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Abstract
Although arterial spin labeling (ASL) is appealing for mapping long-term changes in func-

tional activity, inter-sessional variations in basal blood flow, arterial transit times (ATTs),

and alignment errors, can result in significant false activation when comparing images from

separate sessions. By taking steps to reduce these sources of noise, this study assessed

the ability of ASL to detect functional CBF changes between sessions. ASL data were col-

lected in three sessions to image ATT, resting CBF and CBF changes associated with

motor activation (7 participants). Activation maps were generated using rest and task

images acquired in the same session and from sessions separated by up to a month. Good

agreement was found when comparing between-session activation maps to within-session

activation maps with only a 16% decrease in precision (within-session: 90 ± 7%) and a 13%

decrease in the Dice similarity (within-session: 0.75 ± 0.07) coefficient after a month. In

addition, voxel-wise reproducibility (within-session: 4.7 ± 4.5%) and reliability (within-ses-

sion: 0.89 ± 0.20) of resting grey-matter CBF decreased by less than 18% for the between-

session analysis relative to within-session values. ATT variability between sessions (5.0 ±
2.7%) was roughly half the between-subject variability, indicating that its effects on longitu-

dinal CBF were minimal. These results demonstrate that conducting voxel-wise analysis on

CBF images acquired on different days is feasible with only modest loss in precision,

highlighting the potential of ASL for longitudinal studies.

Introduction

To study the efficacy of therapies in conditions with variable patient outcomes such as chronic
pain[1], longitudinal studies, in comparison to cross-sectional designs, provide the added bene-
fit of accounting for individual variability since each participant serves as their own control[2,
3]. Due to the coupling of neuronal activity and regional cerebral blood flow (CBF), one
approach for monitoring longitudinal functional changes is to image CBF. The MRI-based
technique, arterial spin labeling (ASL), is well-suited for this purpose because it is non-invasive,
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quantitative and, in principle, statistical mapping approaches can be applied to data sets from
separate sessions to detect longitudinal changes in CBF at the voxel-wise level[4, 5]. This, how-
ever, can be challenging due in part to the limited spatial resolution of ASL, resulting in partial
volume errors if there are inconsistencies in head position between sessions. In addition, the
ASL signal can be affected by day-to-day fluctuations in basal blood flow and arterial transit
times (ATTs). Each of these factors increases the likelihoodof Type-I errors when comparing
ASL images from different sessions, ultimately leading to uncertainties in the interpretation of
CBF changes between sessions.

Previous studies have demonstrated good reproducibility and reliability of resting ASL data
within time frames ranging from hours[2, 6], weeks[7] and months[8]. More recently, studies
have shown good reproducibility across centres[9] and vendors[10]. While these studies indi-
cate the applicability of ASL to longitudinal monitoring, all of them focused on region-of-inter-
est (ROI) analysis. Voxel-wise analysis, on the other hand, bears greater clinical relevance as
affected regions may not be known a priori. Studies have reported relatively uniform between-
session standard deviation maps across grey matter[11, 12]; however, only one study by Boro-
govac et al. investigated the ability of ASL to detect activation-inducedCBF changes over
extended periods. In this case, CBF changes associated with a visually cued motor task were
generated using rest and task images separated by a month. Although activation was found in
expected regions associated with motor and visual stimuli, significant CBF changes were also
apparent in voxels unrelated to the task[5].

The overall aim of this study was to show that by minimizing sources of variance between
sessions, ASL has the sensitivity to detect voxel-wise changes in CBF over extended periods on
an individual basis. The ability of ASL to detect regional CBF changes was assessed using a
motor task (finger tapping) that produces well-defined activation in sensorimotor regions[13].
This provided a means of distinguishing between task-related activation and possible false pos-
itive activation generated from rest and task images collected on separate days. ASL images
were collected in three sessions with the second and third sessions one week and one month
following the first. Resting CBF data from the three sessions were used to calculate voxel-wise
within- and between-session reproducibility and reliability. In addition, ATT images were
acquired in each session to measure the between-session and between-subject variability.

Materials and Methods

This study was approved by the Health Sciences Research Ethics Board of the University of
Western Ontario and all volunteers provided written informed consent in compliance with the
Tri-Council Policy Statement of Ethical Conduct for Research Involving Humans.

Study Design

This study was conducted using young (under the age of 24), healthy right-handed volunteers.
Prior to each session, participants were instructed to abstain from consuming coffee and food
for at least 6 hours and alcohol for 24 hours due to their potential vasomotor effects[14]. The
majority of scans were scheduled in the morning to minimize the effect of diurnal CBF fluctua-
tions [2]. Acquisition of ASL data was conducted in separate rest and task periods, rather than
using an alternating block design, in order to generate within- and between-session activation
maps by concatenating data from different sessions. The task consisted of self-paced sequential
finger tapping (right-hand), and participants performed the task twice in each session (i.e. two
runs) with a five and a half min rest period preceding each task period.

