and annealing conditions on the nature of amorphous phase transformation to the cocrystal
counterpart. Attempts were made to cocrystallize voriconazole (VRC) with four structural analogues,
namely fumaric acid (FUM), tartaric acid (TAR), malic acid (MAL), and maleic acid (MAE). The overall
GFA of VRC binary systems increased with decreasing glass transition temperatures (Tgs) of these
diacids, which appeared as a critical parameter for predicting the cocrystallization propensity
such that a high-Tg coformer is more desirable. A new 1:1 VRC-TAR cocrystal was successfully
produced via a supercooled-mediated re-cocrystallization process, and characterized by PXRD, DSC,
and FTIR. The cocrystal purity against the annealing temperature displayed a bell-shaped curve,
with a threshold at 40 ◦C. The isothermal phase purity improved with annealing and adhered to the
Kolmogorov–Johnson–Mehl–Avrami kinetics. The superior dissolution behavior of the VRC-TAR
cocrystal could minimize VRC precipitation upon gastric emptying. This study offers a simple
but useful guide for efficient cocrystal screening based on the Tg of structurally similar coformers,
annealing temperature, and time.

Keywords: cocrystal; amorphous; voriconazole; glass-forming ability; annealing temperature;
rotary evaporation

1. Introduction

The application of rapid solvent removal via rotary evaporation has gained increasing popularity
for screening kinetically stable pharmaceutical cocrystals, which cannot be obtained by neat grinding,
slow evaporation, slurry conversion, etc. It is deemed an efficient and easy-to-use approach for
circumventing the inherent cocrystal metastability through creating a sufficiently high degree of
solute supersaturation in solution [1,2]. Nevertheless, at the same time, it is not uncommon to
encounter amorphization during rotary evaporation [3–5] since the rapid elimination of solvent can
kinetically entrap the drug and coformer in amorphous content and prevent these solute molecules
from rearranging into a long-range order structure of crystals. Such an effect is more pronounced for
metastable systems, where the phase purity of cocrystals correlates to the solvent evaporation rate [6].
Although amorphization represents an attractive formulation strategy for improving the apparent
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solubility and dissolution behavior of active pharmaceutical ingredients (APIs), amorphous solids often
possess a relatively low physical stability and are prone to phase transformation to their crystalline
counterparts during storage, as depicted by Ostwald’s rule of successive stages [7,8]. In recent years,
different techniques have emerged in order to enhance the stability of amorphous drugs, such as the
preparation of polymer-based glass solutions, as well as the use of mesoporous silicon and silica-based
carriers [9–11]. The major drawbacks of these approaches are issues associated with a limited drug
loading capacity [12]. Coamorphous systems, consisting of an API and one or more low molecular
weight coformers, represent an attractive alternative for achieving solubility enhancement through
intermolecular interactions [9,13]. Despite no conclusion having been drawn about whether cocrystal
formation is favored over coamorphous systems at present [9], it should be noted that a cocrystal retains
its distinct value in oral dosage form production and storage in light of its capability to simultaneously
improve not only the dissolution rate, but also the tableting behavior and hygroscopicity, etc. [14].

Given that the processing temperature in rotary evaporation can be higher than the glass transition
temperature (Tg) of the amorphous binary mixture of API and coformer, especially when those with
low Tgs are employed, the resulting product has a great propensity to exist in the supercooled rubbery
state. The gel-like nature of supercooled liquids renders them poorly processed and characterized.
More importantly, such a phenomenon might be regarded as a sign of failure towards cocrystallization
due to the unpredictable devitrification at ambient conditions, which may eventually occur in months
or years [15]. The challenge of controlling the crystallization behavior in glass-forming liquids is
associated with the intrinsic glass-forming ability of the compound. The glass-forming ability (GFA)
describes the ease of amorphization of compounds and is generally divided into three classes, based on
their crystallization tendency from the supercooled melt during a differential scanning calorimetry
(DSC) heat-cool-heat cycle [16,17]. Class I compounds, i.e., non-glass formers, readily crystallize from
the supercooled melt upon cooling at a temperature lower than the melting point. In contrast, Class II
and Class III compounds both form amorphous materials upon cooling the melt, while only Class
III compounds exhibit no sign of recrystallization on heating the melt-quenched materials, especially
those with high molecular weights and complex structures.

Compared with the glassy state counterpart, supercooled liquid is less viscous with a higher
molecular mobility, leading to faster recrystallization in a single-component system. However,
in amorphous binary mixtures, the recrystallization rate of the API from supercooled liquid can
be manipulated by the inclusion of coformer, which has been exploited as a potential method for
improving the physical stability of the neat amorphous drug instead of using polymers in amorphous
solid dispersion [18–20]. It is worth noting that previous research studies have mainly reported the
recrystallization of coamorphous systems to individual constituents after storage [21]. Nonetheless,
the annealing conditions (e.g., annealing temperature and storage period) for cocrystal screening and
formation have not been subjected to in-depth investigations. To this end, this study aims to provide
deeper understandings regarding the phase transitions between supercooled amorphous and cocrystal
states. As a prerequisite to developing a robust re-cocrystallization process to mitigate the unwanted
amorphization caused by rotary evaporation, this study will investigate the (i) effect of coformer
on modulating the overall GFA in the amorphous binary mixture, and (ii) effect of the annealing
temperature and annealing time on the recrystallization efficiency and cocrystal purity. Properly
understanding the roles of the abovementioned parameters may offer a clue on how to perform a more
effective and successful cocrystal screening of amorphous binary or coamorphous systems exhibiting
strong GFA.

