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H
istone deacetylase (HDAC) has emerged as
a new molecular target in the control of obesity
and type 2 diabetes. HDAC is an enzyme with
well-known functions in the regulation of chro-

matin structure and gene transcription in the nucleus,
where HDAC interacts with corepressor proteins such as
NcoR and SMRT to form active corepressor complexes.
In the corepressor complex, HDAC catalyzes removal of
acetyl groups from histone proteins to inhibit gene ex-
pression. Recent studies have consistently suggested that
HDAC also exhibits activity in the cytosol and mitochondria
to regulate acetylation of metabolic enzymes (1). More than
20% of mitochondria proteins are regulated by acetylation
(2,3). Regulation of HDAC activity is a new approach to
modify glucose and fatty acid metabolism in the treatment
of type 2 diabetes.

In HDAC, HDAC3 and sirtuin (SIRT)1 are well-known
players in regulation of fatty acid and glucose metabolism.
In mammals, HDACs are divided into three classes: class I
HDACs (1–3,8,10), class II HDACs (4–7,9,11), and class III
HDACs (SIRTs 1–7 and NAD-dependent histone deacety-
lases). Class I HDACs have strong catalytic activities, and
they are targets of most HDAC inhibitors, such as tri-
chostatin A (TSA), sodium butyrate, and suberoylanilide
hydroxamic acid. HDAC3 regulates metabolism in genetic
and pharmacological studies. NcoR is required by HDAC3
in the regulation of transcription factors including per-
oxisome proliferator–activated receptor (PPAR)g. NcoR
knockout in fat tissue led to enhanced PPARg function in
adipose tissue, increased insulin sensitivity, and acceler-
ated weight gain in mice (4), all of which resemble the
pharmacological activity of thiazolidinediones. HDAC3 is
also involved in circadian-mediated lipid metabolism in
liver (5), and hepatic HDAC3 knockout leads to lipid ac-
cumulation and glycogen depletion in the mouse liver (6).
HDAC3 inactivation in muscle and heart leads to mito-
chondrial biogenesis deficiency, which reduces fatty acid
catabolism in diet-induced obese (DIO) mice (7). Class II
HADCs have a weak catalytic activity, and their biological
activity is dependent on the class I HDACs. Inhibition of
the class I activity will induce suppression of class II.
Pharmacological studies suggest that inhibition of class I/II
HDACs induces AMP-activated protein kinase (AMPK)
activity (8) and has beneficial metabolic effects in humans
and rodents (8,9). In contrast, suppression of class III

HDACs generates detrimental metabolic effects (11). Ac-
tivation of class III HDACs promotes energy metabolism,
as is being reported for SIRT1, SIRT3, or SIRT5 (10–12).
These activities have been reported for class III HDACs in
response to NAD, resveratrol, or gene knockout.

Pharmacological approaches have been used to target
class I/II HDACs in regulation of glucose and fatty acid
metabolism (Fig. 1). HDAC3 inhibits PPARg and tran-
scription factor nuclear factor-kB (NF-kB) (13,14). Ex-
change of HDAC3 is a molecular mechanism of PPARg and
NF-kB cross-talk (13,15). NF-kB activation in inflammation
promotes HDAC3 activation, leading to suppression of
PPARg function (15), and HDAC3 inhibition has been
shown to restore PPARg function in obesity (8,15). In one
study, two pan-HDAC inhibitors, sodium butyrate and TSA,
were supplemented to block HDAC3 activity in DIO mice.
The treatment generated a set of unexpected metabolic
effects including increased energy expenditure, reduction
in adipose tissue expansion, resistance to obesity, and
prevention of insulin resistance (8). Mechanistically, AMPK
activity and PGC-1a expression were both enhanced in liver
and muscle. In a subsequent study, sodium butyrate was
found to induce fibroblast growth factor (FGF) 21 expres-
sion in liver (16), thereby providing an endocrine pathway
for the enhanced energy expenditure in the butyrate-treated
mice. Other butyrate derivatives with HDAC inhibitor
(HDACi) activity have similar metabolic actions in regula-
tion of insulin sensitivity. Sodium phenylbutyrate alleviated
lipid-induced insulin resistance, inhibited endoplasmic re-
ticulum stress, and protected b-cells from failure in obese
patients (9). Tributyrin improved insulin sensitivity and
inhibited inflammation in DIO mice (17). Inhibition of
HDAC4, -5, and -7 (class II) by short hairpin RNA–mediated
gene knockdown improved glucose metabolism in DIO
mice by suppression of hepatic gluconeogenesis (18). This
mechanism is related to downregulation of the transcription
factor FOXO1. In these studies, pan-HDACi or class II
HDACi was used. Class I HDACi was not tested.