To replicate the head position in each session, an immobilizing foam head mold (Smithers
Medical Products, Alpha Cradle) was created for each participant on the first visit and reused
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on return visits. As a secondary step to furtherminimize registration errors, manual alignment
was performed on the scanner based on the comparison of structuralMRIs acquired in the first
and subsequent sessions.

Image Acquisition

Participants underwent three identical scanning sessions scheduled a week and a month from
the first. Imaging was conducted using a Siemens 3T Biograph mMR scanner equipped with a
32-channel head coil (Siemens Medical Systems, Erlangen, Germany). High-resolution sagittal
T1-weighted magnetization prepared rapid gradient echo (MPRAGE) images were acquired
(repetition time (TR)/echo time (TE): 2000/2.98 ms, flip angle: 9°, field of view (FOV): 256 x
256 mm2, 176 slices, voxel size: 1 mm3 isotropic resolution, bandwidth: 238Hz/Px, and scan
duration: 3:35 min). This imaging volume was used for manual on-line image alignment and
spatial normalization of the ASL images to MNI co-ordinates. Axial turbo spin echo (TSE)
T2-weighted images (TR/TE: 6100/10 ms, flip angle: 120°, FOV: 220 x 220 mm2, 31 slices,
voxel size: 0.57 x 0.57 x 4 mm3, gap: 0.8 mm, bandwidth: 223Hz/Px, and scan duration: 2:14
min) were also acquired for manual on-line image alignment.

ASL images were acquired using a single-shot 3D gradient/spin-echo (GRASE) sequence
with background suppression (TR/TE: 3500/22.76 ms, label duration: 1500 ms, post labeling
delay (PLD): 1200 ms, FOV: 240 x 240 mm2, 24 axial slices, voxel size: 3.8 x 3.8 x 6 mm3, band-
width: 2004Hz/Px, and scan duration: 11:12 min)[15]. Pseudo continuous labeling was applied
90 mm below the centre slice. For each 11:12 min run (~5 min rest and ~5 min task), a total of
96 control-tag pairs were acquired. Between runs, equilibriummagnetization (M0) images
were acquired with the same GRASE sequence with no arterial labeling or background suppres-
sion and the TR set to 5000 ms (scan duration: 30 s). For ATT mapping, GRASE images with
background suppression were acquired at five PLDs: 700, 1300, 1900, 2500 and 3100 ms, with
5 control-tag pairs per PLD (TR/TE: 6000/18.76 ms, FOV: 500 x 500 mm2, voxel size: 12 x 8 x
6 mm3, bandwidth: 2004Hz/Px and scan duration: 5 min). For ASL and ATT mapping
sequences, the timings of the two non-selective inversion pulses used for background suppres-
sion were empirically determined based on the PLD [15, 16]. Background suppression times
are given in the supporting information (Table A in S1 File). The total acquisition time was
approximately 34 minutes.

Image Processing

ASL Perfusion-Weighted Images. Images were checked for gross head motion: transla-
tions greater than 3 mm and rotations greater than 3° as defined by Wang et al.[17]. Using
SPM8 (Wellcome Trust Centre for Neuroimaging, University College London, UK), raw
pCASL and M0 data from all sessions were realigned to the first volume of the first session
using a least squares approach and a six-parameter rigid body spatial transformation. Next, the
time series from each session was aligned to the first volume of its respective session. These
steps corrected for differences in head positioning between sessions as well as motion within a
session. T1-weighted images were skull stripped using FSL BET[18](FMRIB Software Library,
Functional Magnetic Resonance Imaging of the Brain Centre, University of Oxford, Oxford,
UK) and segmented using the unified segmentation method[19]. Pair-wise subtraction was
used to generate perfusion-weighted images (ΔM) that were co-registered to their respective
skull-stripped T1-weighted images using a rigid body transformation. These images were
smoothed with an isotropic Gaussian kernel (6 mm full width at half maximum).
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Using MATLAB (2012a, The MathWorks, Natick, MA), ASL images were converted into
units of blood flow (ml/100g/min) using a single compartment flow model[20]:

f ¼
ΔMλe

PLD
T1a

2αM0T1a 1 � e�
ðτþPLDÞ

T1a

� � ð1Þ

where λ = blood/tissuewater partition coefficient (0.9 g/ml)[21], α = labeling efficiency (86%)
[22], τ = label duration (1500 ms), and T1a = longitudinal relaxation time of arterial blood
(1650 ms)[23]. Deformation parameters generated in the segmentation step were used to trans-
form CBF maps into MNI space.
ATT Images. The multiple-PLD data acquired to map ATT were realigned and motion

corrected as describedpreviously. Using ASLtbx, control and label images were pair-wise sub-
tracted and a voxel-wise parametric fit of a one-compartment kinetic model was performed
using the FSL FABBER estimation routine[24]. The model included spatial priors and 200 iter-
ations. The ATT images were co-registered to their respective T1-weighted image volume
using a rigid-body transformation, smoothed with a 6 mm FWHM Gaussian filter and normal-
ized to the MNI template in SPM.
Assessment of Image Alignment. Transformations (translation and rotation) required to