In this study, voriconazole (VRC) ((2R,3S)-2-(2,4-difluorophenyl)-3-(5-fluoropyrimidin-4-yl)-1-
(1H-1,2,4-triazol-1-yl)butan-2-ol) was chosen as the model compound. It is used as the frontline
therapy against common fungal pathogens, ranging from Aspergillus, Candida, and Scedosporium to
Fusarium spp. [22–24]. Despite its broad-spectrum activity, the efficacy of oral VRC formulations
via systemic administration is hampered by the subtherapeutic concentration owing to its poor
aqueous solubility (<0.1 mg/mL) [25]. Although cocrystal engineering shows promise for modifying the
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physicochemical properties of problematic drugs, relevant successful cases of VRC are currently limited.
From industrial experience, VRC is considered a highly plastic and elastic material which is difficult
to process [26], indicating the propensity of being amorphous during manufacturing. Amorphous
VRC has a low Tg, i.e., 11.9 ◦C, and was previously shown to behave as strong supercooled liquid with
moderate GFA [27]. To investigate the cocrystallization potential of VRC via rotary evaporation in
relation to its GFA in binary mixtures under different annealing conditions, a series of four-carbon
dicarboxylic acids (C4 diacids), namely fumaric acid (FUM), tartaric acid (TAR), malic acid (MAL),
and maleic acid (MAE), with distinct Tgs were employed as the coformers (Figure 1). All of them are
pharmaceutically approved excipients, while TAR also exerts certain inhibitory effects on the fungal
growth of Aspergillus flavus and Penicillium purpurogenum, etc. [28]. Given the structurally similar
nature of the coformers, we believe that the findings may offer important insight into the interplay
between GFA and annealing conditions, and can open up a new direction for the successful screening
of elusive cocrystals and advance the manufacturing efficiency by means of rotary evaporation.
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2. Materials and Methods

2.1. Materials

Voriconazole (VRC, >99.5%) was purchased from Yick Vic Chemicals & Pharmaceuticals Limited,
Hong Kong, China. l-(+)-Tartaric acid (TAR), fumaric acid (FUM, ≥99%), maleic acid (MAE, ≥99%),
and L-(-)-Malic acid (MAL, ≥99%) were supplied by Sigma-Aldrich (St. Louis, MO, USA). Ethanol of an
analytical grade was sourced from VWR BDH Chemicals (VWR International S.A.S., Fontenay-sous-Bois,
France). Potassium bromide (KBr) for FTIR analysis was obtained from J&K Scientific Limited,
Beijing, China. Water was purified through the Barnstead Ultrapure Purification System (Thermo Fisher
Scientific, Waltham, MA, USA).

2.2. Preparation of Cocrystals

A total of 300 mg of 1:1 equimolar VRC and C4 diacid (FUM: 0.64 mol, TAR: 0.6 mol, MAE: 0.64 mol,
and MAL: 0.62 mol) was dissolved in 100 mL ethanol, followed by sonication, until a clear solution was
obtained. Ethanol was then removed using an EYELA N-1300 rotary evaporator (EYELA Corporation
Ltd., Shanghai, China) in a vacuum environment of −0.1 MPa, achieved by the EYELA A-1000S
Aspirator Pump (EYELA Corporation Ltd., Shanghai, China), with a rotating speed of 20 rpm and a
water bath temperature of 60 ◦C, resulting in an average solvent evaporation rate of around 0.19 mL/s.
After solvent dryness, the round bottom flasks were sealed with aluminum foil to minimize the effect
of moisture, and dried at different annealing temperatures (4, 20, 40, 60, and 80 ◦C). Subsequently,
the products were collected in parafilm-wrapped plastic vials at designated time points for further
analysis in triplicate.

2.3. Differential Scanning Calorimetry (DSC)

Thermal analysis was conducted by a TA DSC 250 differential scanning calorimeter (TA Instruments,
New Castle, DE, USA) with nitrogen as purge gas at 50 mL/min. Pure indium was used for routine
calibration of the enthalpy and cell constant. Samples in the range of 1 to 3 mg were accurately
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weighed and encased in Tzero Aluminum Hermetic pans (TA Instruments, New Castle, DE, USA) with
a pinhole-vented lid if required and heated at a scanning rate of 10◦C/min to generate the thermogram.
The TA Trios Software (v5.1.1, TA Instruments, New Castle, DE, USA) was used for data analysis.
The glass formation of VRC-TAR was investigated by a DSC heat-cool-heat cycle using its physical
mixture: Heating to a temperature above the peak melting point at a ramp rate of 10 ◦C/min, followed
by quench cooling to −70 ◦C at a ramp rate of 50 ◦C/min. Detection of the Tg was then achieved by
heating the system again at a heating rate of 10 ◦C/min.

