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Ypts (yeast protein transports),also called as ras-associated binding GTPases (Rab), are

the largest group of the small GTPases family, which have been extensively studied in

model eukaryotic cells and play a pivotal role in membane trafficking, while this study

showed potential regulation role of Ypts in fungi. One of Ypts, Ypt7 may be involved in

fungal development and secondary metabolism, but the exact mechanism still exists

a controversy. In current study, the functions of a Monascus ypt7 homologous gene

(mrypt7) from Monascus ruber M7 was investigated by combination of gene-deletion

(1mrypt7), overexpression (M7::PtrpC-mrypt7) and transcriptome analysis. Results

showed that the radial growth rate of 1mrypt7 was significantly slower than M.

ruber M7, little conidia and ascospores can be observed in 1mrypt7, but the yield

of intracellular secondary metabolites was dramatically increased. Simultaneously, the

mrypt7 overexpression strain possessed similar capacity for sporulation and secondary

metabolism observed inM. ruberM7. Transcriptome results further illustrated thatmrypt7

could coordinate with numerous genes involved in the vegetative growth, conidiogenesis,

secondary metabolism biosynthesis and transportation of M. ruber M7. Combined with

the similar effect of Ypt7 homologs on other fungi, we propose that Ypt7 works more

like a global regulatory factor in fungi. To our knowledge, it is the first time to investigate

Ypt7 functions in Monascus. It could also improve the understanding of Ypt7 functions

in fungi.

Keywords: Ypt7, Monascus, development, secondary metabolism, regulation

INTRODUCTION

The largest subfamily of rat sarcoma (Ras) superfamily, ras-associated binding GTPases (Rab), also
called as Ypt (yeast protein transport) and Sec (secretion) (Gallwitz et al., 1983; Salminen and
Novick, 1987), are involved in the membrane trafficking regulation in all eukaryotes (Maringer
et al., 2016; Shinde and Maddika, 2016; Yun et al., 2016; Pfeffer, 2017). As key regulators of
membrane transportation, Rab GTPases cycle between GTP-bound (active) and GDP-bound
(inactive) conformations which stimulated by guanine nucleotide exchange factors (GEFs). Typical
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Rab GTPase possess several conserved functional regions,
including phosphate/Mg2+ binding domain(PM), GTP/GDP
binding domain (G), C-terminal isoprenylation region (C),
and so on. For example, the G domain provides phosphate
contacts and supplies a Ser/Thr site which is co-ordinated by
the Mg2+ ion. The conserved molecular switch mechanism have
detailed in some reviews (Lee et al., 2009; Pylypenko et al.,
2018). The first Ypt was discovered in Saccharomyces cerevisiae
(Schmitt et al., 1986; Pereira-Leal, 2008; Li and Marlin, 2015),
and the succedent research results have showed that there are
total 11 encoded Ypt proteins in S. cerevisiae, and each of
which possesses distinctive function at a particular stage of
the membrane transport pathway (Pereira-Leal, 2008; Li and
Marlin, 2015). In animal, dozens of Rab/Ypt are proven to
regulate vesicle trafficking among organelles (Ohbayashi and
Fukuda, 2012; Li and Marlin, 2015; Mignogna and D’Adamo,
2017; Pfeffer, 2017). In plant, Ypts also are required for
intracellular trafficking from the trans-Golgi-network to the
plasma membrane and/or prevacuolar compartments (Yun et al.,
2016; Tripathy et al., 2017). The more detailed Ypts roles for
vesicle transports in animal and plant are summarized in the
previous reviews (Stenmark, 2009; Ao et al., 2014).

In fungi, the number of Ypt family is stable from 7 to 12
Ypts, each of which may be responsible for a particular stage
of the membrane transport pathway (Pereira-Leal, 2008; Li and
Marlin, 2015). Among them, Ypt7 is proved as a key regulator
of the material movement and transformation among cellular
compartments through vacuolar biogenesis and fusion (Ohsumi
et al., 2002; Kashiwazaki et al., 2009; Balderhaar et al., 2010;
Wickner, 2010), and the Ypt7-mediated vacuolar fission and
fusion are proved to be essential for maintaining stabilities of
the cytosolic pH and osmolarity, and storing and transferring
intermediary metabolites like mammalian lysosomes and plant
vacuoles (Richards et al., 2010; de Marcos Lousa and Denecke,
2016; BasuRay et al., 2018), while some investigations have
also showed that Ypt7 can influence fungal development and
secondary metabolism. For example, the ypt7 gene deletion or
overexpression can lead to the variances of conidiogenesis and
metabolism in fungi (Chanda et al., 2009a; Xu et al., 2012; Li
et al., 2015; Liu et al., 2015; Zheng et al., 2015). However, it is still
unclear how Ypt7 regulates fungal development and secondary
metabolism, and the relationship among Ypt7-mediated vacuolar
changes and fungal development and secondary metabolism.

Monascus spp., as one of the important edible filamentous
fungi, can produce many beneficial secondary metabolites (SMs)
including Monascus pigments (Mps), monacolin K (MK), γ-
aminobutyric acid and so on (Patakova, 2013; Wu et al., 2013).
As such, its fermented products, red yeast rice, also named as
Hongqu in China have been used as food additives for more than
2,000 years (Chen et al., 2015). What’s more, Hongqu has been
permitted to use as a food supplement in USA from 1900s due to
its cholesterol-lowering effects (Heber et al., 1999). The European
Food Safety Authority (EFSA) also published a scientific opinion
related to the daily dose ofHongqu containing MK (ESFA, 2011).
Although citrinin (CIT), a nephrotoxic toxin produced by some
Monascus strains ever hampered Hongqu use, nowadays the
control and elimination of CIT inHongqu have successfully been

solved by the strain screenings or molecular biological techniques
(Shimizu et al., 2005; He and Cox, 2016).

There were 7 ypt homologous genes (ypt1-ypt7), which
functions are predicted (Table S1), have been discovered in the
genome ofMonascus ruberM7. In current paper, the functions of
Monascus ypt7 (mrypt7) gene were investigated by combination
of gene disruption, overexpression and transcriptome analysis.
The results have revealed that besides the membrane trafficking
regulation like other fungi, mrypt7 can also coordinate with
numerous genes involved in the development and metabolism
of M. ruber M7. Combined with Ypt7 functions in other fungi
(Bouchez et al., 2015; Liu et al., 2015; Yang et al., 2018), we discuss
and propose that Ypt7 works more like a global regulatory factor
in fungi. To our knowledge, it is the first time to investigate
Ypt7 functions in Monascus which could help us to improve the
understanding of Ypt7 functions in fungi.

