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Correspondence should be addressed to Cruz-Ramı́rez Nicandro; ncruz@uv.mx

Received 25 October 2012; Revised 4 April 2013; Accepted 22 April 2013

Academic Editor: Alejandro Rodŕıguez González
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Breast cancer is one of the leading causes of death among women worldwide.There are a number of techniques used for diagnosing
this disease: mammography, ultrasound, and biopsy, among others. Each of these has well-known advantages and disadvantages.
A relatively newmethod, based on the temperature a tumor may produce, has recently been explored: thermography. In this paper,
we will evaluate the diagnostic power of thermography in breast cancer using Bayesian network classifiers. We will show how the
information provided by the thermal image can be used in order to characterize patients suspected of having cancer. Our main
contribution is the proposal of a score, based on the aforementioned information, that could help distinguish sick patients from
healthy ones. Our main results suggest the potential of this technique in such a goal but also show its main limitations that have to
be overcome to consider it as an effective diagnosis complementary tool.

1. Introduction

Breast cancer is one of the main causes of death among
women worldwide [1]. Moreover, a specificity is required
in the diagnosis of such a disease given that an incorrect
classification of a sample as a false positive may lead to the
surgical removal of the breast [2]. Nowadays, there are differ-
ent techniques for carrying out the diagnosis:mammography,
ultrasound,MRI, biopsies, and, more recently, thermography
[3–6]. In fact, thermography started in 1956 [7] but was
discarded some years later because of the poor quality of the
thermal images [8] and the low specificity values it achieved.
However, with the development of new thermal imaging
technology, thermography has reappeared and is being seri-
ously considered as a complementary tool for the diagnosis of
breast cancer [9]. Because of specificity required, it is compul-
sory to have as many available tools as possible to reduce, on
the one hand, the number of false positives and, on the other

hand, to achieve high sensitivity. Although open biopsy is
regarded as the gold standard technique for diagnosing breast
cancer, it is practically the last diagnostic resource used since
it is an invasive procedure that represents not only significant
health implications but also psychological and economic
ones also [10]. Other techniques, which are not necessarily
invasive, have implicit risks or limitations such as X-ray
exposure, interobserver interpretability and difficult access to
high-tech expensive equipment [11, 12].Thermography is also
noninvasive, but it has the advantage of using a cheaper device
(an infrared camera), which is far more portable than those
used in mammography, MRI, and ultrasound. Furthermore,
it can be argued that some of the variables considered by
thermography may be more easily interpreted than those of
some of the aforementioned techniques. As a matter of fact,
in this paper wewill explore and assess this argument in order
to measure the potential of such a technique as a diagnostic
tool for breast cancer. Moreover, our main contribution is
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the proposal of a score, based not only on thermographic
variables but also on variables that portray more information
than temperature alone, that might help differentiate sick
patients from healthy ones. We will also explore the potential
of thermography in diagnosing women below the age of 50,
which would allow the detection of the disease in its early
stages, thus reducing the percentage of mortality.

The rest of the paper is divided as follows. In Section
2, we will present some related research that places our
research in context and thus appreciates our contribution. In
Section 3, we explain the materials and methods used in our
experiments. In Section 4, we will present the methodology
and the experimental results. In Section 5, we will discuss
these results and, finally, in Section 6, we will conclude our
paper and give directions regarding future research.

2. Related Research

In our review of the related literature, we divided these into
three categories: introductory, image-based, and data-based
works [13–17]. The introductory research mainly points out
the potential of thermography as an alternative diagnostic
tool for breast cancer comparing its performance to other
diagnostic methods such as mammography and biopsy [18,
19]. Unfortunately, because this research is intended as an
introduction to the topic, it lacks some important details
about the data used in these studies as well as the analyses car-
ried out.

The image-based works mainly range from cluster anal-
yses applied to thermal images (to differentiate healthy from
sick breasts) [20] to fractal analyses (to characterize the geo-
metry of the malignant lesions) [21] to the camera calibration
for capturing thermal images [3, 22].