2.4. Powder X-ray Diffraction (PXRD)

The X-ray powder diffraction data were collected using a Panalytical X-ray diffractometer
(Philips X’Pert PRO, Eindhoven, The Netherlands), equipped with Cu−Kα radiation (λ = 1.5406 Å,
40 kV, 40 mA). The sample was evenly packed in a custom-made aluminum holder with a 2 mm
depth and scanned with a 2θ interval from 2 to 40◦ at a 0.04◦ step size with a 4◦ per minute scanning
speed. The amplitude (A) and full width at half maximum (FWHM) of the XRD characteristic
peaks were obtained by Gaussian fit using OriginPro software (2020, OriginLab Corporation,
Northampton, MA, USA), in order to calculate the peak area.

2.5. Fourier-Transform Infrared Spectroscopy (FTIR)

An FTIR spectrometer (ALPHA, Bruker, Ettlingen, Germany) in diffuse reflectance mode was
used to obtain FTIR spectra. A small quantity of sample was gently ground with IR grade potassium
bromide (KBr) at a ~1:100 w/w ratio using a marble pestle and mortar. The sample was subsequently
compressed into a thin translucent disc under two tons of force using a Mini-Pellet Press (Specac Limited,
Orpington, UK). A total of 16 scans were performed in the range of 4000 to 500 cm−1 at a resolution of
4 cm−1 for each sample. The data generated were analyzed by the built-in software.

2.6. High Performance Liquid Chromatography (HPLC)

The concentrations of VRC and TAR in the solubility and dissolution study were examined using
an HPLC system equipped with a diode array detector (Agilent 1200 series, Agilent Technologies,
Wilmington, DE, USA) and an Agilent Zorbax Eclipse Plus C18 column (5 µm, 250 mm × 4.6 mm,
Agilent Technologies, Wilmington, DE, USA) in isocratic conditions. For VRC, the mobile phase
consisted of a mixture of acetonitrile and 0.5% formic acid solution (50:50 v/v), as reported by
Liao et al. [29]. For TAR, a mobile phase made up of 50 mM phosphate buffer (pH = 2.2 adjusted with
phosphoric acid) was used. The detection wavelengths were 256 and 214 nm with retention times of
5.6 and 2.9 min for VRC and TAR, respectively. A 25 µL aliquot of each sample solution was injected
and ran at an isocratic flow rate of 1 mL/min at room temperature.

2.7. Powder Dissolution Study

The dissolution study was carried out in triplicate using the Copley Dissolution Tester DIS8000
(Copley Scientific Limited, Nottingham, UK). Considering that a 50 mg VRC tablet is often recommended
for critically ill patients with fungal infections, the release profiles of 50 mg of VRC powder and
71.5 mg of VRC-TAR cocrystal powder (equivalent to a 50 mg VRC content) prepared by rotary
evaporation were examined. The variation of the particle size and morphology of the samples was
minimized using a standard testing sieve with a diameter of 63 µm (VWR International, West Chester,
NY, USA). The morphologies of the sifted samples were observed under a phase contrast microscope
(Nikon ECLIPSE, TS100, Tokyo, Japan). The powders were poured into dissolution vessels containing
900 mL of 0.1N HCl (pH 1.2) and phosphate buffer (pH 6.8) solution, respectively, with a paddle
rotation speed of 50 rpm at 37 ◦C. A total of 5 mL of the dissolution medium was withdrawn at specific
time points, i.e., 2.5, 5, 10, 15, 20, 30, 45, 60, 90, and 120 min, and replaced with an equal volume of
fresh buffer medium. The sample solution was filtered through a nylon syringe filter with a pore size
of 0.45 µm and subjected to HPLC analysis, as described in Section 2.6.
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3. Results and Discussion

3.1. Role of C4 Diacid Coformers in Altering the Glass-Forming Ability and Crystallization Tendency of VRC

It was previously reported that VRC could cocrystallize with FUM via liquid-assisted grinding
with methanol, which modulated the mechanical property of VRC [30]. Surprisingly, the potential of
VRC cocrystal formation with TAR, MAE, and MAL has not received attention, despite the fact that they
share highly similar chemical structures. Here, we aim to fill this gap by means of rotary evaporation
and relate the cocrystallization outcome to the glass-forming ability of resultant products. A new 1:1
VRC-TAR cocrystal was successfully derived in the present study (see Section 3.3). To gain a better
understanding on the crystallization behavior of the products obtained, their visual appearance was
captured right after the completion of rotary evaporation (Figure 2A). When subjected to a processing
temperature of the water bath of 60 ◦C, 1:1 VRC-FUM readily crystallized within a few minutes.
However, VRC-TAR, VRC-MAE, and VRC-MAL in 1:1 stoichiometry appeared as either optically
transparent amorphous material or a mixed phase with a microcrystalline dispersion in an amorphous
mass, of which their solid state properties were not able to be timely characterized due to the high
instability and stickiness nature of the product prior to annealing. After annealing at a temperature of
60 ◦C for 3 days (Figure 2B), only the VRC-TAR system underwent an obvious phase transformation
from an amorphous mixture to a crystalline phase, while VRC with MAE and MAL remained as
supercooled liquid.
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In the context of the glass-forming ability (GFA), the molecular weight is an important descriptor,
as larger compounds are generally less prone to crystallization [31]. With a relatively high molecular
weight (i.e., 349.31 g/mol) among pharmaceutical compounds, VRC has previously exhibited a moderate
GFA [16,27]. The finding herein demonstrated that the GFA of VRC could be tuned by rapid solvent
removal with the selected coformers. TAR, MAE, and MAL enhanced the GFA of VRC to different
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extents, such that it was easier to convert VRC into amorphous than pure VRC (Figure 2). Moreover,
the cocrystallization tendency of these systems is apparently associated with the glass transition
temperature (Tg) of the coformers, which is a common kinetic parameter employed for predicting the
temperature dependence of the molecular mobility and physical stability of amorphous pharmaceutical
solids during formation and storage [32,33]. The Tgs of the diacids are listed in Table 1 [34]. Due to
the high resistance of FUM and MAE to being amorphized when melt-quenched, their theoretical Tg