MATERIALS AND METHODS

Fungal Strains, Culture Media, and
Growth Conditions
M. ruber M7 (CCAM 070120, Culture Collection of State Key
Laboratory of Agricultural Microbiology, Wuhan, China), which
can produce Mps and CIT, but no MK (Chen and Hu, 2005;
Chen et al., 2017), was used to generate themrypt7 deletion strain
(1mrypt7) and overexpression strain (M7::PtrpC-mrypt7). The
potato dextrose agar medium (PDA), Czapek yeast extract agar
medium (CYA), glycerol nitrate agar medium (25%) (G25N) and
malt extract agar medium (MA) were utilized to observe the
strains phenotypic characterization (He et al., 2013). Neomycin-
resistant transformants were selected on PDA media containing
15µg/mL G418 (Sigma-Aldrich, Shanghai, China). All strains
were maintained on PDA slant at 28◦C.

Cloning and Sequence Analysis of mrypt7
in M. ruber M7
Ypt family genes in M. ruber M7 genome were blast
from NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi) (Table S1).
Amino acid sequence encoded by mrypt7 was predicted using
the SoftBerry’s FGENESH program (http://linux1.softberry.
com/). mrypt7 homology was compared with 283 fungi Ypt7
downloaded from NCBI to analyze their primary structural
features (http://weblogo.threeplusone.com/create.cgi).

Construction and Verification of mrypt7
Gene Deletion and Overexpression Strains
The construction and verification of mrypt7 gene deletion
and overexpression strains were implemented according to the
literature references (Shao et al., 2009; Liu et al., 2014). Briefly, the

mrypt7 gene deletion cassette (5
′
UTR-G418-3

′
UTR) and mrypt7

gene overexpression cassette (5
′
UTR-G418-PtrpC-mrypt7-

3
′
UTR) were constructed by double-joint PCR with the primers

listed in Table S2 (Yu et al., 2004), and shown schematically
in Figure S1. The mrypt7 gene deletion and overexpression
vectors were formed, and transformed to M. ruber M7 using
Agrobacterium tumefaciens-mediated transformation system
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to generate the mrypt7 gene deletion mutants (1mrypt7) and
overexpression transformants (M7::PtrpC-mrypt7), respectively.
PCR and southern blot were used to verify the mrypt7 gene
deletion and overexpression strains.

Phenotypic Characterization
M. ruberM7,1mrypt7 andM7::PtrpC-mrypt7 were cultivated on
PDA, CYA,MA andG25N for 10 d at 28◦C to observe phenotypic
characterization. Besides, the three above-mentioned strains were
incubated on PDA for 3 d at 28◦C for vacuole morphological
observation. For a better distinction, the normal vauoles were
designated vacuoles (Va), while smaller vauoles were designated
fragment vauoles (Fv) (Chanda et al., 2009b).

Detection of Mps and CIT
One milliliter freshly harvested spores (105 cfu/mL) of each
strain were inoculated on PDA plate covered with cellophane
membranes, and incubated at 28◦C for 11 days, the samples
were taken every 2 days from the 3rd day to the 11th day of
culture to measure the Mps and CIT production. Freeze-dried
mycelia and medium powder (0.1 g) was suspended in 1mL 80 %
(v/v) methanol solution, and subjected to 30min ultrasonication
treatment (KQ-250B, Kunshan, China).

The Mps and CIT were separated by an ACQUITY UPLC
BEH C18 column (2.1mm × 100mm, 1.7µm), and detected on
Waters ACQUITY UPLC I-class system (Waters, Milford, MA,
USA). A gradient elution was performed with the mobile phase
including solvent A (0.1% formic acid in water) and solvent B
(acetonitrile) with a flow rate of 0.3 mL/min and an injection
volume of 2 µL. The gradient elution was performed as follows:
60% (v/v) solvent A with 40% (v/v) solvent B maintained for
0.5min firstly, the content of solvent A was decreased from 60
to 20% for 21min, and then from 20 to 60% for 0.5min. Finally,
the column was equilibrated with 60% solvent A for 3min.
The temperature of chromatographic column and samples were
maintained at 40◦C and 4◦C, respectively.

RNA Extraction, Library Preparation
and Sequencing
Since M. ruber M7 and M7::PtrpC-mrypt7 shared similar
phenotype and SMs yield (Figures 2, 3), the mrypt7 functions
were further investigated only between M. ruber M7 and
1mrypt7 by transcriptome analysis. Detailly, 1mL freshly
harvested spores (105 cfu/mL) ofM. ruberM7 and1mrypt7 were
inoculated on PDA plate covered with cellophane membranes,
and incubated at 28◦C. Besides, based on our previous
results, Monascus ruber M7 starts conidiation at 3rd day on
PDA medium, and the secondary metabolited yield reached
a relatively high level in 7th day, so the mycelium after
cultured 3 days and 7 days were collected and used for
the total RNA extraction by TRIzol Reagent (Invitrogen, Life
Technologies, USA), two biological replicates were designed for
each condition(Muraguchi et al., 2015; Srikumar et al., 2015;
Heuston et al., 2018). The RNA purity and integrity were
analyzed by Nanodrop NanoPhotometer spectrophotometer
(NanoDrop products IMPLEN, CA, USA) and Agilent 2100
BioAnalyzer (Agilent, USA).

For each sample, the cDNA library was constructed using
RNA Library Prep Kit for Illumina (NEB, USA). The obtained
PCR products were purified by AMPure XP system and library
quality was assessed on the Agilent Bioanalyzer 2100 system. The
eight samples (M7-3d vs. M7-7d, 1mrypt7-3d vs. 1mrypt7-7d,
M7-3d vs. 1mrypt7-3d and M7-7d vs. 1mrypt7-7d, with two
repeats in each group) were sequenced using the BGIseq-500RS
platform (BGI, Wuhan, China, http://www.mgitech.cn/product/
detail/BGISEQ-500.html).