The data-based investigations present statistical analyses
of patient databases (healthy and sick) such as nonpara-
metric tests, correlation, and analysis of variance; artificial
intelligence analyses such as artificial neural networks and
Bayesian analysis; and numerical models such as physical
and simulation models (bioheat equations) [8, 9, 23–26].
Only a small number of papers propose a score formed from
thermographic data [27, 28] but they only propose a maxi-
mum of 5 variables to form such a score. In our research, we
propose 14 variables to calculate this score: this is the main
contribution of the paper alongside the analysis of the diag-
nostic power of the proposed variables. In Section 3, we will
present those variables in more detail and, in Section 4, we
will evaluate how informative these variables are in the diag-
nosis of breast cancer. To end this section, it is important to
mention that although the research in this category is very
interesting, in some of them the methodology is not clear.
This prevents one from easily reproducing the experiments
carried out there. We have done our best to present a clear
methodology so that our results can be reproduced.

3. Materials and Methods

3.1. The Database. For our experiments, we used a real-
world database which was provided by an oncologist who
has specialized in the study of thermography since 2008,

consisting of 98 cases: 77 cases are patients with breast cancer
(78.57%) and 21 cases are healthy patients (21.43%). All the
results (either sick or healthy) were confirmed by an open
biopsy, which is considered the gold standard diagnostic
method for breast cancer [29]. We include in this study 14
explanatory variables (attributes): 8 of them form our score
(proposed by the expert), 6 are obtained from the thermal
image, one variable is the score itself, and the final variable
is age which was discretized in three categories as this is
recommended for the selected algorithms [30–32]. In Table 1,
we give details of the name, definitions, and values of each of
these variables.The dependent variable (class) is the outcome
(cancer or no cancer).

3.2. BayesianNetworks. ABayesian network (BN) [33, 34] is a
graphical model that represents relationships of a probabilis-
tic nature among variables of interest. Such networks consist
of a qualitative part (structural model), which provides a
visual representation of the interactions amid variables, and a
quantitative part (set of local probability distributions), which
permits probabilistic inference and numericallymeasures the
impact of a variable or sets of variables on others. Both the
qualitative and quantitative parts determine a unique joint
probability distribution over the variables in a specific prob-
lem [33–35]. In other words, a Bayesian network is a directed
acyclic graph consisting of [36]: (a) nodes (circles), which
represent random variables; arcs (arrows), which represent
probabilistic relationships among these variables and (b) for
each node, there is a local probability distribution attached to
it, which depends on the state of its parents.

Figures 3 and 4 (see Section 4) show examples of a BN.
One of the great advantages of this model is that it allows the
representation of a joint probability distribution in a compact
and economical way by making extensive use of conditional
independence, as shown in (1):
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) represents the set of parent nodes of𝑋
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, that is,

nodeswith arcs pointing to𝑋
𝑖
. Equation (1) also shows how to

recover a joint probability from a product of local conditional
probability distributions.

3.2.1. BayesianNetwork Classifiers. Classification refers to the
task of assigning class labels to unlabeled instances. In such
a task, given a set of unlabeled cases on the one hand and a
set of labels on the other, the problem to solve lies in finding
a function that suitably matches each unlabeled instance to
its corresponding label (class). As can be inferred, the central
research interest in this specific area is the design of automatic
classifiers that can estimate this function from data (in our
case, we are using Bayesian networks).This kind of learning is
known as supervised learning [37–39]. For the sake of brevity
and the lack of space, we have not written here the code of
the 2 procedures used in the tests carried out in this research.
We have only briefly described them and refer the reader to
their original sources. The procedures used in these tests are
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Table 1:Names, definitions, and values of variables. In the experiments the positive value is discretized to 1 and the negative value is discretized
to 0. All the values of qualitative variables are given by the image analyst.

