
New and Notable
Graph, pseudoknot, and SARS-CoV-2 genomic RNA:
A biophysical synthesis
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The COVID-19 pandemic poses an ur-
gent challenge to the scientific commu-
nity. Current worldwide efforts to
develop effective vaccines and thera-
peutic drugs targeting protein or the
RNA genome have led to unprece-
dented demand for accurate modeling
of the structure and intermolecular in-
teractions for the severe acute respira-
tory syndrome coronavirus 2 (SARS-
CoV-2) virus. One of the outstanding
problems is the structural modeling
for the viral RNA genome. At the
genomic level, the SAR-CoV-2 virus
is a positive-sense RNA virus encoded
in a 30,000-nucleotide RNA sequence.
Decades of coronavirus research have
suggested highly conserved structural
domains that play crucial roles in viral
replication and infection. These struc-
tural domains offer a plethora of tar-
gets for drug design. One such major
drug target is the frameshift stimula-
tion element (FSE).

During translation of the viral RNA,
the downstream RNA structure me-
chanically blocks ribosome movement,
resulting in a translational pause,
which can accommodate a subsequent
shift in the open reading frame and
production of multiple proteins, such
as gag and pol. Aberrant frameshift ef-
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ficiencies lead to abnormal ratios of
protein production, damaging viral as-
sembly and replication. Therefore,
altering or inhibiting the frameshift ef-
ficiency through drug binding to the
RNA is a highly promising strategy
for inhibiting SARS-CoV-2 activity.

At the center of the frameshift ma-
chinery is the FSE RNA. Computa-
tional and experimental studies
suggest that the native (functional)
structure of FSE is an H-type pseudo-
knot. With the pseudoknot structure,
the frameshift machinery is a three-
component system: 1) a 7-nucleotide
single-stranded slippery region (nucle-
otides 13405–13411); 2) a downstream
pseudoknot (13418–13488) composed
of helix stems S1 (13418–13427/
13438–13447) and S2 (13431–13437/
13478–13485), which are cross-linked
by loops L1 (13428–13430) and L2
(13448–13477), and a third stem S3
(13448–13456/13466-13475) inside
loop L2; and 3) a 6-nucleotide spacer
(13412–13417) between the slippery
sequence and the downstream pseudo-
knot.

Inspired by the therapeutic impor-
tance for understanding the sequence-
structure relationship for FSE, as re-
ported in this issue of Biophysical
Journal, Schlick et al. (1) recently per-
formed a systematic computational
study to search for the structurally crit-
ical nucleotides that may serve as drug
targets. Specifically, Schlick et al.
exhaustively scanned the mutations to
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identify nucleotides whose mutations
would destroy the native structure.
The study led to several surprising
findings, including the discovery that
mutating only two to three critical nu-
cleotides would be sufficient to cause
dramatic structural changes and hence
possible disruption of frameshifting.

Conformational sampling is one of
the major challenges for computational
study of sequence-structure relation-
ships. Incomplete or poor-quality sam-
pling is often the culprit for inaccurate
predictions of RNA folding. Schlick
et al. developed and employed a highly
innovative graph-theoretic approach,
RNA-As-Graphs (RAG), to tackle the
sampling problem (2). The key strat-
egy of RAG is to transform an RNA
two-dimensional (2D) structure into a
tree (or dual) graph in which loops (he-
lices) and helices (loops) are repre-
sented as vertices and edges,
respectively. For example, in terms of
a dual graph, a two-stem H-type pseu-
doknot can be represented as two
vertices (two helix stems) connected
by two edges (two cross-linked loops).

Because mapping from a structure to
a graph effectively silences informa-
tion about helix and loop lengths and
retains only the ‘‘topology’’ of the
network of helix-loop connectivity,
RAG leads to a drastic reduction in
the (graphical) conformational space.
Another notable feature that distin-
guishes the RAG model from other
coarse-grained RNA folding models
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is that the model provides a platform
for direct application of various power-
ful and rigorous graph theory tools. For
example, the graph partitioning algo-
rithm gives a rigorous method to mod-
ularize a structure. Moreover, the exact
enumeration of all the possible graphs
for a given number of vertices makes
it possible to exhaustively sample all
possible RNA motifs and structures,
including new folds not yet discovered
in experimentally determined struc-
tures.

In the study of sequence-structure
relationships, exploring the sequence
space with high computational effi-
ciency is another major challenge. To
tackle this challenge, Schlick et al.
developed the RAG-IF approach to
select sequences that fold into a given
target structure (the inverse folding
problem) (3). Realizing that RNA
folding is intrinsically a three-dimen-
sional (3D) problem, Schlick et al. in-
tegrated 2D and 3D folding
algorithms in RAG-IF. Starting from
a given target structure, RAG-IF parses
the graph of the whole structure into
subgraphs. For each subgraph, the al-
gorithm employs a genetic algorithm
to perform systematic mutations. For
a given mutant sequence, RAG-IF pre-
dicts the 3D folds for each subgraph.
Assembly of the subgraph 3D struc-
tures generates an ensemble of whole
3D structures, which are then scored
and ranked by a knowledge-based sta-
tistical potential. Based on the 3D
structure scoring, RAG-IF selects the
top 200 unique sequences and submits
the sequences for 2D structure predic-
tion. Finally, the predictor chooses se-
quences predicted to fold into the
target 2D structure.