Sequence Quality Evaluation and Validation
The obtained sequence raw reads of above-mentioned 8 samples
were saved as FASTQ files, then the clean data were obtained
after removing reads containing adapter, reads containing ploy-N
and low quality reads from raw data. The expression levels of 10
randomly selected genes in M. ruber M7 were validated by qRT-
PCR following the protocol of the RevertAid First Strand cDNA
Synthesis Kit (Thermo Scientific, Japan) and the SYBR R© Select
Master Mix (ABI, USA).

Functional Analysis of Transcriptome Data
The M. ruber M7 genome which contains 8,407 genes was used
as a reference genome (Chen, 2015) to calculate the blast rate
of genome and clean data by Hierarchical Indexing for Spliced
Alignment of Transcripts (HISAT) and Bowtie2 (Langmead and
Salzberg, 2012; Kim et al., 2015).

Gene expression levels were estimated by RNA-Seq by
Expectation-Maximization (RSEM), the normalized value of
f ragments per kilobase of transcript per million mapped reads
(FPKM) was used as a parameter to compare the expression
levels between M. ruber M7 and 1mrypt7(Li and Dewey,
2011; Van Verk et al., 2013). The orthologs with significantly
different expression were identified by NOISeq method with
an absolute value of log2−fold change >1 and probability >0.8
(Tarazona et al., 2012).

Gene ontology (GO) (http://www.geneontology.org/) and
KEGG pathway (http://www.kegg.jp/) function analysis
were implemented to investigate the functions of the
differentially expressed genes (DEGs) between M. ruber M7
and 1mrypt7. Moreover, the DEGs involved in fungal growth,
sporation and secondary metabolism were further analyzed
to illuminate the Mrypt7 role in fungal development and
secondary metabolism.

RESULTS

Sequence Analysis and Characterization of
mrypt7 in M. ruber M7
The Ypt family genes inM. ruber M7 genome were blasted from
NCBI, totally 7 Ypts showed highly homologous with other fungi
(Table S1). Among them, Ypt7 homology was further analyzed
in this study. Detailly, a 954 bp fragment containing the putative
mrypt7 homolog was successfully amplified from the genomic
DNA of M. ruber M7. A database searched with softberry
(http://linux1.softberry.com/berry.phtml) has been showed that
the CDS (coding sequence) length of mrypt7 gene is 591
bp which encodes 196-amino acids and consists of 5 exons
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(Figure S2). The characteristic motifs or residues of Ypt7
from M7 and other 283 fungi downloaded from NCBI were
investigated, and the results illustrated that phosphate/Mg2+

binding domain(PM), GTP/GDP binding domains (G) and
C-terminal isoprenylation region (C) are highly conserved
in all tested fungi (Figure S2). Besides, a database searched
with NCBI-BLAST has been demonstrated that the deduced
196-amino acid sequences encoded by mrypt7 share 91%
similarity with the GTP-binding protein Ypt7 of Aspergillus
fischeri (Genbank: XP_001259484.1), A. oryzae (Genbank:
XP_001824054.1), A. niger (Genban: XP_001398680.2), P.
oxalicum (Genbank: EPS32522.1), and P. zonata (Genbank:
XP_022585464.1) (Table S1).

Verification of the mrypt7 Deletion and
Overexpression Strains
Total 9 putative disruptants (1mrypt7) were obtained
and analyzed, and one of them was displayed here. In
PCR analysis as shown in Figure 1A, no DNA band was
amplified when the genome of the putative 1mrypt7 strain
was used as template with the primer pair Y7-up1/Y7-do1
(Table S1), while a 0.7 kb product appeared using the genome
of the wild-type strain M. ruber M7. A 1.2-kb fragment
of G418 gene could be amplified from 1mrypt7 using
primers G418up/G418do (Table S1), while nothing could
be obtained from M. ruber M7. Meanwhile, amplicons of
M. ruber M7 (2.3 kb) and 1mrypt7 (2.4 kb) different in size
were observed when primers Y7-Zup1/Y7-Ydo1 (Table S1)
were used.

The putative 1mrypt7 was further verified by Southern blot.
As showed in Figure 1B, a probe corresponding to the mrypt7
coding region (probe 1,Table S2) yielded a single hybridizing
band in a Southern blot of HindIII-digested genomic DNA
of the wild-type strain, compared with no band in 1mrypt7,
which demonstrated that M. ruber M7 carried a single copy
of mrypt7. Meanwhile, no band was detected in the wild-type
strain, while a single band occurred in 1mrypt7 using probe 2
(Table S2) which corresponds to the G418 gene. These results
proved that 1mrypt7 carried a single integrated copy of the
mrypt7 disruption cassette.

Total 16 putative M7::PtrpC-mrypt7 strains with
G418 resistance were obtained and analyzed, and one
of them was showed as follows. In PCR analysis as
shown in Figure 1C, a 1.2-kb product appeared when
the genome of the putative M7::PtrpC-mrypt7 strain
was used as template with primers G418up/G418do
(Table S2), while no DNA band was amplified using the
genome of M. ruber M7. Amplicons of M. ruber M7
(3.0-kb) and M7::PtrpC-mrypt7 (4.5 kb and 3.0 kb) were
totally different in size when primers Y7-up1/Y7-do1
(Table S2) was used, which proved that there were two
copies of the mrypt7 overexpression cassette integrated in
M7::PtrpC-mrypt7.

Southern blot analysis (Figure 1D) showed that
probe 1 (Table S2) yielded two bands in M7::PtrpC-
mrypt7 and a single band in M. ruber M7, while

probe 2 (Table S2) generated a single band in M7::
PtrpC-mrypt7 and no band in M. ruber M7, which
demonstrated that M7::PtrpC-mrypt7 carried two integrated
copies of the mrypt7 and was a successful homologous
recombination event.

qRT-PCR was implemented to analyze the transcription
levels of the mrypt7 gene in M. ruber M7, 1mrypt7 and
M7::PtrpC-mrypt7. As shown in Figure 1E, 1mrypt7
was deficient in the expression of the mrypt7 gene,
the average level of mrypt7 expression in M7::PtrpC-
mrypt7 was five times higher than that of M. ruber
M7. These results further verified the success of gene
knockout and overexpression in the putative 1mrypt7 and
M7::PtrpC-mrypt7 strains.