Variable name Definition Variable value Variable type

Asymmetry
Temperature difference (in
Celsius) between the right and
the left breasts

If difference < 1∘C, then value = 5, difference
between 1∘C and 2∘C, the value is 10, and
difference > 2∘C, the value is 15

Nominal (5, 10, 15)

Thermovascular network Number of veins with the highest
temperature

If the visualization is abundant vascularity,
the value is 15, if it is moderate, the value is
10, and if it is slight, the value is 5

Nominal (5, 10, 15)

Curve pattern Heat area under the breast
If heat visualized is abundant, the value is 15,
if it is moderate, the value is 10, and if it is
slight, the value is 5

Nominal (5, 10, 15)

Hyperthermia Hottest point of the breast If there is at least one hottest point, the value
is 20 and otherwise the value is 0 Binary (0, 20)

2c
Temperature difference between
the hottest points of the two
breasts

If difference between 1 and 10, the value is 10,
difference between 11 and 15, the value is 15,
difference between 16 and 20, the value is 20
and if difference > 20, the value is 25

Nominal (10, 15, 20, 25)

F unique Amount of hottest points
If sum = 1, the value is 40, if sum = 2, the
value is 20, if sum = 3, the value is 10, and if
sum > 3, the value is 5

Nominal (5, 10, 20, 40)

1c Hottest point in only one breast
If the hottest point is only one breast, the
value is 40 and if the hottest point is both
breasts, the value is 20

Binary (20, 40)

Furrow Furrows under the breasts If the furrow is visualized, the value is
positive; if not,the value is negative Binary (0, 1)

Pinpoint Veins going to the hottest points
of the breasts

If the veins are visualized, the value is
positive; if not, the value is negative Binary (0, 1)

Hot center The center of the hottest area If the center of the hottest is visualized, the
value is positive; if not, the value is negative Binary (0, 1)

Irregular form Geometry of the hot center
If the hot center is visualized like a
nongeometrical figure, the value is positive;
if not, the value is negative

Binary (0, 1)

Histogram Histogram in form of a isosceles
triangle

If the histogram is visualized as a triangle
form, the value is positive; if not, the value is
negative

Binary (0, 1)

Armpit Difference temperature between
the 2 armpits

If the difference = 0, the value in both is
negative; if not, the value is positive;
consequently the other is negative

Binary (0, 1)

Breast profile Visually altered profile

If an altered profile is visualized abundantly,
the value is 3, if it is moderate, value is 2, if it
is small, the value is 1, and if it does not
exist, the value is 0

Binary (0, 1)

Score The sum of values of the previous
14 variables

If the sum < 160, then the value is negative
for cancer; if the sum ≥ 160, the value is
positive for cancer

Binary (0, 1)

Age Age of patient
If the age < 51, the value is 1, if the age
between 51 and 71, the value is 2, and if age >
71, the value is 3

Binary (0, 1)

Outcome The result is obtained via open
biopsy The values are cancer or no-cancer Binary (0, 1)

(a) the Näıve Bayes classifier, (b) Hill-Climber, and (c) Re-
peated Hill-Climber [38, 40, 41].

(a) The Naı̈ve Bayes classifier (NB) is one of the most
effective classifiers [38] and the benchmark against
which state-of-the-art classifiers have to be compared.

Its main appeals lie in its simplicity and accuracy:
although its structure is always fixed (the class vari-
able has an arc pointing to every attribute), it has
been shown that this classifier has a high classification
accuracy and optimal Bayes’s error (see Figure 3,
Section 4). In simple terms, the NB learns, from a
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training data sample, the conditional probability of
each attribute given the class. Then, once a new case
arrives, the NB uses Bayes’s rule to compute the
conditional probability of the class given the set of
attributes selecting the value of the class with the
highest posterior probability.