In this issue of Diabetes, the class I–specific (MS275)
and class II–specific (MC1568) HDACi were compared in
regulation of energy metabolism and insulin sensitivity in
DIO mice by Galmozzi et al. (19). Results showed that
class I HDACi enhanced whole-body energy expenditure,
improved insulin sensitivity, and stimulated oxidative
phosphorylation and mitochondrial function in the muscle
and fat of mice. The mechanism was attributed to in-
duction of PPARg coactivator (PGC)-1a. In contrast, class
II HDACi did not exhibit these actions, suggesting that
class I HDACi are more important in the regulation of
energy metabolism and insulin sensitivity. This study pro-
vides new insight into the distinction between class I and
class II inhibitors in regulation of insulin sensitivity. De-
spite these interesting new findings, these data should be
interpreted with caution. The authors attributed all effects
of the class I inhibitor to increased PGC-1a activity (Fig.
1). However, this interpretation is not supported by the
phenotypes of PGC-1a overexpression mice. PGC-1a has
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been studied in two overexpression mouse models for the
relationship of mitochondrial function and insulin sensi-
tivity. Muscle-specific PGC-1a overexpression enhanced
mitochondrial oxidative phosphorylation, but it did not
change whole-body energy expenditure and body weight
(20). In this model, the increase in PGC-1a activity made
the mice more susceptible to insulin resistance on a high-
fat diet. In the other study, global PGC-1a overexpression
improved systemic insulin sensitivity modestly (21). At the
tissue/organ level, the insulin action was enhanced in
muscle but reduced in liver. These studies suggest that
activation of PGC-1a by class I HDACi may not be the best
mechanism for insulin sensitivity in the current study.

A second consideration is that the role of cytosol protein
acetylation was not examined in this study (Fig. 1). Meta-
bolic acetylation is a new mechanism in the control of fuel
metabolism in the cytosol. Acetylation, a reaction to add an
acetyl group to the lysine residue of a substrate protein, is a
posttranslational protein modification that induces changes
in protein confirmation and enzyme activity. Acetylation has
been found to modify activities of metabolic enzymes in
various metabolic pathways in the cytosol (1,22). In the
glucose metabolism pathway, acetylation regulates gluco-
neogenesis (23), glycolysis, glycogenesis, and glucose oxi-
dative metabolism (1). In the fatty acid and amino acid
metabolism pathways, acetylation regulates b-oxidation and
urea cycle (22). Concentration of glucose, fatty acids, and
amino acids determines the acetylation of metabolic en-
zymes. TSA was shown to regulate the metabolism through
protein acetylation in the cytosol in those studies. A final
caution is that AMPK activity was not included in the study
(Fig. 1). In future studies, isoform-specific HDACi should be
tested in the effort to identify new insulin sensitizers in the
treatment of type 2 diabetes.
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metabolism. LCAD, long-chain acyl-CoA dehydrogenase; MEF2, myocyte enhancer factor 2; MS275, class 1 HDAC inhibitor; PEPCK, phospho-
enolpyruvate carboxykinase; SAHA, suberoylanilide hydroxamic acid.
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