alignΔM images were determined using the parameters from the realignment step. Within-ses-
sion motion was characterized in terms of the rigid transformations necessary to align the first
image volume of the first run to the first image volume of the second run. Similarly, between-
session motion was defined as the average transformation required to align the first image vol-
ume from the first session to the first image volume of the second and third sessions.
Reproducibility and Reliability of Resting Measures. Reproducibility was characterized

using the within-subject coefficient of variation (wsCV)[25]:

wsCV %ð Þ ¼
SDDCBF

MeanCBF
� 100 ð2Þ

where SDΔCBF represents the standard deviation between repeated measurements and MeanCBF

is the average CBF across sessions. Reliability was measured using a two way mixed model
intraclass correlation coefficient (ICC)[26]:

ICC ¼
σ2

bs

σ2
bs þ σ2

se þ σ2
er

ð3Þ

where s2
bs is the between-subject variance, s2

se is the systemic error (variance between the
repeated measures), and s2

er is the error variance (ICC range: 0 to 1, values> 0.75 are classified
as excellent reliability)[27].

In order to calculate voxel-wise wsCV and ICC of resting CBF, estimates of within- and
between-session variances were calculated for each voxel from a repeated measures ANOVA
performed using MATLAB. A similar procedure was also applied to the ATT images to calcu-
late the between-session and between-subject reproducibility.

In addition to the voxel-wise analysis, reliability and reproducibility was also assessed within
ROIs based on tissue type (grey and white matter), major lobes (frontal, parietal, temporal,
occipital lobe) and selected cortical and subcortical regions (anterior cingulate cortex, amyg-
dala, hippocampus, insular cortex, posterior cingulate cortex, somatosensory cortex and thala-
mus). These ROIs were defined using the Automated Anatomical Labeling (AAL) atlas[28]
within the WFU Pickatlas[29] toolbox in SPM8. Grey and white matter masks were generated
by thresholding the corresponding SPM8 probability maps by 80% and 60%, respectively. In
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contrast to conventional ROI analysis where reliability and reproducibility is calculated using
region averaged CBF values[30, 31], ROI estimates were generated by multiplying the corre-
sponding ICC and wsCV images by dichotomous masks and averaging the values within the
region. To assess the effect of day-to-day variability in global CBF, all noise analyses were per-
formed on absolute CBF (aCBF) images and on CBF images normalized by the mean grey mat-
ter value (relative CBF or rCBF).

Motor Activation

Activation Contrasts. Contrasts for motor activation were generated by concatenating
task data with rest data from: (a) same session and run (within-session), (b) same session but
different run (within-sessionDR), and (c) different sessions separated by 1 week, 3 weeks, or 1
month (between-sessions).A diagram of the study design is shown in the supporting informa-
tion (Fig A in S1 File). Analyses were performed using aCBF and rCBF data sets. Since normal-
izing has no effect on within-session activation, only aCBF within-session activation was
generated. Activation maps were generated using the standard first level GLM analysis in
SPM8. Areas of activation were identifiedwith the t-statistic after correction for multiple com-
parisons using FWE rate (p< .05) and no cluster size threshold.
Precision of Motor Task Activation. Precision was defined as the ratio of the number of

correctly predicted positive cases (true positives, TP) to the sum of TP and incorrectly pre-
dicted positive cases (false positives, FP):

Precision ¼
TP

TP þ FP
� 100 ð4Þ

True positives were classified as within-session voxels in task-related motor regions (i.e.
supplementary motor area, primary motor cortex and cerebellum) that were identified as hav-
ing significant CBF increases by the GLM. Within-session activation represents the “best case”
scenario because it is unaffected by repositioning or basal fluctuations. However, given the sta-
tistical approach used to define activation, the within-session activation does not represent true
activation. Consequently, using the within-session activation map as the ground truth would
introduce a bias when analyzing the between-session activation. To avoid this error, the binary
TP mask was dilated using a 3x3x3 structuring element. That is, for a given background voxel
(i.e. zero), if the structuring element and the TP mask overlap by at least one non-zero voxel,
the background voxel is set to a value of one. This dilation represents a conservative increase in
mask volume to account for variations in the activation pattern. All activated voxels outside
the mask were considered to be FP. Precision was calculated for within-sessionDR and
between-session activation maps.
Overlap of Activation Maps. The relative overlap between activation maps was quantified

by the Dice similarity coefficient[32]:

Dice ¼
2 � Voverlap

V1 þ V2

ð5Þ

where V1 and V2 are the number of activated voxels in the ROIs being compared, and Voverlap

is the number of activated voxels common to V1 and V2. Dice coefficients range from 0 to 1
where a value of 1 indicates complete agreement between the activated and non-activated
regions for the two maps. The fidelity of between-session activation was assessed by compari-
son to Dice coefficients generated using the within-session activation maps.
Statistical Analysis. A two way repeated measures ANOVA was used to compare findings

among the imaging sessions (Version 20.0, SPSS Inc., Armonk, NY). This was performed for
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the alignment parameters, precision, Dice coefficient and whole brain grey matter CBF and
ATT values. Using SPM, a voxel-wise repeated measures ANOVA was performed on resting
CBF and ATT images across sessions. Where appropriate, pair-wise comparisons were per-
formed using the Bonferroni Correction. For all analyses, p-values less than .05 were consid-
ered significant.

