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Branched-chain and aromatic 
amino acid profiles and diabetes 
risk in Chinese populations
Tianlu Chen1,*, Yan Ni2,*, Xiaojing Ma3, Yuqian Bao1,3, Jiajian Liu1, Fengjie Huang1, 
Cheng Hu1,3, Guoxiang Xie2, Aihua Zhao1, Weiping Jia1,3 & Wei Jia1,2

Recent studies revealed strong evidence that branched-chain and aromatic amino acids (BCAAs 
and AAAs) are closely associated with the risk of developing type 2 diabetes in several Western 
countries. The aim of this study was to evaluate the potential role of BCAAs and AAAs in predicting 
the diabetes development in Chinese populations. The serum levels of valine, leucine, isoleucine, 
tyrosine, and phenylalanine were measured in a longitudinal and a cross sectional studies with a total 
of 429 Chinese participants at different stages of diabetes development, using an ultra-performance 
liquid chromatography triple quadruple mass spectrometry platform. The alterations of the five AAs 
in Chinese populations are well in accordance with previous reports. Early elevation of the five AAs 
and their combined score was closely associated with future development of diabetes, suggesting 
an important role of these metabolites as early markers of diabetes. On the other hand, the five AAs 
were not as good as existing clinical markers in differentiating diabetic patients from their healthy 
counterparts. Our findings verified the close correlation of BCAAs and AAAs with insulin resistance and 
future development of diabetes in Chinese populations and highlighted the predictive value of these 
markers for future development of diabetes.

The prevalence of obesity and metabolic syndrome (MS) have reached epidemic proportions1. Obesity and the 
MS are strongly linked to the development of diabetes, hypertension, cardiovascular disease, coronary heart dis-
ease, and several types of cancers2,3. Therefore, the identification of individuals at risk of developing metabolic 
diseases before the MS is of particular importance for prevalence control and early intervention.

A number of studies have reported that the serum levels of branched-chain and aromatic amino acids (BCAAs 
and AAAs), including leucine, isoleucine, valine, phenylalanine, and tyrosine, are significantly different among 
lean, obesity, and diabetes, and are closely correlated to insulin resistance, highlighting their potential for diabetes 
diagnosis and risk assessment4–7. Recently, the significant associations of the five amino acids (AAs) with insulin 
resistance, obesity, and future diabetes were identified and verified in American individuals8–10 and young Finns11. 
The mechanistic linkage between these five AAs and insulin resistance were investigated by Langenberg et al.12 
and Newguard13, respectively. More recently, Tilin et al. reported ethnical differences in the blood levels of these 
amino acids and suggested that these differences may add explanatory insights into the increased risk of diabetes 
in South Asian populations compared with Europeans14. However, these cohort studies did not involve Chinese 
populations. It has been well documented that most diabetic patients in China have a lower BMI and impaired 
islet function at the early stages of metabolic diseases15, necessitating independent Chinese population studies on 
these amino acid markers. Our group recently reported a gender difference in blood metabolite profiles including 
BCAAs and AAAs between obese men and women in China16, suggesting that the risk prediction ability of these 
amino acid markers may be gender dependent.

The main goal of this study was to evaluate the five AAs in predicting the risk of developing diabetes in 
Chinese populations. Using a mass spectrometry platform, we measured the levels of leucine, isoleucine, 
valine, phenylalanine, and tyrosine in 429 serum samples from two independent groups of individuals 
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(supplemental Fig. 1). Specifically, we examined the baseline levels of five AAs in 213 subjects with the risk of 
developing diabetes in an average of ten years. We further conducted a cross-sectional comparison of the serum 
levels of five AAs among 216 individuals with metabolically healthy or unhealthy status.

Results
The five AAs are predictive of the risk of future diabetes.  The metabolic markers as well as the five 
AAs in the 51 future diabetes individuals (named DM) and 51 matched healthy individuals (named HC) were 
examined. There were no apparent differences in the metabolic markers between DM and HC groups at base-
line (Table 1 and supplemental Table 1). However, the baseline serum levels of the five AAs were significantly 
increased in the DM group with fold changes higher than 2 and P values lower than 0.001 (Table 1). The heat map 
also showed larger variations in AAs between these two groups, compared to the metabolic markers (Fig. 1a). The 
inter-group variations and significance of the five AAs were similar to each other and the combined score was no 
better than their individuals (Table 1 and Fig. 1b).