values were estimated using an empirical model where Tg ≈ (2/3)Tm (Tg: glass transition temperature
and Tm: melting temperature, in degree Kelvin) [35,36]. The Tg derived from this relationship has
been shown to be in good agreement with the experimental values for a wide variety of organic
compounds [37–39]. As depicted in Figure 2, it can be seen that the overall GFA of VRC binary
systems increased with the decreasing Tg of the diacid coformer. VRC with FUM, which has the
highest Tg (105.2 ◦C) among the four diacids, showed non-glassy Class I GFA behavior and readily
cocrystallized from the supercooled melt, regardless of the effect of annealing. In contrast, attempts to
cocrystallize VRC with TAR, which has the second highest Tg (16 ◦C), rendered VRC that exhibited
Class II GFA behavior via rotary evaporation. This is inferred based on the common trend that the
melt-quenched amorphous phase of Class II GFA compounds could crystallize when being stored
above the Tg, as opposed to Glass III compounds. Without an obvious sign of recrystallization,
the diacids with relatively low Tgs, i.e., MAE (4.6 ◦C) and MAL (−20 ◦C), on the other hand, resulted
in Class III GFA behavior [16,40]. It has been shown that for co-milling and spray-drying, which are
also major sources of inducing amorphization, high Tg excipients confer functional advantages for
stabilizing the amorphous drugs [41–45]. However, the opposite trend was observed in our study, i.e.,
the crystallization tendency was positively correlated with the Tg of the coformer (Figure 2). Although
MAL exhibited the lowest Tg among the selected C4 diacids, VRC-MAL was exceptionally stable with
high GFA and retained in transparent amorphous mass after 14 days of aging. Consequently, to control
an unwanted amorphization of APIs triggered by rotary evaporation, especially those with moderate or
high GFA, a structurally similar coformer with a higher Tg might be more desirable. This discrepancy
is perhaps not surprising and can be attributed to the different types of intermolecular interaction
involved. Polymeric carriers, which are usually employed in fabricating amorphous solid dispersions,
generate less specific molecular interactions, while the molecular recognition is stronger and more
directional to influence the crystallization tendency when stoichiometric hydrogen bonds are formed
in cocrystal.

Table 1. Thermal properties of VRC and C4 diacid coformers.

Chemical Name M.W. (g/mol) M.P. (◦C) ∆Hf (kJ/mol) Tg (◦C)

VRC 349.3 131.4 32.4 11.9 1

FUM 116.1 294.4 56.0 105.2 2

TAR 150.1 173.1 36.0 16 3

MAE 116.1 143.4 30.9 4.6 2

MAL 134.1 101.1 22.1 −20 3

1 Ref. [27], 2 calculated using Tg = (2/3)Tm rule, and 3 ref. [46].

The advantage of selecting high-Tg coformers in cocrystal screening might have an important
implication for the elusiveness of some cocrystal systems, for example, aliphatic dicarboxylic acids with
variable carbon chain lengths (i.e., HOOC–(CH2)n–COOH) are regarded as the most commonly used
coformers. Historically, many research groups have reported unsuccessful attempts to cocrystallize
long-chain acids (n = 7–10) with different pharmaceutical compounds, such as itraconazole and
ketoconazole, etc., despite their structural resemblance to other short-chain acids [47–55]. A marked
odd-even alternating pattern was also observed: An odd number of carbon atoms tended to exhibit
a lower cocrystallization efficiency [52,56,57]. However, the cause of these interesting phenomena
was not unambiguously justified. As discussed earlier, our data established a clear trend that the
cocrystal formability gradually diminished when the Tgs of the structurally similar C4 diacid coformers
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decreased, through influencing the overall GFA of the binary systems (Figure 2). It is notable to point
out that, in general, long-chain diacids (n = 7–10) have relatively lower melting temperatures than
short-chain diacids, and accordingly, lower Tgs, based on the empirical rule Tg ≈ (2/3)Tm. Furthermore,
the odd-numbered diacids have low melting temperatures and subzero Tgs compared with their
adjacent lower even-numbered diacids, owing to their inability to assume an in-plane orientation
of both carboxylic groups with respect to the hydrocarbon chain [58]. Provided that Tg serves as a
useful parameter for predicting the cocrystallization propensity, this may help shed light on why
some diacids are particularly difficult to apply for forming cocrystal. Further validation of this simple
prediction approach may facilitate a more rational design of novel pharmaceutical cocrystals against a
large library of structurally similar coformers.