Phenotypic Characterization of 1mrypt7,
M7::PtrpC-mrypt7 and M. ruber M7
Phenotypes of Monacus ruber were observed on the different
media (PDA, CYA, MA, G25N) to investigate the influences
of the mrypt7 deletion and overexpression on developmental
processes. As showed in Figure 2A, the colony edge of
1mrypt7 was irregular and the growth rates of 1mrypt7
was slower than those of M7::PtrpC-mrypt7 and M. ruber
M7. Besides, cleistothecia and conidia formation of 1mrypt7
were obviously inhibited compared with M7::PtrpC-mrypt7
and M. ruber M7. While the colony phenotypes, growth
rates and conidia formation of M7::PtrpC-mrypt7 had
no significantly difference from those of M. ruber M7
(Figure 2B).

Vacuoles (Va) and fragment vacuoles (Fv) of M. ruber
M7, 1mrypt7 and M7::PtrpC-mrypt7 on PDA medium were
also observed under microscope. Compared with M7::PtrpC-
mrypt7 and M. ruber M7, the number of Fv in 1mrypt7
increased more, while vacuoles reduced relatively and distributed
nonuniformly in the mycelia (Figure 2C). The Fv and Va
number and distribution between M7::PtrpC-mrypt7 and M.
ruber M7 had no big difference, but the more uniform
Fv and Va distribution of M7::PtrpC-mrypt7 was apparent
(Figure 2C).

Mps and CIT Production Analysis of
1mrypt7, M7::PtrpC-mrypt7 and M.

ruber M7
Previous studies (Chen et al., 2017) have demonstrated that
M. ruber M7 can produce Mps and CIT, but no MK,
so the yields of the 8 main Mps (four yellow pigments,
monasfloure A, monascine, monasflore B, ankaflavin; two orange
pigments, rubropunctatin, monascuburin; two red pigments,
rubropunctamine and monascuburamine) and CIT in M. ruber
M7 and its mutants were analyzed in this study to uncover
the effect of Mrypt7 on SMs. Generally, all the detected SMs
were increased in the mycelia of 1mrypt7 and M7::PtrpC-
mrypt7, compared to M. ruber M7 (Figures S3, S4). Take
monasfloure A, rubropunctatin, rubropunctamine and CIT
production as examples for detail explanation, as showed in
Figure 3, the concentration of intracellular yellow, orange and
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FIGURE 1 | The verification of mrypt7 deletion and overexpression mutants. (A) PCR verification of the mrypt7 deletion mutant; (B) Southern blot verification of the

mrypt7 deletion mutant; (C) PCR verification of the mrypt7 overexpression mutant; (D) Southern blot verification of the mrypt7 overexpression mutant; (E) qRT-PCR

analysis of mrypt7 gene expression level.

red pigments in 1mrypt7 were 1.8 times, 1.3 times, and 2.8
times of those inM. ruberM7, respectively, while the production
of extracellular yellow, orange and red pigments were 63,
45, and 83% of M. ruber M7. In contrast, both intracellular
and extracellular Mps in M7::PtrpC-mrypt7 were increased at
least 20% compared with M. ruber M7. The intracellular CIT
concentration in 1mrypt7 in 11th day was nearly 5 times
more than those in M7::PtrpC-mrypt7 and M. ruber M7, while
the extracellular CIT was only 20∼40% of that in M7::PtrpC-
mrypt7 and M. ruber M7. The intracellular and extracellular
CIT in M7::PtrpC-mrypt7 and M. ruber M7 possessed the
similar concentration.

The Mrypt7 Function Elucidation on
Development and Secondary Metabolite
Production by Transcriptome Analysis
Differentially Expressed Genes Analysis, Annotation

and Functional Classification
The transcriptome data obtained by RNA-seq were validated by
qRT-PCR, β-actin serving as the reference gene. The expression
data of 10 randomly selected genes (GME3693, GME5196,
GME5065, GME2292, GME2157, GME5531, GME67, GME3412,
GME6749, GME4561, GME2587) which are from the genome of
M. ruber M7, fit with the sequencing profiles (Figure S5).
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The differentially expressed genes (DEGs) between M7-3d
vs. M7-7d, 1mrypt7-3d vs. 1mrypt7-7d, M7-3d vs. 1mrypt7-
3d and M7-7d vs. 1mrypt7-7d were analyzed. The DEGs’
functions were analyzed through GO function classifications and
KEGG pathway. According to GO categories, the DEGs function
classifications of the four teams almost belong to biological
process, cellular component and molecular function. KEGG
pathway analysis manifested that the DEGs were mostly involved
in cellular process, environmental information processing,
genetic information processing, human diseases andmetabolism.
For example, the DEGs down-regulated in M7-3d vs. 1mrypt7-
3d included ankyrin repeat protein, G protein-coupled receptor
and thiazole synthase, meanwhile, the DEGs up-regulated inM7-
3d vs. 1mrypt7-3d included syntaxin, Golgi SNAP receptor, Ras
GTPase activating like protein and fungal type III polyketide
synthase. The DEGs down-regulated in M7-7d vs. 1mrypt7-
7d included acyl-CoA synthetase, transposon, ubiquinone
biosynthesis protein, exosome complex component and regulator
of ribosome biosynthesis; while the DEGs up-regulated in M7-
7d vs. 1mrypt7-7d included golgi family apparatus membrane
protein, mitochondrial fission protein, vesicular inhibitory amino
acid molecule and gama tubulin complex.

The Fungus-Specific Regulators Coordinating

Conidia Were Positively Regulated by Mrypt7
Fungal conidiation regulatory mechanism is very complex, and
there are many regulators involved in fungal conidiation which
can be divided into central regulators (brlA, abaA, and wetA),
upstream activators (fluG, flbA, flbB, flbC, flbD, and flbE),
negative regulators (CpcB, NsdC, NsdD, OsaA, SfgA, and VosA,
etc.), velvet regulators (VeA, VelB, VelC, and VosA) and light
responsive regulators (FphA, CryA, LreA, and LreB) (Park and
Yu, 2012, 2016). The putative regulatory DEGs coordinating
conidiation in M7 and 1mrypt7 were analyzed in this part to
illustrate the regulation ofmrypt7 onMonascus conidia (Table 1).