Results

Data were acquired from seven participants (five females, mean age: 22.6 ± 1.3 years). Mean
separation was 7.1 ± 0.7 days between the first and second sessions, 23.0 ± 3.3 days between the
second and third sessions, and 30.1 ± 3.5 days between the first and third sessions. The first
participant did not perform the motor task properly in the first run of the first session, so this
data set was removed. Five of the 21 scans took place in the afternoon.

Alignment of Images

Average within-session transformations were 0.30 ± 0.50, 1.48 ± 0.37, 0.46 ± 0.66 mm in the x,
y, and z directions, respectively, and 0.22 ± 0.08, 0.14 ± 0.10, 0.09 ± 0.08° for pitch, roll, and
yaw rotations, respectively. Between-session translations and rotations were 0.45 ± 0.76 mm
(x), 0.97 ± 0.19 mm (y), 0.67 ± 0.71 mm (z), 0.36 ± 0.38° (pitch), 0.23 ± 0.26° (roll), and
0.14 ± 0.28° (yaw). There were no significant differences between rotations or translations. In
addition, the within-session transformation parameters were not significantly different from
the between-sessions values.

Analysis of Resting Cerebral Blood Flow

Mean Resting Blood Flow. Fig 1 shows group-averaged whole brain resting aCBF maps
for each session. Mean grey matter CBF was 55.9 ± 9.1, 58.2 ± 4.9, 56.0 ± 5.8 ml/100g/min for
sessions 1, 2 and 3, respectively. There were no significant differences across sessions and, simi-
larly, no significant voxel-wise CBF changes were detected. Since there was no significant main
effect of CBF on session or run, comparisons between individual sessions were not assessed.
Reproducibility and Reliability of Resting Cerebral Blood Flow. Whole brain within-

subject CV maps for within- and between-session resting CBF are shown in Fig 2. Within- and
between-session reproducibility were similar, both having low wsCV values in cortical grey
matter. From the aCBF images, mean voxel-wise wsCV across grey matter was 9.1 ± 5.2% for
the within-session analysis and 10.0 ± 4.9% for between-session analysis. Normalizing the
images by average grey matter CBF reduced the within-session wsCV to 4.7 ± 4.5% and the
between-sessionwsCV to 5.7 ± 4.4%. In comparison to the rCBF wsCV histograms, aCBF
wsCV histograms were broader and less left-skewed for both within-session and between-ses-
sion analyses. The greater variability in aCBF is reflected by the intensity increase in Fig 2A
and 2B relative to Fig 2C and 2D, which was also observed in the ROI analysis (Table 1A).

Whole brain ICC maps and their corresponding histograms are displayed in Fig 3. The ICC
maps depict excellent within-session grey matter reliability with values consistently above 0.75.
This is also shown in the corresponding histograms: the distributions of ICC values for within-
session reliability, shown in orange and green, are skewed towards a maximum value of 1.

Average voxel-wise within-session and between-session ICC values for all ROIs are given in
Table 1B. Between-session ICC values for rCBF analyses were greater than the corresponding
aCBF values. Within- and between-session rCBF ICC maps (Fig 3C and 3D) and region-aver-
aged ICC values bore greater similarity compared to aCBF (Fig 3A and 3B).
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Arterial Transit Time Reproducibility

Group-averaged ATT maps for each of the three sessions are shown in Fig 4A–4C. Mean grey
matter ATT values per session averaged across participants were 806 ± 45, 801 ± 35, and

Fig 1. MNI-normalized images of group-averaged (N = 7) whole brain resting cerebral blood flow (ml/100g/min). Each session displayed, session

1(S1), session 2 (S2), and session 3 (S3), was the average of runs 1 and 2. Axial slice numbers (Z) in MNI co-ordinates are displayed at the bottom.

doi:10.1371/journal.pone.0164112.g001

Fig 2. Voxel-wise whole brain average within-subject coefficient of variance (wsCV) maps calculated for absolute CBF (aCBF) and CBF

normalized by grey matter CBF (rCBF). (A) within-session aCBF, (B) between-session aCBF, (C) within-session rCBF, and (D) between-session rCBF.