3.2. Effects of the Annealing Temperature and Annealing Time on the Supercooled Liquid-Mediated
Re-Cocrystallization of the Amorphous VRC System: A Case Study of the VRC-TAR System

There has been a keen interest in shedding light on the phase transformations between cocrystal
and amorphous systems, as well as their physical stability. Still, little is known regarding the
interplay between coamorphous systems and cocrystals. Previous studies have mainly investigated the
recrystallization of coamorphous systems to individual components after storage [21]. Hardly any have
reported the recrystallization of coamorphous systems into the corresponding thermodynamically more
stable cocrystal form [9,19]. As a prerequisite to understanding the cocrystallization from supercooled
binary liquid, the effects of the (a) annealing temperature and (b) annealing time on the cocrystallization
efficiency, as well as the phase purity of the obtained cocrystal, were further investigated using the
VRC-TAR cocrystal as a model system.

3.2.1. Annealing Temperature

The morphology of the VRC-TAR system subjected to annealing temperatures ranging from 4 to
80 ◦C was examined after 3-day storage (Figure S1). It is worth mentioning that cocrystallization of the
amorphous VRC-TAR system appeared to happen through a supercooled liquid-mediated process,
which was highly dependent on the temperature during storage. Thermal analysis and PXRD patterns
of products after annealing are depicted in Figure 3a,b. Interestingly, the VRC-TAR system manifested
the highest purity when the annealing temperatures were set as equal to 40 ◦C. The corresponding
DSC profile showed a sharp melting endotherm at around 136 ◦C, i.e., the melting point of the phase
pure 1:1 VRC-TAR cocrystal, while the PXRD data revealed the strongest intensity of the cocrystal
characteristic peaks at 5.10◦ and 10.21◦ 2θ.
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(PXRD) patterns of the VRC-tartaric acid (TAR) system at different annealing temperatures (tanneal = 3d).

It is evident that the enthalpy of fusion (kJ/mol) for the VRC-TAR cocrystal melting purity
against the annealing temperature displayed a bell-shaped curve, such that temperature elevation
and reduction above/below the threshold (40 ◦C) both inhibited the phase transformation to different
extents (Table 2, Figure 4). An annealing temperature of 4 ◦C entirely resisted the re-cocrystallization
process, with no intact melting endotherm being detected. However, when the 1:1 undercooled liquid
mixture of VRC and TAR was stored at 20 ◦C, the DSC profiles suggested the presence of a metastable,
partially crystalline state, with weaker melting endotherms located at 130.6 ◦C. A similar observation
was also made at a high temperature, i.e., 80 ◦C. The result implies that the storage condition was
a primary driver governing the kinetic of molecular packing, which affects the eventual occurrence
of recrystallization. Fine-tuning the annealing temperature should be deemed as a particularly
useful strategy for effectively obtaining hidden cocrystals, where the binary mixture of the individual
coformers is associated with a relatively high GFA, such as the VRC-TAR system. For systems such as
VRC-FUM with a low GFA, which could be instantly produced after rotary evaporation, the effect of
the annealing temperature would be minimal (Figure S2).

Table 2. Temperature-dependent change in the thermal properties of the VRC-TAR system after
3-day annealing.

Annealing Temp. (◦C) M.P. (◦C) ∆Hf (kJ/mol)

4 −
1

−
1

20 130.6 ± 5.0 32.5 ± 3.2
40 137.6 ± 0.5 49.6 ± 2.6
60 136.3 ± 2.1 42.5 ± 2.2
80 135.5 ± 1.7 36.5 ± 3.8

1 An annealing temperature of 4 ◦C produced a gel-like supercooled liquid for which the melting point and enthalpy
could not be identified.
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It has been documented that for a single-component system, the crystallization process is intimately
linked to the molecular mobility [40]. The propensity of crystallization of materials is higher above
than below the Tg, since the material is less viscous with a higher molecular mobility in a supercooled
liquid state. This favors faster crystallization compared with its brittle glassy state counterpart. For a
binary mixture, the relationships between the composition of the mixture and the Tg are commonly
estimated by the Fox equation [59,60]:

1
Tgmix

=
w1

Tg1
+

w2

Tg2
, (1)

where w1 and w2 are the weight fractions of components 1 and 2, respectively, and Tg1 and Tg2 are
their glass transition temperatures in Kelvin, respectively. In the case of amorphous VRC-TAR, the
calculated Tg value is 13.12 ◦C using the theoretical Tg of amorphous TAR (16 ◦C) and the Tg of
amorphous VRC (11.9 ◦C) from the literature [27,46], which is lower than the experimental Tg of
the VRC-TAR amorphous binary mixture (14.24 ◦C, Figure S3). The positive deviation from ideal
behavior substantiates the formation of specific intermolecular interactions (predominately hydrogen
bonding) in the amorphous VRC-TAR system upon rotary evaporation, since the Fox equation assumes
that the system exhibits nearly ideal volume additivity and a negligible tendency to interact [61–63].
This implies a stronger binding between VRC and TAR than to themselves, leading to a lower molecular
mobility. Therefore, it could be postulated that when the annealing temperature was at 4 ◦C, VRC-TAR
would remain in a brittle glassy state with a low molecular mobility and the cocrystallization kinetic
was not fast enough against amorphization. At an annealing temperature in close proximity of the Tg