The central regulatory pathway controls conidiation-specific
gene expression and asexual developmental processes, very
interesting, in M. ruber M7, the central regulatory pathway
only includes brlA and wetA without abaA (Chen, 2015).
Transcriptome results showed brlA and wetA were significantly
down-regulated in 1mrypt7-3d vs. M7-3d, even the brlA gene
was up-regulated in 1mrypt7-7d vs. M7-7d, the total expression
levels of brlA in 1mrypt7-3d and 1mrypt7-7d were lower than
those in M. ruber M7. Besides, the flbD gene belongs to one
of the upstream developmental activators which is required for
the initiation of conidiation and brlA activation (Kwon et al.,
2010) was down-regulated in 1mrypt7-7d. For balancing with
upstream activators, on the contrast, the cpcB gene belongs to the
negative regulator which inhibits precocious activation of brlA
during proliferation (Park and Yu, 2012) was up-regulated in
1mrypt7-3d. What’s interesting is that the velvet regulators, veA
and velB which suppresses conidiation and activation of sexual
development (Bayram and Braus, 2012; Park and Yu, 2016) were
up-regulated in 1mrypt7-7d, but little cleistothecia could be
found in 1mrypt7 (Figure 2B), which was different from the
results found in Aspergillus nidulan (Kim et al., 2002).

Effect of Mrypt7 on the Secondary Metabolites

Biosynthesis Process
Monascus spp. can produce several secondary metabolites, like
Mps, CIT, and so on (Liao et al., 2014; Feng et al., 2016).
Previous studies have demonstrated that there are 9 predicted
pks (polyketone synthase) genes in M. ruber M7 genome (Chen,
2015), and the different effects of Mrypt7 on these 9 pks genes
were listed in Table 2. Among them, only the Mps pks was
down-regulated in M7-3d vs. M7-7d, while all pks genes were
up-regulated in 1mrypt7-3d vs. 1mrypt7-7d even only conidial
yellow pigment pks and Mps pks reaching the significantly
difference levels (log2-fold change>1 and probability>0.8).
Besides, all pks genes down-regulated in M7-3d vs. 1mrypt7-
3d and only Mps pks gene and a putative lovastatin nonaketide
pks gene reaching the significantly difference levels; while the
putative lovastatin nonaketide synthase down-regulated and
conidial yellow pigment, CIT andMps pks up-regulated inM7-7d
vs. 1mrypt7-7d. Combination of these results has revealed that
Mrypt7 can remarkably affect the expression of genes involved
in SMs biosynthesis, but Mps and CIT pks genes may be more
affected by Mrypt7.

Furture analysis of the expression level of Mps and CIT
biosynthesis gene clusters showed that most of these genes down-
regulated in M7-3d vs. 1mrypt7-3d and up-regulated in M7-7d
vs. 1mrypt7-7d. Generally, for Mps biosynthesis gene cluster
(Chen et al., 2017), the expressions of all genes (except MpigH,
MpigI, and MpigL) were down-regulated in M7-3d vs. M7-7d,
only MpigH and MpigL was up-regulated in 1mrypt7-3d vs.
1mrypt7-7d, the results suggested that the Mps biosynthesis
gene cluster in 1mrypt7 maintained a higher expression level
compared withM7; nearly all genes down-regulated in1mrypt7-
3d vs. M7-3d but only MpigA, MpigC, MpigE, MpigF, MpigH,
MpigL, and MpigN reaching the significantly difference levels,
on the contrary, the whole Mps gene cluster (except MpigH and
MpigI) were up-regulated in 1mrypt7-7d vs. M7-7d (Table 3).

While for the CIT biosynthesis gene cluster (He
and Cox, 2016), the expressions of pksCT, MRL7,
MRL4, MRL2, MRL1, MRR2, and MRR2 down-
regulated and MRL5, MRR4 up-regulated in M7-
3d vs. M7-7d; MRL7, MRL6, MRL5, MRL4, MRL2,
MRL1, pksCT, and MRR1 up-regulated and MRR2,
MRR5 down-regulated in 1mrypt7-3d vs. 1mrypt7-
7d; only MRL5 down-regulated and MRR3 up-
regulated in 1mrypt7-3d vs. M7-3d, but almost all
genes (except MRR5) up-regulated in 1mrypt7-7d vs.
M7-7d (Table 4).

DISCUSSION

Ypt/Rab, a single-subunit small GTPase which is related in
structure to the Gα subunit of heterotrimeric G proteins (large
GTPases) (Santarpia et al., 2012), has been proved to be the
key regulators of the membrane trafficking system, endocytosis
and exocytosis in all eukaryotes, especially in animals and
plants (Fu et al., 2017; Kim et al., 2017; Pfeffer, 2017; Srikanth
et al., 2017). In fungi, the functions of Ypt/Rab, especially

Frontiers in Microbiology | www.frontiersin.org 6 March 2019 | Volume 10 | Article 452

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Liu et al. Funcation Analysis of the Small GTPases Ypt7

FIGURE 2 | Phenotypic characterization of 1mrypt7, M7::PtrpC-mrypt7 and M. ruber M7. (A) Colony morphologies on PDA, CYA, MA and G25N plates; (B)

Microscopic structures on PDA, CYA, MA, and G25N plates, the enlarged area was indicated by arrow, size bar = 50µm; (C) Vacuole and fragment vacuoles

microscopic structures on PDA medium. Va, vacuole (black arrow); Fv, fragment vacuoles (white arrow).