The RAG and RAG-IF methods pro-
vide a highly efficient and effective
search tool for critical nucleotides and
mutations. Specifically, Schlick et al.
generate a set of possible alternative
(non-native) folds by graphically trans-
forming the native fold. Treating these
alternative graphs (structures) as target
structures, RAG/RAG-IF finds the cor-
responding sequences (mutations) for
each target. One of the remarkable fea-
tures of RAG/RAG-IF is the ability to
generate a great variety of different
RNA topologies, including those con-
taining non-native helix stems. By
creating native-like and non-native he-
lix stems, the RAG/RAG-IF approach
offers a mathematically elegant and
computationally efficient tool for inves-
tigating the sequence-structure relation-
ship for large structural arrangements.
Large conformational changes are
essential for many RNA functions—
for example, RNA catalysis in the
different steps of the spliceosome cycle.

The above approach leads to a num-
ber of minimal mutants that destroy the
pseudoknot structure and/or helix stem
S2. For example, mutants [13441A-G,
13443A-C] in S1 and [13483G-C,
13485U-C] in S2 cause switches from
the native pseudoknot to a three-way
junction and a three-stem structure
with an internal loop, respectively.
Although computation was mostly
focused on stem 2, the same approach
can be used to find critical mutations
that destroy stems 1 and 3. The suc-
cessful applications of the graph-
theoretic approaches demonstrate the
advantage of coarse-grained modeling
for RNA folding (4) and the power of
rigorous mathematical tools, such as
graph theory, in biophysical modeling.
As shown below, these graph-theoretic
approaches may play a unique role in
tackling further challenges in the
biophysics of SARS-CoV-2 FSE.

There are twomajor challenges in the
biophysical modeling of the FSE RNA
structures. First, the FSE RNA may
form multiple alternative low-energy
structures at both the 2D and the 3D
structure levels (5,6). For example, at
the 2D structure level, nucleotide
13448G can switch between base pair-
ing with 13417U and with 13475U,
causing two different 2D structures.
At the 3D structure level, computer
simulation indicates the formation of
different 3D folds with the 50-end
spacer sequence threading (or not
threading) through the junction region
between stems S1 and S3. In addition,
the formation of the different 3D struc-
tures can be further complicated by
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metal ion effects (7). Second, the
folding of FSE may be influenced by
potential long-range interactions be-
tween FSE and other nonlocal regions
in the SARS-CoV-2 genome. For
example, including nucleotides up-
stream from the slippery site can lead
to the formation of alternative helices
(8). Including 50 nucleotides upstream
from the slippery site, VfoldPK (9), a
free energy-basedmodel for the folding
of pseudoknotted structures, predicts
the formation of two low-energy struc-
tures with different sets of basepairs for
helix S1 and a new helix formed with
long-range base pairing between the
slippery-spacer region and the 50-
nucleotide upstream sequence. Consid-
eration of such a full structure may be
necessary to design drug binding to
the FSE target. However, in the process
of viral translation, the sliding ribo-
some may disrupt upstream structures.
Therefore, predicting the influence of
the disruption of the long-range inter-
actions in the upstream structure on
the possible structural rearrangements
in the downstream FSE is important.
The RAG model, with its unique
graph-based structure sampling algo-
rithm, offers a highly promising tool
for predicting alternative folds, even
for larger systems.

The fact that RAG/RAG-IF models
rely on RNA 2D structure prediction
highlights the need for an accurate
2D structure prediction program.
Sequence alignment can often provide
reliable information about conserved
nucleotides and basepairs. However,
sequence alignment often cannot give
all the basepairs for a structure.
Therefore, we need physical models
to predict the (remaining) basepairs.
Although the RAG algorithm offers
an excellent solution to the conforma-
tional sampling problem, calculating
the free energy for structures, espe-
cially for those containing convoluted
pseudoknots and loop-helix base triple
interactions (10), requires an accurate
physical model.

Finally, frameshifting occurs sto-
chastically as a result of the competi-
tion between the unfolding of the
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downstream RNA structure and the
disruption of cognate codon-anticodon
interactions in the slippery region. The
competition is further complicated by
the buildup of the elastic force in the
intervening spacer. A quantitative pre-
diction of the frameshift efficiency re-
quires the consideration of the whole
three-component system. Therefore,
handling the coupled fluctuations of
the three components is a key issue in
modeling the system. The problem
complexity is further compounded if
systematic mutations and inverse
folding problems are considered. By
efficiently and exhaustively enumer-
ating the graphs (structures), the RAG/
RAG-IF model may offer a highly
attractive tool for generating a statisti-
cal ensemble of fluctuating states for
the three-component FSE system, both
thermodynamically and kinetically.
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