Histograms were generated from each wsCV map.

doi:10.1371/journal.pone.0164112.g002
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796 ± 39 ms. There were no significant differences in mean grey matter ATT across sessions.
Voxel-wise maps demonstrate regional heterogeneity with increasedATT in medial posterior
and medial frontal regions.

The spatial patterns of the ATT maps were consistent across sessions, as demonstrated by
the low between-sessionwsCV averaged over grey matter voxels (5.0 ± 2.7%). Additionally,
there were no significant differences in voxel-wise ATT values across sessions. Variability
between participants was higher, with a mean voxel-wise grey matter CV of 9.7 ± 3.5%. Voxel-
wise between-subjectmaps (Fig 4) showed increased variability in the medial regions of the
brain, while cortical grey matter remained more homogeneous

Reproducibility of Longitudinal Motor Task Activation

A representative sample of motor activation patterns from the aCBF and rCBF analyses is
shown in Fig 5. From the within-session analysis, activation was detected in the primary motor
cortex in all participants and also in the supplementary motor cortex in 6 participants and in
the cerebellum in 3. In general, there was good agreement in the spatial pattern of activation
generated using within- and between-sessiondata, particularly after normalizing the perfusion
images by grey matter CBF.

Table 1. Mean (± standard deviation) voxel-wise within and between-session: (A) wsCV and (B) ICC value for aCBF and rCBF images in select

ROIs.

A) Within Subject Coefficient of Variation

aCBF wsCV (%) rCBF wsCV (%)

ROI Within Between Within Between

Session Sessions Session Sessions

Grey Matter 9.1 ± 5.2 10.0 ± 4.9 4.7 ± 4.5 5.7 ± 4.4

White Matter 9.8 ± 4.4 10.9 ± 4.4 4.4 ± 3.8 5.6 ± 3.4

Anterior Cingulate 11.2 ± 2.8 9.8 ± 3.5 3.1 ± 1.8 4.4 ± 2.3

Amygdala 8.6 ± 3.4 15.9 ± 4.3 4.2 ± 5.0 7.8 ± 3.3

Hippocampus 8.0 ± 4.8 12.3 ± 4.5 6.9 ± 6.5 6.5 ± 4.1

Insular Cortex 8.7 ± 4.1 7.7 ± 2.8 3.5 ± 2.4 5.0 ± 2.4

Posterior Cingulate 8.3 ± 5.0 13.6 ± 4.5 5.8 ± 5.7 6.2 ± 4.1

Somatosensory Cortex 9.2 ± 4.1 10.2 ± 4.2 3.5 ± 2.8 5.4 ± 3.5

Thalamus 5.1 ± 3.6 21.7 ± 8.1 13.4 ± 5.5 14.6 ± 7.3

B) Intraclass Correlation Coefficient

aCBF ICC rCBF ICC

ROI Within Between Within Between

Session Sessions Session Sessions

Grey Matter 0.85 ± 0.23 0.66 ± 0.19 0.89 ± 0.20 0.84 ± 0.15

White Matter 0.87 ± 0.17 0.69 ± 0.17 0.92 ± 0.13 0.86 ± 0.12

Anterior Cingulate 0.90 ± 0.06 0.66 ± 0.14 0.95 ± 0.04 0.84 ± 0.11

Amygdala 0.70 ± 0.27 0.34 ± 0.17 0.72 ± 0.28 0.64 ± 0.19

Hippocampus 0.68 ± 0.28 0.45 ± 0.18 0.68 ± 0.32 0.73 ± 0.2

Insular Cortex 0.88 ± 0.08 0.55 ± 0.21 0.92 ± 0.07 0.84 ± 0.10

Posterior Cingulate 0.78 ± 0.24 0.61 ± 0.2 0.87 ± 0.16 0.83 ± 0.13

Somatosensory Cortex 0.94 ± 0.06 0.74 ± 0.16 0.91 ± 0.08 0.87 ± 0.09

Thalamus 0.44 ± 0.39 0.55 ± 0.21 0.61 ± 0.21 0.68 ± 0.17

doi:10.1371/journal.pone.0164112.t001
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Fig 3. Voxel-wise whole brain intraclass correlation coefficient (ICC) maps calculated for absolute CBF (aCBF) and relative CBF (rCBF). (A)

within-session aCBF, (B) between-session aCBF, (C) within-session rCBF, and (D) between-session rCBF. Histograms were generated from each ICC

map.

doi:10.1371/journal.pone.0164112.g003

Fig 4. Whole brain group averaged (N = 7) arterial transit time maps for session 1 (A), session 2 (B), and session 3 (C). Voxel-wise between-session (D)

and between-subject (E) coefficient of variance maps.

doi:10.1371/journal.pone.0164112.g004
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Precision of Motor Activation

Mean within-session activation precision was 90 ± 7%. The precision was reduced to 70 ± 12%,
79 ± 13% and 70 ± 12% when the rest and task aCBF images were separated by a week, 3
weeks, and a month, respectively. The values using the rCBF images were 75 ± 15% (one-
week), 78 ± 16% (3-week), and 75 ± 13% (one-month). Between-sessionprecision relative to
within-session precision for both aCBF and rCBF are shown in Fig 6. Overall, the precision of
the rCBF activation maps was significantly greater than for aCBF. However, there was no sig-
nificant difference in precision across sessions for either aCBF or rCBF.