(20 ◦C), kinetic competition between cocrystallization and amorphization might happen. Above the
Tg (40 and 60 ◦C), the amorphized content of VRC-TAR became lower and more rapid crystallization
towards the cocrystal form was facilitated by the higher molecular mobility in supercooled liquid.
However, one should note that a further increase in the annealing temperature over the optimum
might generate spatial disorder and result in a structure consisting of randomly oriented coformers
due to the very high molecular mobility.

3.2.2. Annealing Time

The short-term physical stability of the VRC-TAR cocrystal system was subsequently tested with
a constant annealing temperature of 60 ◦C for the periods of 1h, 2 h, 5 h, 1 d, 3 d, and 30 d. It is
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noticeable that the DSC peak position of the product shifted to a higher temperature until reaching a
threshold of ~136 ◦C on the 3rd day of aging, which is the melting point of pure VRC-TAR cocrystal
(Figure 5a). In general, the enthalpy of fusion (kJ/mol) corresponding to VRC-TAR cocrystal melting
increased with an increase of the annealing time, indicating improvement of the cocrystal phase
purity via the formation of stronger intermolecular hydrogen bonding between the API and the
coformer (Figure 6 and Figure S4). The PXRD data also showed a gradual enhancement in the
integral intensity of the cocrystal characteristic peaks at 5.10◦ and 10.21◦ 2θ (Figure 5b). These suggest
the existence of an intermediate coamorphization stage preceding the transformation towards the
thermodynamically more stable cocrystalline phase. It is plausible that cocrystallization via rapid
solvent removal, i.e., rotary evaporation, is generally a multi-step process. The kinetic entrapment
of VRC cocrystal molecules initially resulted in an unwanted transient amorphous state with a high
instability, as predicted by Ostwald’s rule of successive stages [7]. This short-lived metastable species
converted into cocrystal at a specific timescale under appropriate processing conditions, which was
dependent on the annealing temperature, as well as the GFA of the API and coformer.
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Figure 6. Elevation of melting enthalpy throughout annealing of the VRC-TAR system (Tanneal = 60 ◦C,
n = 3).

The kinetics of the amorphous-to-cocrystal phase transformation of VRC-TAR at 60 ◦C was also
investigated by analyzing the time-dependent change in the relative crystallinity (%RC) of the product
obtained, which was calculated as the peak area of the 5.10◦ and 10.21◦ 2θ characteristic peaks at different
annealing time points (PA[t]) divided by those at 30 d-annealing (i.e., the highest attainable crystallinity
at 60 ◦C) (Table 3). High-angle Bragg peaks were excluded for comparison since it is generally agreed
that high-angle XRD data generate poorer counting statistics, which can be attributed to the combined
effects of a decrease in the scattering coefficient with increasing sin θ/λ, the Lorentz–polarization
factor, and thermal vibrations [64]. The isothermal nucleation and growth process of VRC-TAR can be
fitted into the Kolmogorov–Johnson–Mehl–Avrami (KJMA) equation [65–67]. The KJMA equation is a
classical kinetics theory applied in a variety of metals and pharmaceutical compounds for describing
the phase transformation between crystalline and amorphous phases:

y = 1− exp(−ktn), (2)

where y is the transformed phase fraction; k is the overall rate constant depending on the temperature;
t is the time; and n is the Avrami exponent, which provides a qualitative indication of the mechanisms
of the nucleation processes and crystal growth. The transformed phase fraction (y) is represented by
the calculated %RC of the cocrystal. Since the equation is usually rewritten as

ln(− ln[1− y]) = ln(k) + n ln(t), (3)

the experimental data are then plotted as ln(− ln[1− y]) against ln(t) for tracing the transformation’s
underlying mechanisms.

Table 3. Time-dependent change in the relative crystallinity (%RC) of the VRC-TAR cocrystal at an
annealing temperature of 60 ◦C.