(b) Hill-Climber is a Weka’s [41] implementation of a
search and scoring algorithm, which uses greedy-
hill-climbing [42] for the search part and differ-
ent metrics for the scoring part, such as Bayesian
information criterion (BIC), Bayesian Dirichlet (BD),
Akaike information criterion (AIC), and minimum
description length (MDL) [43]. For the experiments
reported here, we selected the MDL metric. This
procedure takes an empty graph and a database as
input and applies different operators for building a
Bayesian network: addition, deletion, or reversal of an
arc. In every search step, it looks for a structure that
minimizes the MDL score. In every step, the MDL
is calculated and procedure Hill-Climber keeps the
structure with the best (minimum) score. It finishes
searching when no new structure improves the MDL
score of the previous network.

(c) Repeated Hill-Climber is a Weka’s [41] implementa-
tion of a search and scoring algorithm, which uses
repeated runs of greedy hill-climbing [42] for the
search part and different metrics for the scoring part,
such as BIC, BD, AIC, andMDL. For the experiments
reported here, we selected the MDL metric. In con-
trast to the simple Hill-Climber algorithm, Repeated
Hill-Climber takes as input a randomly generated
graph. It also takes a database and applies different
operators (addition, deletion, or reversal of an arc)
and returns the best structure of the repeated runs of
the Hill-Climber procedure. With this repetition of
runs, it is possible to reduce the problem of getting
stuck in a local minimum [35].

3.3. Evaluation Method: Stratified k-Fold Crossvalidation. We
followed the definition of the crossvalidation method given
byKohavi [37]. In k-fold crossvalidation, we split the database
𝐷 in 𝑘 mutually exclusive random samples called the folds:
𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑘
, where said folds have approximately the same

size. We trained this classifier each time 𝑖 ∈ 1, 2, . . . , 𝑘 using
𝐷 \ 𝐷

𝑖
and testing it on 𝐷

𝑖
(again, the symbol denotes

set difference). The crossvalidation accuracy estimation is
the total number of correct classifications divided by the
sample size (total number of instances in𝐷).Thus, the k-fold
crossvalidation estimate is as follows:
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result is 1; otherwise, the result is 0; that is, we consider a
0/1 loss function in our calculations of (2). It is important
to mention that in stratified k-fold crossvalidation, the folds
contain approximately the sameproportion of classes as in the
complete dataset 𝐷. A special case of crossvalidation occurs
when 𝑘 = 𝑛 (where 𝑛 represents the sample size). This case is
known as leave-one-out crossvalidation [37, 39].

For both evaluation methods, we assessed the perfor-
mance of the classifiers presented in Section 3.2 using the
following measures [44–47].

(a) Accuracy: the overall number of correct classifica-
tions divided by the size of the corresponding test set:

𝑎 =
cc
𝑛
, (3)

where cc represents the number of cases correctly
classified and 𝑛 is the total number of cases in the test
set.

(b) Sensitivity: the ability to correctly identify those
patients who actually have the disease:

𝑆 =
TP

TP + FN
, (4)

where TP represents true positive cases and FN is false
negative cases.

(c) Specificity: the ability to correctly identify those
patients who do not have the disease:

𝑆𝑝 =
TN

TN + FP
, (5)

where TN represents true negative cases and FP is
false positive cases.

4. Methodology and Experimental Results

Weused stratified 10-fold crossvalidation on the 98-case data-
base described in Section 3.1. All the algorithms described in
Section 3.2.1 used this data in order to learn a classification
model. Once we have this model, we then evaluate its
performance in terms of accuracy, sensitivity, and specificity.
We used Weka [41] for the tests carried out here (see their
parameter set in Table 2). For comparison purposes other
classifiers were included: a multilayer perceptron (MLP)
neural network anddecision trees (ID3 andC4.5)with default
parameters. The fundamental goal of this experiment was to
assess the diagnostic power of the thermographic variables
that form the score and the interactions among these vari-
ables. To illustrate how the variable values are obtained, we
cite one example.