Fig 5. Representative sample of regional CBF changes associated with finger tapping overlaid on a T1-weighted MNI template brain. Activation

maps were generated for: (a) within-session aCBF images, (b) rest and task aCBF images separated by a week and (c) aCBF images separated by a month,

(d) rCBF images separated by a week and (e) rCBF images separated by a month. Regions in colour represent voxels that survived the statistical threshold

after correction for family wise error (p < .05, FWE).

doi:10.1371/journal.pone.0164112.g005
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Dice Coefficient

The Dice coefficient based on the comparison of the within-session activation maps was
0.75 ± 0.07. The between-session values were 0.47 ± 0.19, 0.52 ± 0.11 and 0.45 ± 0.13 using
aCBF activation maps separated by a week, 3 weeks and a month, respectively. Similarly, the
values were 0.67 ± 0.13 (1 week), 0.67 ± 0.12 (3 weeks), and 0.66 ± 0.13 (1 month) from the
rCBF activation maps. The between-sessionDice coefficients relative to the within-session

Fig 6. Between-session (A) precision and (B) Dice coefficients expressed as a percent of within-sessionDR value. Absolute

CBF is shown in light grey bars and relative CBF is shown in dark grey.

doi:10.1371/journal.pone.0164112.g006
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coefficients are shown in Fig 6. Dice coefficientsmeasured with rCBF activation were signifi-
cantly greater than aCBF, but there were no significant differences between sessions in either
case.

Discussion

The results of this study provide an assessment of the ability of ASL to detect voxel-wise
changes in CBF across sessions separated by up to a month within an individual. First, we
showed that between-session reproducibility and reliability were comparable to within-session
values, particularly after removing the effects of day-to-day variations in global CBF. Second,
ATT values were consistent across the three sessions and between-session variability was
smaller than between-subject variability, indicating that ATT effects on monitoring longitudi-
nal CBF changes were minimal. Finally, as a proof of concept, we demonstrated that activation
maps similar to those generated within-session could be produced using rest and task CBF
images from separate sessions.

Although post-processing registration helps reduce within-session alignment errors, the tol-
erance required for aligning images from different sessions is greater since registration errors
will affect all images acquired in a session. This is in contrast to within-session motion that typ-
ically increases signal variance, rather than causing systemic artifacts. Accurate alignment of
ASL images from different sessions is challenging because of the relatively large voxel size used
to compensate for the low SNR. Consequently, slight alignment errors can lead to signal differ-
ences when comparing CBF images from separate sessions, and these errors can translate into
false positive activation when applying standard statistical parametric mapping methods[5]. In
this study, a relatively simple approach was used to mitigate registration errors. Personalized
head molds were generated for each participant and were reused in subsequent imaging ses-
sions to replicate the position of the head. The effectiveness of this approach is evident by the
similarity in the magnitude of between-session and within-session transformation values.
Although there was a greater tendency towards pitch rotations, all transformations required to
align images from the separate sessions were less than 3 mm and 3°. The benefits of minimizing
registration errors were evident by the good agreement in the variability measurements for
within- and between-session analyses of relative CBF. Average voxel-wise wsCV in grey matter
were 4.7 ± 4.5% and 5.7 ± 4.4% for the within- and between-session analysis, respectively. Like-
wise, the reliability, as indicated by the ICC measurements, was excellent for both within-ses-
sion (0.89 ± 0.20) and between-session (0.84 ± 0.15) analyses. These results were reflected in
the excellent agreement between the within- and between-session activation maps (Fig 5A ver-
sus Fig 5D & 5E).

As part of this study, efforts were made to also minimize day-to-day variations in CBF; how-
ever, comparing reliability and reproducibility measures of aCBF versus those for rCBF indi-
cate that between-session analysis was affected by fluctuations in global CBF. Mean grey
matter wsCV for aCBF was 75% greater than for rCBF, and the corresponding ICC decreased
to 0.66 ± 0.19, a classification of good rather than excellent. These reductions likely reflected
global CBF changes caused by diurnal fluctuations and state of arousal, which highlights the
challenges of accounting for all sources of variability[2, 33–35]. As a caveat, the within-session
wsCV was also improved by global normalization, which likely reflects changes in wakefulness
and breathing pattern during an imaging session[36, 37].