Annealing Time PA[t] at 5.10◦ 2θ %RC at 5.10◦ 2θ 1 PA[t] at 10.21◦ 2θ %RC at 10.21◦ 2θ 1

1 h 3.1 9.0 3.3 15.7
2 h 7.5 22.0 2.6 12.4
5 h 12.0 35.0 5.9 28.3
1 d 18.0 52.4 14.7 69.9
3 d 25.9 75.4 17.5 83.1
30 d 34.4 100 21.0 100

1 RC of the VRC-TAR cocrystal = PA[t]/PA [30 d]; t = annealing time.
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As shown in Figure 7a,b, the cocrystallization expresses an Avrami-like kinetics, yielding a
straight line with slope n and intercept ln(k) (R2 > 0.94). Therefore, the Avrami exponent and the
reaction rate could be deduced as 0.604 and 0.129 (average values obtained from 5.1◦ and 10.21◦ 2θ),
respectively. In fact, it is not uncommon to obtain an effective Avrami exponent with values lower than
1 in the literature [68]. For instance, Lin et al. reported a relatively low Avrami exponent of 0.37 for
nanocrystalline copper prepared by dynamic plastic deformation owing to the effect of heterogeneity
of the deformation microstructure on the recrystallization kinetics [69]. In the case of VRC-TAR,
this could also be reasonably attributed to the presence of a non-zero transformed fraction at the starting
point of annealing, since there might exist a trace amount of instantaneous microcrystalline growth
at the boundaries of the original phase upon the completion of rotary evaporation [68]. Despite the
limitations of applying the KJMA model to the supercooled liquid-mediated re-cocrystallization,
the well-established framework renders it appealing for extracting useful kinetic parameters for
preliminary analysis and a system-to-system comparison. An overview of the interplay between
the GFA, annealing conditions, and cocrystallization behavior of the VRC systems is summarized
in Figure 8.
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3.3. Physical Characterization of the VRC-TAR Cocrystal

A better understanding of the physicochemical properties of the newly synthesized VRC-TAR
cocrystal is desirable. The formation of this new phase was confirmed by PXRD, DSC, and FTIR,
respectively. The PXRD patterns of the VRC-TAR sample displayed a number of distinct diffraction
peaks (2θ = 5.10◦, 10.21◦, 15.29◦, 19.19◦, 22.98◦, and 23.38◦), while characteristic peaks (VRC: 12.72◦,
13.88◦, 16.02◦, 16.61◦, and 19.85◦ 2θ; TAR: 11.54◦, 15.86◦, 18.67◦, and 20.68◦ 2θ) corresponding to VRC
and TAR were absent (Figure 9a). No solid-state polymorphic change of VRC was observed by rapid
evaporation on the basis of the XRD diffractograms (Figure S5). Figure S6 shows the PXRD patterns of
the VRC-FUM, VRC-MAE, and VRC-MAL systems. The PXRD pattern of the VRC-FUM cocrystal
reproduced by rotary evaporation is consistent with that reported in the literature [30], while those of
the other two systems were simply superposition of the cocrystal formers.
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Regarding thermal analysis, the DSC thermograms of VRC, C4 diacid coformers, and the
corresponding binary products obtained by rotary evaporation are illustrated in Figure 9b and Figure
S7. The data of VRC-TAR confirmed the presence of a homogeneous solid phase with a high phase
purity, showing a sharp single endotherm at 137.6 ◦C. This could be assigned to the melting point
of the cocrystal, which lies between those of VRC (131.3 ◦C) and TAR (173.1◦C), and thus excluding
the possibility of a eutectic formation. The cocrystal only existed at a 1:1 molar ratio. The binary
mixtures of TAR with varying VRC mole fractions in the range of ~0.2 to 0.4 were retained as a
gel-like mass and thus posed a challenge in constructing a temperature–composition phase diagram
through thermal analysis. The crystal lattice strengthening effect upon cocrystallization was revealed
by the elevated enthalpy of fusion (∆Hf) of the VRC-TAR cocrystal (49.56 kJ/mol) compared with
its starting materials (VRC: 32.4 kJ/mol, TAR: 36.0 kJ/mol). In contrast, slow solvent evaporation in
ethanol resulted in incomplete conversion to the cocrystal (Figure 9a,b). This could be ascribed to the
incongruent solubility of VRC (63.0 ± 0.9 mg/mL) and TAR (272.5 ± 6.4 mg/mL) in the crystallization
solvent, reflecting the propensity of the less soluble former, i.e., VRC, to preferentially crystallize out
from solution before it reaches the labile zone for spontaneous cocrystallization [1].

The overlaid FTIR spectra for the VRC-TAR cocrystal system are presented in Figure 9c.
In correspondence with the literature [70,71], VRC showed a broad peak at 3198 and 3119 cm–1

attributed to the O–H stretching and aromatic rings (amine N–H stretch). Sharp peaks at 1620 and 1587
cm–1 are indicative of C=N stretching and aromatic C=C stretching, respectively, while the presence of
the C–F bond is assigned to the peak at 1407–1095 cm–1. The spectra of TAR displayed characteristic
C=O stretching at 1732 cm–1 and an absorption band in the region of ~3500–2700 cm–1 as a result
of a broad O–H band superimposed on the C–H stretching. Spectral peak shifts were observed for
various functional groups in VRC-TAR cocrystal, suggesting an alteration of the chemical environment
of the solid state. Compared with pure VRC, the phenolic O−H stretching frequency of VRC-TAR
dramatically upshifted to 3319 cm–1, which implies the formation of an O–H· · ·N heterosynthon
between the carboxyl group of TAR with the torsionally flexible triazole or pyrimidine N atoms in
VRC [30]. The C=N and C=C stretches in cocrystal were unaffected.