Ypt7, also only focus on its role of vesicle transport. It’s an
accepted fact that Ypt7 mainly controls vesicle–vacuolar fusion
balance, the disruption and overexpression of Ypt7 caused
various vacuole phenotypes (Xu et al., 2012; Li et al., 2015;
Liu et al., 2015; Zheng et al., 2015). Besides, the mechanism

of Ypt7 mediated fusion interacts with numerous tethering and
SNARE (Soluble NSF attachment protein receptor) complexes
had been proved (Balderhaar et al., 2010; Ng et al., 2012;
Hyttinen et al., 2013). Moreover, conidiogenesis imperfection
and SMs production variation can also be found in Ypt7
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FIGURE 3 | Mps and CIT yield analysis of M.ruber M7, 1mrypt7 and M7::PtrpC-mrypt7. (A) The yield of intracellular Monasfloure A. (B) The yield of extracellular

Monasfloure A. (C) The yield of intracellular Rubropunctatin. (D) The yield of extracellular Rubropunctatin. (E) The yield of intracellular Rubropunctamine. (F) The yield

of extracellular Rubropunctamine. (G) The yield of intracellular CIT. (H) The yield of extracellular CIT. The error bar represents the standard deviation between the three

repeats. Capitals signify p-value < 0.01.

disruption or overexpression mutants (Chanda et al., 2009a;
Li et al., 2015; Liu et al., 2015; Yang et al., 2018), but the
mechanism of Ypt7 involved conidial biogenesis and SMs
biosynthesis was unclear.

In current study, the functions of mrypt7 (ypt7 homologous)
in M. ruber M7 were investigated, we have found that
aside from the functions of vesicle fusion, Mrypt7 can
synchronously regulate the vegetative growth, conidiogenesis

Frontiers in Microbiology | www.frontiersin.org 8 March 2019 | Volume 10 | Article 452

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Liu et al. Funcation Analysis of the Small GTPases Ypt7

TABLE 1 | The putative regulatory DEGs involved in growth and conidiation in M. ruber M7.

Regulators Gene

accession

Means Regulation*

M7-3d M7-7d 1mrypt7-3d 1mrypt7-7d M7-3d vs. M7-7d 1mrypt7-3d

vs.

1mrypt7-7d

M7-3d vs.

1mrypt7-3d

M7-7d vs.

1mrypt7-7d

Central

regulators

brlA GME2587 30.5 4.3 6.0 17.9 Down Up Down Up

abaA /

wetA GME2686 34.9 22.7 7.3 26.4 – Up Down –

Upstream

activators

flbA GME7104 77.4 150.3 61.7 116.9 Up – – –

flbD GME650 12.5 24.2 2.9 2.7 – – Down Down

fluG, flbB, flbC, flbE No significant difference

Negative

activators

cpcB GME2676 283.9 405.3 711.7 462.4 – – Up –

fadA GME5261 110.0 188.7 84.2 166.6 – Up – –

nsdC GME2944 96.8 184.4 96.9 191.2 Up Up – –

nsdD GME7585 17.9 42.1 14.9 34.7 Up Up – –

sfaD GME5747 69.8 151.8 77.8 114.7 Up – – –

ganB,gpgA,osaA,sfgD No significant difference

velvet

regulators

veA GME5196 78.3 52.2 83.8 162.2 – Up – Up

velB GME7847 39.3 26.9 52.3 65.7 – – – Up

velC /

vosA GME6122 37.3 34.7 25.0 56.0 – Up – –

Light

responsive

regulators

fphA GME5823 0.2 0.1 0.3 0.1 – – – –

lreA /

lreB /

cryA /

*Significantly different expression was identified by NOISeq method with an absolute value of log2-fold change >1 and Probability>0.8“Up” means the gene was up-regulated in the

sample set; “Down” means the gene was down-regulated in the sample set; “-” means the gene possessed similar expression level in the sample set; “/”means the gene had no

homologs in M. ruber M7.

and secondary metabolism in M. ruber M7. Transcriptome
results illustrated that the fungus-specific conidiation regulators
and SMs biosynthesis genes expression were significantly
difference when ypt7 gene was deleted (Tables 1–4). So we
propose that Ypt7 works more like a global regulatory factor in
fungi, which is first put forward the novel function definition of
Rab GTPases.

Fungal conidiation regulatory mechanism is very complex,
and there are some differences for the regulatory gene
distribution in different fungi. Compared to A. nidulans, the
up-to-date regulatory genes were conserved in M. ruber M7,
while no homolog hits of abaA (central regulators), VelC (velvet
regulators), CryA, LreA, and LreB (light responsive regulators)
were searched in M. ruber M7 (Table 1). It seems that a new
regulatory network may be owned in Monascus. In current
study, the mrypt7 disruption repressed asexual development,
meanwhile, the regulators (brlA, wetA and flbD) related to
conidia were down-regulated (Figure 2, Table 1), similar results
were also found in other fungi like Arthrobotrys oligospora
which was testified by qRT-PCR (Yang et al., 2018). These
results suggest that Mrypt7 may be a positive regulator for

Monascus asexual development and the relative regulation genes.
While for Monascus sexual development process, the mrypt7-
deletion promoted the expression level of veA and velB, but
didn’t activate sexual development as expected (Kim et al., 2002).
The following tried to interpret a different sexual development
regulation of M. ruber M7 may focus on the actual function
of veA and velB, and try to find extra regulators coordinate to
cleistothecia formation.

In this study, results indicated that the SMs biosynthesis
was also regulated by Mrypt7. Transcriptome analysis showed
that Mrypt7 had different impact on the expression of the 9
putative pks genes in M. ruber M7 Among them, Mps and
CIT biosynthesis gene clusters and biosynthesis pathways have
been delineated before (He and Cox, 2016; Chen et al., 2017),
even both Mps and CIT in 1mrypt7 were accumulated in
the cell, the expression of Mps and CIT biosynthesis gene
clusters showed variant expression level when the mrypt7
gene was deleted. Researches presented that vesicle localized
enzyme were necessary for SMs biosynthesis until they were
eventually turned over in vacuoles (Chanda et al., 2009b;
Roze et al., 2011), based on the mycelial morphology and
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TABLE 2 | The putative 9 differential expression PKS genes in M. ruber M7.

PKS ID Homologs and related description Evaluation index M7-3d vs. M7-7d 1mrypt7-3d vs.

1mrypt7-7d

M7-3d vs.

1mrypt7-3d

M7-7d vs.