The reproducibility and reliability maps (Figs 2 and 3) revealed spatial heterogeneity, particu-
larly for the between-sessionanalysis. The most noticeable feature was the higher variance in the
centre of the head, corresponding to midbrain regions such as the thalamus (wsCV = 14.6 ±
7.3%). It has been suggested that increased variability in thalamic activity is a reflectionof
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variability in arousal [31, 38]. Mezue et al. demonstrated that resting CBF in the thalamus
decreased over 30 minutes, suggesting a decrease in attentional processing over time. To add, the
thalamus is populated with large arteries which could have contributed pulsatile noise. However,
in the current study, it is unlikely that thalamic activity is the sole contributor to the increased
variability as the area extends beyond its borders. The most plausible cause in this study, how-
ever, is related to the 3D GRASE sequence. Single-shot 3D imaging was implemented to provide
fast acquisition with good spatial coverage and SNR, which is advantageous for functional appli-
cations [15, 39]. However, it is susceptible to axial signal wrap-around and through-plane blur-
ring [40, 41]. The greater between-sessionvariance observed in the centre of the head caused by
through-plane blurring could affect the results in applications interested in midbrain regions. For
example in the study of chronic pain, the thalamus plays a key role in the modulation of nocicep-
tive information in the acute and chronic phase[42, 43]. One possible solution would be to use a
multi-shot 3D GRASE sequence to improve the phase encoding along the axial direction and
reduce the acquisition window [41, 44].

Recent studies have identified spatial heterogeneity in ATTs as a confounder for measuring
CBF accurately [5, 45]. Although multi-PLD sequences have been used to image ATT and CBF
simultaneously, the trade-off is suboptimal SNR for perfusion imaging and increased acquisi-
tion times [46]. In the current study, a low-resolution ATT sequence was implemented because
ATT values are fairly homogeneous within large vascular territories [11, 45]. The similarity in
the appearance of the group-wise ATT maps generated per session and the low between-ses-
sion wsCV values (Fig 4) demonstrated that regional ATT values were consistent across ses-
sions. Furthermore, no significant voxel-wise ATT changes between sessions were found, and
there was good agreement in the average grey matter ATT values from the three sessions
(806 ± 45, 801 ± 35 and 796 ± 39 ms, respectively). These results show that fluctuations in
ATTs are not a confounder in longitudinal CBF studies, at least in healthy individuals, pro-
vided the appropriate PLD is chosen. Clearly, monitoring ATT in studies involving older par-
ticipants or patients with vascular disease would be prudent, particularly considering that low-
resolution ATT images can be acquired in only a few minutes[46]. Note, these values are
smaller than previously reported [20, 46] because the GRASE sequence did not include vascu-
lar crusher gradients to suppress signal contributions from feeding arteries. Consequently,
these ATT values represent the delay from the labeling plane to the imaging voxels and not to
the capillary bed.

The similarity in the within- and between-sessionmeasures of reproducibility and reliability
indicate that ASL should have sufficient statistical power to detect longitudinal changes in
regional CBF. To demonstrate this, statistical parametric mapping was performed on rest and
motor activation ASL data sets from sessions separated by up to a month. This approach repre-
sents a proof of concept of the ability of ASL to detect inter-sessional activation. Since the same
task data were used for the within- and between-session analyses, the resulting activation maps
should ideally be the same, provided additional between-session sources of variance were mini-
mal. Visual inspection of the activation maps generated before (aCBF) and after global normal-
ization (rCBF) indicates that fluctuations in global CBF can reduce the ability to detect the true
activation[2]. This was evident in participant 2, in which the activation detected at 1 month
included most of the brain due to a 12.4 ml/100g/min increase (25.5%) in global CBF between
the two sessions (Fig 5). Activation in the primary motor cortex and supplementary motor
region could be identified by larger t-scores in these regions compared to the rest of the brain.
Normalizing the CBF images from each session by their global value substantially reduced the
number of false positives, and the resulting between-session activation map appeared very sim-
ilar to the original within-session map.
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Despite the similarities in the appearance of the within and between-session rCBF activation
maps shown in Fig 5, displaying a single slice does not properly assess the extent of false activa-
tion. Instead, the quality of between-session activation was characterized by first measuring the
precision. This was determined from the number of activated voxels in motor-related regions
as defined by the TP mask created using the within-session activation (i.e., true activation) and
those in the rest of the brain (i.e., false activation). In agreement with the noise metrics, on
average, there was a 15% decrease in precision between-sessions. In other words, even with a
month separation between rest and task images, there was less than a 16% increase in the num-
ber of false positives. Although this measure provides a means of assessing the magnitude of
false activation, using the task data to define the TP region could have introduce a bias. To
assess this possibility, precision was also calculated using anatomically defined sensorimotor
regions as the TP ROI. Good agreement was obtained, with a 15% decrease in precision when
comparing task and rest data sets separated by a month (Table B in S1 File).