(a) In Figure 1 we show the type of images obtained by
the thermal imager; in this case, the front of the
breast thermography. Using ThermaCAM Researcher
Professional 2.9 [48] software, we detect the hottest
areas of the breast that pass from red to gray. The
breast whose furrow displays the largest gray area is
assigned a positive value and the other a negative one.
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Table 2: Parameter values for Hill-Climber and Repeated Hill-
Climber.

Parameters Hill-Climber Repeated
Hill-Climber

The initial structure NB
(Näıve Bayes) False False

Number of parents 100,000 100,000
Runs — 10
Score type MDL MDL
Seed — 1
Arc reversal True True

Table 3: Accuracy, sensitivity, and specificity results for the three
Bayesian network classifiers presented in Section 3.2.1.

Näıve Bayes Hill-Climber Repeated
Hill-Climber

Accuracy 71.88% (±12.61) 76.10% (±7.10) 76.12% (±7.19)
Sensitivity 82% (74–91) 97% (94–100) 99% (96–100)
Specificity 37% (15–59) 0% (0-0) 0% (0-0)

Table 4: Accuracy, sensitivity, and specificity of artificial neural
network, decision trees ID3 and C4.5 for the thermography.

Artificial neural
network

Decision tree
ID3

Decision tree
C4.5

Accuracy 67.47% (±15.65) 73.19% (±12.84) 75.50% (±6.99)
Sensitivity 82% (73–91) 87% (79–94) 94% (88–99)
Specificity 33% (13–53) 29% (9–48) 0% (0-0)

Table 5: Confusion matrix of Näıve Bayes.

Cancer Noncancer Total
Cancer TP 65 FN 12 77
Noncancer FP 14 TN 7 21

98
TP: true positive, FP: false positive, FN: false negative, TN: true negative.

Table 6: Confusion matrix of Hill-Climber.

Cancer Non-cancer Total
Cancer TP 75 FN 2 77
Non-cancer FP 21 TN 0 21

98
TP: true positive, FP: false positive, FN: false negative, TN: true negative.

In Figure 2 we show a general overview of the procedure
of breast thermography, from thermal image acquisition to
the formation of the score.

Tables 3, 4, 5, 6, 7, 8, 9, and 10 show the numerical results
of this experiment. Figures 3 and 4 show the structures result-
ing from running Hill-Climber and Repeated Hill-Climber
classifiers and Figure 5 shows the decision tree (C4.5). We
do not present the structure of the Näıve Bayes classi-
fier since it is always fixed: there is an arc pointing to every
attribute from the class. For the accuracy test, the standard

Furrows

Figure 1: Thermal image showing the temperature of the color-
coded breasts. The red and gray tones represent hotter areas.

Table 7: Confusion matrix of Repeated Hill-Climber.

Cancer Non-cancer Total
Cancer TP 76 FN 1 77
Non-cancer FP 21 TN 0 21

98
TP: true positive, FP: false positive, FN: false negative, TN: true negative.

Table 8: Confusion matrix of artificial neural network.

Cancer Non-cancer Total
Cancer TP 58 FN 19 77
Non-cancer FP 15 TN 6 21

98
TP: true positive, FP: false positive, FN: false negative, TN: true negative.

Table 9: Confusion matrix of decision tree ID3.

Cancer Non-cancer Total
Cancer TP 67 FN 10 77
Non-cancer FP 15 TN 6 21

98
TP: true positive, FP: false positive, FN: false negative, TN: true negative.

Table 10: Confusion matrix of decision tree C4.5.

Cancer Non-cancer Total
Cancer TP 76 FN 1 77
Non-cancer FP 21 TN 0 21

98
TP: true positive, FP: false positive, FN: false negative, TN: true negative.

deviation is shown next to the accuracy result. For the
remaining tests, their respective 95% confidence intervals
(CI) are shown in parentheses.
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Patient

Thermal images

Breast thermography procedure

Software for analysis: ThermaCAM
Researcher Professional 2.9

Score

Interpretation of 
thermal images by

image analyst

Thermal images
acquired at room

temperature = 22

∘C

Figure 2: Breast thermography procedure.