1mrypt7-7d

GME1661 Conidial yellow pigment biosynthesis polyketide

synthase of Byssochlamys spectabilis No. 5

log2Ratio 0.91 6.48 −0.47 5.10

Regulation Up Up* Down Up*

Probability 0.45 0.99 0.23 0.98

GME2523 Similar to part of lovastatin diketide synthase from

Aspergillus terreus

log2Ratio 1.61 1.16 −1.39 −1.84

Regulation Up* Up Down Down

Probability 0.81 0.25 0.28 0.58

GME2757 Similar to citrinin polyketide synthase of Monascus

purpureus

log2Ratio −0.87 2.31 −0.01 3.17

Regulation Down Up* Down Up*

Probability 0.51 0.94 0.02 0.93

GME4561 Similar to Monascus pigment biosynthesis polyketide

synthase of Monascus pilosus

log2Ratio −3.81 0.47 −1.32 2.96

Regulation Down* Up Down* Up*

Probability 0.98 0.87 0.96 0.98

GME6078 A putative polyketide synthase log2Ratio −0.46 0.78 −1.94 −0.71

Regulation Down Up Down Down

Probability 0.40 0.44 0.76 0.48

GME6749 Similar to putative lovastatin nonaketide synthase of

Glarea lozoyensis 74030

log2Ratio −0.18 0.04 −3.33 −3.11

Regulation Down Up Down* Down*

Probability 0.24 0.02 0.85 0.81

GME7032 Similar to lovastatin nonaketide synthase of Fusarium

oxysporum

log2Ratio −2.25 1.62 −2.36 1.51

Regulation Down Up Down Up

Probability 0.53 0.44 0.59 0.38

GME7327 A putative polyketide synthase log2Ratio −0.48 0.64 −0.18 0.94

Regulation Down Up Down Up

Probability 0.09 0.18 0.05 0.21

GME7426 A hybrid PKS-NRPS log2Ratio 0.39 1.66 −0.61 0.66

Regulation Up Up Down Up

Probability 0.05 0.22 0.06 0.11

*The DEGs reaching the significantly difference levels (log2-fold change >1 and probability>0.8).

transcriptome results in this study, it’s a reasonable statement
that the level of the enzyme and the SMs production
were affected by these relative genes expression level which
regulated by Ypt7.

sBesides, it’s proved that Rab/Ypt protein, SNARE, tethering
factors and Sec1/Munc18-family protein worked together to
mediate the intracellular destination of a transport vesicle
(Baker et al., 2015; Milosevic and Sørensen, 2015; Baker
and Hughson, 2016). In this study, four SNARE genes
which were important for the transportation on Golgi and
endosome (bet1, bos1, stx16, and stx7) and three tethering
factors genes (golgins, vacuolar protein sorting 22 and
transport protein particle complex 10) were differential
expressed when mrypt7 gene was deleted (Table S3). Moreover,
syntaxin 16 (Stx16), the important members of SNARE
complex, which had been proved to mediate early/recycling
endosome to trans-Golgi network and late endosome to
trans-Golgi network traffic (Chen et al., 2010), was differential
expressed when mrypt7 gene was deleted (Figure S6), these
results suggest that Mrypt7 is functional in both in early
and late endosomes. Mrypt7 and the above mentioned

SNARE and tethering factor may work together to finish
the fusion process and mediate SMs transportation. The
further investigation of the interactions between these proteins
could help to develop the detail model of Mrypt7 function in
SMs transportation.

It’s proved that Ypt family is stable from 7 to 12 Ypts in
fungi, except Ypt7, others Ypts (Ypt2, Ypt5, Ypt6, etc.) also affect
vegetative growth and conidiogenesis (Wakade et al., 2017; Yang
et al., 2017), but had little influence on related genes (Yang et al.,
2018). What’s more, the Ypt7 disruption had no obvious effect
on the expression of the rest of Ypts (Ypt1-Ypt6) inM. ruberM7,
only Ypt3 was up-regulated inM7-7d vs.1mrypt7-7d (Table S3).
The results further proved that Ypt7 worked more like a
global regulator.

Based on the above results, a model of Ypt7 regulation
physiological processes was proposed in this study (Figure 4).
Briefly, Ypt7, a single-subunit small GTPase, worked as a global
regulatory factor, is required for the development, secondary
metabolism and vesicle fusion of Monascus. First, Ypt7 is a
positive regulator for fungal development. The conidiogenesis
is suppressed combined with the relative genes (brlA, wetA,
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TABLE 3 | The differential expression of the Mps biosynthesis gene cluster genes in M. ruber M7.

Gene ID Function description Up-down-regulation

M7-3d vs.

M7-7d

1mrypt7-3d vs.

1mrypt7-7d

M7-3d vs.

1mrypt7-3d

M7-7d vs.

1mrypt7-7d

GME4561 MpigA NR-PKS Down* Up Down* Up*

GME4562 MpigB Transcription factor Down* Down Down Up*

GME4563 MpigC C-11-Ketoreductase Down* Up Down* Up*

GME4564 MpigD 4-O-Acyltransferase Down* Down Down Up*

GME4565 MpigE NAD(P)H-dependent

oxidoreductase

Down* Down Down* Up*

GME4566 MpigF FAD-dependent

oxidoreductase

Down* Down Down* Up*

GME4567 MpigG Serine hydrolase Down* Up Down Up*

GME4568 MpigH Enoyl reductase Up Up* Down* Down

GME4569 MpigI Transcription factor Up Up Up Up

GME4570 MpigJ FAS subunit alpha Down* Up Down Up*

GME4571 MpigK FAS subunit beta Down* Up Down Up*

GME4572 MpigL Ankyrin repeat protein Down Up* Down* Up*

GME4573 MpigM O-Acyltransferase Down* Up Down Up*

GME4574 MpigN FAD-dependent

monooxygenase

Down* Up Down* Up*

GME4575 MpigO Deacetylase Down* Down Down Up*

GME4576 MpigP MFS multidrug transporter Down* Up Down Up*

*The DEGs reaching the significantly difference levels (log2-fold change > 1 and probability > 0.8).

TABLE 4 | The differential expression of the CIT biosynthesis gene cluster genes in M. ruber M7.

Gene ID Function description Up-down-regulation

M7-3d vs.

M7-7d

1mrypt7-3d vs.

1mrypt7-7d

M7-3d vs.

1mrypt7-3d

M7-7d vs.