In addition to precision, the Dice coefficientwas used to assess the similarity between
within- and between-session activation maps. Since true activation is difficult to define, the
Dice coefficient, using the two activation sets from the same session, was used as a reference
(0.75 ± 0.11). A 12% decrease in common voxels was found from the between-session analysis,
but there were no significant differences across the sessions. Considering that the fraction of
true activated voxels was approximately 1% of the total number of grey matter voxels, these
precision and Dice coefficient estimates highlight the ability of ASL to detect longitudinal
changes in CBF, particularly if the confounding effects of variations in global CBF are removed.
To assess if these results would be affected by using a less stringent statistical threshold, activa-
tion maps were also generated based on the False Discovery Rate (p>0.05) instead of FWE.
The resulting relative precision and Dice coefficientswere within 9% of the values reported in
this study (Tables B and C in S1 File).

The minimal detectable CBF change in a given voxel was estimated based on the paired
sample t-test equation (i.e. ΔCBFmin = (SDΔCBF /

p
n)/tcrit), where the critical t-statistic (tcrit)

was estimated using the FWE-corrected t-threshold generated by the voxel-wise analysis,
SDΔCBF was calculated from the MATLAB implemented ANOVA, and n was the number of
perfusion images per run. For the within-session analysis, this threshold was approximately
3%, while for the between-session analysis it was 7% for the aCBF images and 4% for the rCBF
images. These thresholds are considerably smaller than the high percent signal increase (~40–
60%) reported for motor task activation[47, 48], but are in-line with previous calculations[49].
The magnitude of the between-session thresholds indicates that ASL should be capable of
detecting longitudinal changes in brain function, such as those caused by pain[50], which are
associated with smaller CBF changes than those produced by a motor sensory task. This is in
line with a recent study showing significant correlation between regional CBF changes in the
thalamus, amygdala and primary somatosensory cortex and changes in pain perception moni-
tored over a 7–21 day period[1].

Limitations

While the results of this study showed promise, there are some considerations for future clini-
cal applications. First, the participants were young and healthy adults, and caution must be
exercised in extrapolating these results to other demographics. In particular the inter-sessional
stability of the ATT measurements may not be true for older individuals and patients with
cerebrovascular disease[40]. Second, if global CBF is not intact, normalizing to global grey mat-
ter CBF can introduce biases in activation maps[33]. One potential solution would be to nor-
malize the CBF images by a region considered unaffected by the condition of interest.
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However, in instances where areas unaffected by the disease are not known a priori, explicit
use of aCBF may be necessary[36]. Third, the steps employed in this study to reproduce the
head position across sessions were effective but time consuming, adding about 20 minutes to
make an individual head mold in the first session. Recent studies have demonstrated the poten-
tial of online automatic planning software[9] to replicate imaging position between sessions.
However, the accuracy of such software relative to that achieved in the current study using
head molds needs to be confirmed. Finally, it would be useful to increase the time between rest
and task sessions given that CBF monitoring over periods greater than a month would be more
relevant to studying disease progression.

Conclusion

This study demonstrated that ASL has the sensitivity to detect motor activation over periods
extending up to a month on an individual basis. At the voxel-wise level, we demonstrated low
variability in resting CBF and similar within- and between-session activation maps after
removing variations in basal blood flow. Furthermore, ATT was not a confounder to the repro-
ducibility of CBF. These results demonstrate the feasibility of conducting voxel-wise analysis of
CBF images acquired on different days and highlights the potential of ASL for longitudinal
studies to assess changes in brain function related to disease processes and treatment.

Supporting Information

S1 File. Fig A. Pictorial representation of: (A) data acquisition and (B) data analysis. Data
were acquired in 3 sessions, where blue red and orange represent sessions 1 through 3 respec-
tively. Each session consisted of two runs, where each run was comprised of a ~5 minute rest-
ing period (indicated by darker shade) and a ~5 minute sequential finger tapping task period
(indicated by the lighter shaded colour). Contrasts were generated by concatenating task data
with rest:

1. Within-session

a. ex. Session 1 Run 1 Rest vs. Session 1 Run 1 Task

2. within-session different run (within-sessionDR)

a. ex. Session 1 Run 2 Rest vs. Session 1 Run 1 Task

3. between-sessions

a. ex. 1 week: Session 2 Run 1 Rest vs. Session 1 Run 1 Task

b. ex. 1 month: Session 3 Run 1 rest vs. Session 1 Run 1 Task)

For precision and dice analysis, activation data generated using the same task data were com-
pared to each other (i.e down each column). That is to say, the task data remained the same
while the rest data was within-session, within-sessionDR or between-session.The precision and
dice coefficientswere then averaged together based on the separation between rest and task. A
similar analysis was performed for run 2 data. Table A. Background suppression timing used
for ASL and ATT mapping sequences.Table B. Precision measured using the activated region
defined by the family wise error rate (FWE), false discovery rate (FDR), or an anatomically
definedmotor region (AAL) as the true positive region. Between-sessionprecision is expressed
relative to within-sessionDR precision. Table C. Between-sessionDice coefficients relative to
within-sessionDR measured with FWE and FDR statistical thresholds.
(PDF)
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