Age Hyperthermia 1C

Histogram Score

Pinpoint Thermovascular

Furrow 2c

Armpit Outcome

Hot center Breast profile

Irregular form

Curve pattern Asymmetry tf unique

Figure 3: Bayesian network built by procedure of Hill-Climber using the 98-case database. Only variable furrow is directly related to the
outcome. Once the variable furrow is known, all the other variables are independent of the class.

5. Discussion

The main objective of this paper is to assess the diagnostic
power of thermography in breast cancer using Bayesian
network classifiers. As can be seen from Table 3, the overall
accuracy is still far from a desirable value. We chose Bayesian
networks for the analyses because this model does not only
carry out a classification task but it is also able to show inter-
actions between the attributes and the class as well as interac-
tions among the attributes themselves.This ability of Bayesian
networks allows us to visually identify which attributes have
a direct influence over the outcome and how they are related

to one another. The MLP shows a comparable performance
but lacks the power of explanation: it is not possible to query
this network to know how it reached a specific decision.
On the other hand, decision trees do have this explanation
capability but lack the power to represent interactions among
attributes (explanatory variables). Figures 3 and 4 depict that
only 5 variables (out of 16) are directly related to the score: 1C,
f unique, thermovascular, curve pattern, and asymmetry t.
Hencewe can see that the score influence on the class outcome
is null and the variable furrow (this variable is part of the
score) is the only one that affects the class. Figure 5 shows that
procedure C4.5 also identifies 2 of those 5 variables as being
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Age Hyperthermia

Score

Thermovascular

2c

Armpit

Pinpoint

1C

Furrow

Outcome

Histogram

Breast profile

Curve pattern Asymmetry tf unique

Irregular form

Hot center

Figure 4: Bayesian network built by procedure of Repeated Hill-Climber using the 98-case database. Only variable furrow is directly related
to the outcome. Once the variable furrow is known, all the other variables are independent of the class.

Pinpoint 1CCancer (69.0/12.0)

Cancer (11.0) Cancer (0.0)

Cancer (0.0)

Cancer (4.0)Armpit

Cancer (3.0/1.0) Cancer (3.0)

= v10

f unique

= v0

= v0

= v0= v0= v15 = v5

= v0 = v2

= v2

= v1

= v1

= v20= v10= v40

= v40

No cancer (3.0)

No cancer (3.0)No cancer (0.0)No cancer (0.0)No cancer (2.0)

Asymmetry t

Figure 5: Decision tree C4.5 using the 98-case database.
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the most informative ones for making a decision: f unique
and asymmetry t. In fact, if we only consider these attributes,
we get the same classification performance as that when tak-
ing into account all thermographic variables. Other models,
such as artificial neural networks, cannot easily identify this
situation. As seen in Section 3.2, the extensive use of condi-
tional independence allows Bayesian networks to potentially
disregard spurious causes and to easily identify direct influ-
ences from indirect ones. In other words, once these variables
are known, they render the rest of the variables independent
from the outcome. Another surprising result is that of
variable age: some other tests consider this to be an impor-
tant observation for the diagnosis of breast cancer [30–32].
However, our analyses suggest that, at least with the database
used in our experiments, age is not important in a diagnosis
when using thermography. As can be seen from Figures 3
and 4, age is disconnected from the rest of the variables. This
may imply that thermography shows potential for diagnosing
breast cancer in women younger than 50 years of age.

Regarding the sensitivity performance of our models (see
Table 3), Hill-Climber and Repeated Hill-Climber achieve
a perfect value of 100%. This means that, at least with
our database, thermography is excellent for identifying sick
patients. Näıve Bayes classifier shows a significantly worse
performance; it can be argued that this performance is due to
the noise that the rest of the variables may add. Once again,
if we only considered the 5 variables mentioned above, we
would get the same results as those using Hill-Climber and
Repeated Hill-Climber. Other models would not be capable
of revealing this situation. Of course, it is mandatory to get
more data in order to confirm such results.