1mrypt7-7d

GME2750 MRL7 Serine hydrolase Down* Up* Up Up*

GME2751 MRL6 Oxoglutarate/iron-

dependent

dioxygenase

Down Up* Down Up*

GME2752 MRL5 Transcription factor Up* Up* Down* Up

GME2753 MRL4 Aldehyde dehydrogenase Down* Up* Down Up*

GME2754 MRL3 Aldoketomutase Down Up Up Up*

GME2755 MRL2 Dehydrogenase Down* Up* Down Up*

GME2756 MRL1 Glucose-methanol-choline

oxidoreductase

Down* Up* Down Up*

GME2757 pksCT Citrinin PKS Down Up* Down Up*

GME2758 MRR1 MFS transporter Up Up* Up Up

GME2759 MRR2 Phosphoglycerate mutase Down* Down* Up Up

GME2760 MRR3 Hypothetical protein Up Up Up* Up

GME2761 MRR4 WD repeat protein Up* Up Up Up

GME2762 MRR5 Carbonic anhydrase Down* Down* Down Down*

GME2763 MRR6 Hypothetical protein Down Down Up Up

GME2764 MRR7 Enoyl reductase Up Up Down Down

GME2765 MRR8 Long-chain fatty acid

transporter

Up Up Down Up

*The DEGs reaching the significantly difference levels (log2-fold change > 1 and probability > 0.8).
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FIGURE 4 | The proposed model of Ypt7 regulation physiological processes in fungi. The proteins and arrows marked in red indicating that they are up-regulated, the

proteins and arrows marked in blue indicating that they are down-regulated, the proteins and arrows marked in black indicated the proved pathways. Dotted lines

mean the supposed processes, solid lines mean the experimental processes in current study.
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cpcB, flbD, veA, and velB) differential expression when Ypt7
was deleted, more remarkable, the sexual development is still
suppressed even the sexual active regulators (veA and velB) were
up-regulated which suggested that the sexual development was
more rely on the Ypt7 functional completeness (Yang et al.,
2018). Besides, LaeA, the well-known global regulator, impacts
asexual and sexual reproduction but has no noticeable effect
on these genes (brlA, wetA, cpcB, flbD, veA, and velB) (Liu
et al., 2016). Second, Ypt7 is a negative regulator for secondary
metabolism, the SMs production remarkable rose when Ypt7 was
deleted. Ypt7 disruption caused vesicles quantity significantly
increased which may increase the vesicle localized SMs enzymes
(Roze et al., 2011), and promoted the expression level of SMs
biosynthesis gene (Yang et al., 2018). Third, Ypt7 regulates
the early transport and later vesicle fusion simultaneously. the
early transport between endoplasmic reticulum (ER) and Golgi
apparatus was effected by Ypt7 connecting with some SNARE
genes, the up-regulate of Bet1 (blocked early transport) and Bos1
(bet one suppressor) could help to alleviate the lethality associated
with disruption of Ypt7 (Newman et al., 1990; Chung et al.,
2018). The vesicle fusion and SMs secretion is hampered, but a
small quantity of extracellular Mps and CIT can also be detected.
Except the known role of Ypt7 in vesicle fusion, two up-regulated
syntaxins (Stx7 and Stx16) (Chen et al., 2010) and up-regulated
MpigP and MRR1 (multidrug transporters) were supposed to
help Mps and CIT secretion.

In a conclusion, this study has indicated the effect
and regulation model of ypt7 gene on vegetative growth,
conidiogenesis, vesicle fusion and SMs biosynthesis and
transportation in Monascus. This is the first comprehensive
analysis of the Rab/Ypt family in Monascus, the results could
enrich the understanding of the function of Rab/Ypt family and
make some contribution to uncover the SMs biosynthesis and
transportation process in filamentous fungi.
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Figure S1 | The schematic diagram of the construction of mrypt7 deletion (A) and

overexpression strains (B).

Figure S2 | Sequence analysis and characterization of mrypt7 in M. ruber M7. (A)

Gene structure analysis by softbarry. CDSf, first (starting with start codon) coding

segment; CDSi, internal (internal exon) coding segment; CDSl, last (ending with

stop codon) coding segment; CDSo, gene contains the ONE coding exon only;

PolA, terminal polyA signal; TSS, transcription start site. (B) Characteristic motifs

or residues of Ypt7 in the choosed 285 fungi. phosphate/Mg2+ bingding

domain(PM), GTP/GDP bingding domains (G) and C-terminal isoprenylation

region (C).

Figure S3 | The mainly pigments of M.ruber M7 detected by UPLC. (A) The

chromatogram of 4 main yellow pigments at 380 nm which are indicated by 1, 2,

3, and 4; (B) The chromatogram of 2 main orange pigments at 470 nm which are

indicated by 5 and 6; (C) The chromatogram of the 2 main red pigments at

520 nm which are indicated by 7 and 8; (D) The chemical structure formula of the

8 pigments.

Figure S4 | Monascus pigments yield analysis of M.ruber M7, 1mrypt7 and

M7::PtrpC-mrypt7. (A) The yield of intracellular Monasfloure A. (B) The yield of

extracellular Monasfloure A. (C) The yield of intracellular Monascine. (D) The yield

of extracellular Monascine. (E) The yield of intracellular Monasfluore B. (F) The

yield of extracellular Monasfluore B. (G) The yield of intracellular Ankaflavin. (H)

The yield of extracellular Ankaflavin. (I) The yield of intracellular Rubropunctatin. (J)

The yield of extracellular Rubropunctatin. (K) The yield of intracellular

Monascuburin. (L) The yield of extracellular Monascuburin. (M) The yield of

intracellular Rubropunctamine. (N) The yield of extracellular Rubropunctamine. (O)

The yield of intracellular Monascuburamine. (P) The yield of extracellular

Monascuburamine. The error bar represents the standard deviation between the

three repeats. Capitals signify p-value < 0.01.

Figure S5 | The validation of transcriptome data by qRT-PCR. (A) The expression

level of the ten selectived genes in M7-3d VS 1mrypt7-3d. (B) The expression

level of the ten selectived genes in M7-7d VS 1mrypt7-7d. The expression level of

the genes in M7 was set as 1.

Figure S6 | The SNARE interactions in vesicular transport.

Table S1 | Ypt homologous genes in the M. ruber M7 genome.

Table S2 | Primers used for the deletion and overexpression of mrypt7 gene.

Table S3 | The proposed genes involved in vesicle transport.
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