3.4. Dissolution Performance

VRC is currently available on the market as an intravenous infusion solution and two oral
formulations, film-coated tablets, and suspensions [72]. Despite its broad-spectrum of activity compared
with its structural congener fluconazole, VRC exhibits a lower aqueous solubility (< 0.1 mg/mL) and
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non-linear pharmacokinetics associated with a narrow therapeutic range [25,73,74]. Approximately
100-fold inter-patient variability in plasma drug levels was reported, which implies that standard oral
VRC doses might be inadequate for achieving an effective concentration in some cases, especially in
critically ill patients [73,75]. Given that VRC is a poorly water-soluble weak base, one of the factors
associated with the erratic absorption could be the physiological change in fluid pH, composition,
and volume after gastrointestinal transfer [76,77]. The highly pH-dependent solubility renders VRC
susceptible to intestinal precipitation as the pH elevates upon entry of the small intestine, where
the absorption takes place. As the cocrystal solubility has been shown to be directly proportional
to the solubility of constituent reactants (i.e., the drug and coformer) [55], the cocrystallization of a
poorly water-soluble API with a water-soluble coformer is expected to offer a dissolution advantage
in formulation.

To this end, we sought to compare the dissolution profiles of the VRC-TAR cocrystal against
raw VRC using compendial buffer media at pH 1.2 and pH 6.8. As shown in Figure 10, the VRC and
VRC-TAR cocrystal both underwent rapid dissolution at pH 1.2. Nonetheless, the release of VRC was
substantially reduced at pH 6.8. At 45 min, i.e., the end point of the VRC dissolution test recommended
by the US FDA, all VRC dissolved at pH 1.2, whereas only 59.7% was released at pH 6.8, and therefore,
it is estimated that a significant portion of VRC would precipitate in the intestine after gastric emptying.
On the other hand, the VRC-TAR cocrystal conferred superior dissolution enhancement over VRC at
pH 6.8, as an initial burst release of 41.5% was observed at 5 min, and it reached a plateau at a 95% VRC
fraction of release after 30 min. The release profile followed first-order kinetics in the beginning 15 min
(R2 = 0.95). The release of VRC was maintained for up to 2 h, without any precipitation. Through
minimizing the VRC concentration difference between the dissolution behaviors of VRC-TAR cocrystal
at pH 1.2 (red line) and pH 6.8 (green line), the driving force for precipitation could be lessened in the
gastrointestinal tract.
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Since the VRC-TAR cocrystal and raw VRC were sifted within the same size range to negate
the effects of the particle size and morphology upon dissolution (Figure S8), the intrinsic dissolution
rate (IDR) can be roughly estimated based on the slope of the initial linear region of the cumulative
dissolution curve, i.e., (dm/dt)max, using the equation IDR = (dm/dt)max/A, where A is the specific
surface area of the dissolution sample. The IDR ratio of VCR-TAR to VRC is 5.76, resulting in a ~6-fold
enhancement in the rate of dissolution of the cocrystal in comparison to raw VRC in the intestinal
environment. Hence, the cocrystallization of VRC with TAR substantially improved the dissolution
performance of VRC at pH 6.8 due to the higher aqueous solubility of TAR, i.e., 206 mg/mL at 20 ◦C [78].
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4. Conclusions

Amorphous solids, incorporating an active pharmaceutical ingredient and a coformer, are often
encountered during cocrystal screening via rapid solvent removal. This study delineated the effects of
the coformer’s GFA and annealing conditions on the re-cocrystallization behavior of an amorphous
system. Careful manipulation of the annealing temperature and time allowed the effective production
of a phase pure 1:1 VRC-TAR cocrystal from its amorphous counterpart via a supercooled-mediated
re-cocrystallization process. The cocrystal exhibited a 6-fold increase of the dissolution rate, which may
mitigate the problematic issue of the erratic bioavailability of VRC by preventing its precipitation at
an intestinal pH. Further investigation is warranted to determine whether the strategy could revive
the previously failed attempts at a target cocrystal, and therefore expand the pharmaceutical solid
form diversity.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/12/12/1209/s1:
Figure S1: The morphology of the VRC-TAR system presented in a round bottom flask at different annealing
temperatures (tanneal = 3d); Figure S2: The melting temperatures and morphologies of the VRC-FUM system at
different annealing temperatures (tanneal = 3d); Figure S3: Tg determination for the VRC-TAR system through a
DSC heat-cool-heat cycle. Green line: Heating (10 ◦C/min); blue line: Quench cooling (50 ◦C/min); black line:
Re-heating (10 ◦C/min); Figure S4: The morphology of the VRC-TAR system presented in a round bottom flask
at different annealing time points (Tanneal = 60 ◦C); Figure S5: PXRD patterns of VRC pre- and post-rotary
evaporation; Figure S6: PXRD patterns of VRC-FUM, VRC-MAE, and VRC-MAL systems produced by rotary
evaporation; Figure S7: DSC profiles of VRC-FUM, VRC-MAE, and VRC-MAL systems produced by rotary
evaporation (* regarded as the degradation peak of VRC-MAL); and Figure S8: Optical micrographs of the (a)
sifted VRC and (b) VRC-TAR cocrystal at a magnification of 40x.
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