It is important to point out that the Hill-Climber and
Repeated Hill-Climber procedures identify the same 5 vari-
ables as directly influencing the outcome.

Regarding the specificity performance of our models (see
Table 3), Hill-Climber and Repeated Hill-Climber achieve
the worst possible value of 0%. This means these 5 variables,
while being informative when detecting the presence of the
disease, are not useful for detecting the absence of such
disease (see Tables 5–10). On the other hand, the noise that
the rest of the attributes produce when detecting the disease
seems to work the other way around: it is not noise but
information that makes Naı̈ve Bayes achieve a specificity of
33%. Of course, such a value is far from desirable, but this
result makes us think of proposing two different scores (one
for sensitivity andone for specificity)with twodifferent sets of
variables. But our proposal of a score is a first approximation
to combine thermographic variables in such a way as to allow
us to tell sick patients from healthy ones. Our results show
that such a score needs to be refined in order to more easily
identify these types of patients.

Although the results may be discouraging, we strongly
believe that they are a step forward in order to more deeply
comprehend the phenomenon under investigation: breast
cancer. In fact, we have proposed a score that takes into
accountmore information than just that of temperature.Until
now, few areas of research have considered other variables
apart from that of temperature [27, 28].Those papers include
in their analyses a total of 5 variables that can be extracted

from the information a thermogram provides. Our score
includes 16 variables and our work, to the best of our
knowledge, presents the first analysis of this kind of data
using Bayesian networks. What this analysis suggests is a
refinement of the score, probably in the sense of proposing
a more complex function to represent it beyond the simple
addition of the values of each attribute. Intuitively, we thought
that other variables, such as hyperthermia or thermovascular
network, would be more significant in differentiating sick
patients from healthy ones.

In the case of the database, we are aware of the limitations
regarding the number of cases and the imbalance of the
number of classes. Thus, we would need to collect more data
so that more exhaustive tests can be carried out.

6. Conclusions and Future Work

Thermography has been used as an alternativemethod for the
diagnosis of breast cancer since 2005. The basic principle is
that lesions in the breasts are hotter than healthy regions. In
our experience, only taking into account temperature is not
enough to diagnose breast cancer. That is why we proposed a
score that considers more information than only temperature
alone.We have found that only 5 attributes that are part of this
score are the unique direct influence needed to determine if
a patient has cancer.

Although some other research projects show better per-
formance than ours, their methodology to carry out the
experiments is not clear; thus these experiments cannot be
reproduced. Therefore, we need to more closely explore the
details of these models and the nature of their data. In this
paper we have done our best to present themethodology used
in our experiments as clear as possible so that they indeed
can be reproduced. It is true that we do not give details about
how the database was formed (since this is not the primary
goal of the paper). However, we believe that if we make this
database available, researchers who want to reproduce our
experiments should be able to do so without much trouble.

We have found that the framework of Bayesian networks
provides a good model for analyzing this kind of data: it can
visually show the interactions between attributes and out-
come as well as the interactions among attributes and numer-
ically measure the impact of each attribute on the class.

Althoughwe obtained excellent sensitivity results, we also
obtained very poor specificity results. The sensitivity values
are consistent with the expectations of the expert, and a
discussion about the helpfulness of the Bayesian network is
already underway in order to better understand the disease.
Given that breast cancer has a special requirement of speci-
ficity values, we have to more deeply investigate the causes of
those poor results. One possible direction for future research
is to collect more balanced data using techniques such as
SMOTE [49], ADASYN [50], AdaC1 [51], and GSVM-RU
[52]. Another possible direction is to design a more complex
score that includes amore complex function compared to that
of a simple sum. A third direction we can detect is review-
ing how the variables are collected and try to reduce sub-
jectivity in them. Finally, we have also detected that medical
doctors usually take into account more information than that
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supplied to the models for diagnosing breast cancer.Thus, we
can also work more in the area of knowledge elicitation.
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