We fitted basic and advanced logistic regression models adjusting for 3 and 14 confounding factors respec-
tively, and further confirmed that these five AAs were strongly associated with diabetes risk and independent of 
both physical and key metabolic markers (ORs per s.d. >  2 and P values < = 0.001, Table 1). However, the baseline 
metabolic markers were not able to predict the risk of diabetes (P values >  0.05, Table 1). The AUC analysis also 
demonstrated that the five AAs were better discriminators between these two groups (AUCs >  0.8, Table 1).

We regrouped the study participants with the same 51 individuals of future diabetes and 162 more heteroge-
neous healthy controls (supplemental Table 2). As expected, the five AAs and their combined score were signifi-
cantly elevated in the DM group (FCs >  2, P values <  0.001, and AUCs >  0.8) and were strongly associated with 
future diabetes incidents (ORs per s.d. >  1.5 and P values  <  0.001 for both basic and advanced logistic models), 
outperforming any of the existing clinical markers. To summarize, the baseline serum levels of five AAs or their 
combined score showed superior capability in predicting the future development of diabetes over conventional 
metabolic markers.

Metabolic markers and AAs P1 FC

Basic/advanced logistic model

OR (95% CI) P2 AUC

BMI (kg/m2) 0.05 0.97 0.98 (0.85, 1.13) 0.79 0.50

Waist (cm) 0.45 1.01 1.06 (0.99, 1.13) 0.11 0.58

Glucose0 (mM) 0.57 1.02 1.35 (0.57, 3.17) 0.50 0.55

Glucose120 (mM) 0.28 0.98 0.80 (0.53, 1.23) 0.31 0.53

INS0 (U/L) 0.53 0.99 0.98 (0.88, 1.09) 0.75 0.60

INS120 (U/L) 0.31 0.95 1.00 (0.98, 1.00) 0.60 0.55

TC (mM) 0.47 0.97 0.15 (0.02, 1.37) 0.09 0.54

TG (mM) 0.37 1.09 2.57 (0.54, 12.17) 0.23 0.56

HDL (mM) 0.06 0.97 0.22 (0.01, 5.66) 0.36 0.61

LDL (mM) 0.81 1.06 1.63 (0.67, 3.92) 0.28 0.55

SP (mmHg) 0.05 1.03 1.03 (0.98, 1.07) 0.30 0.60

DP (mmHg) 0.37 1.03 1.04 (0.97, 1.11) 0.26 0.55

HbA1c (%) 0.10 1.01 1.45 (0.44, 4.79) 0.55 0.57

HOMA-IR 0.71 1.01 0.94 (0.60, 1.48) 0.79 0.55

HOMA-Beta 0.69 1.09 1.00 (1.00, 1.00) 0.49 0.51

Matsuda index 0.54 0.85 1.00 (0.99, 1.00) 0.21 0.54

Valine < 0.001 2.52 3.04 (1.89, 4.87)/3.51 (1.75, 7.04) < 0.001/< 0.001 0.93

Leucine < 0.001 2.06 2.08 (1.40, 3.09)/2.38 (1.50, 3.76) < 0.001/< 0.001 0.88

Isoleucine < 0.001 2.60 2.61 (1.71, 4.00)/2.52 (1.58, 4.04) < 0.001/< 0.001 0.89

Phenylalanine < 0.001 2.01 2.07 (1.38, 3.09)/2.22 (1.40, 3.50) < 0.001/ 0.001 0.89

Tyrosine < 0.001 2.28 3.03 (1.86, 4.94)/2.96 (1.70, 5.14) < 0.001/< 0.001 0.89

Combined score < 0.001 2.72 2.53 (1.68, 3.81)/2.55 (1.61, 4.03) < 0.001/< 0.001 0.91

Table 1.  Metabolic markers and AAs at baseline and their statistical significance in discriminating 
individuals who developed diabetes in 10 years (DM, n = 51) from those who remained metabolically 
healthy (HC, n = 51). Abbreviations used: AUC, area under ROC curve; CI, confidence interval; Combined 
score: the first decomposed principal component derived from the abundance of the five AAs; DP, diastolic 
blood pressure; FC, fold change; Glucose0, fasting glucose; Glucose120, 2h glucose; HDL, high-density 
lipoprotein-cholesterol; HOMA-Beta =  20*INS0/(Glucose0-3.5); HOMA-IR =  Glucose0*Glucose120/22.5; 
INS0, fasting insulin; INS120, 2h insulin; LDL, low-density lipoprotein-cholesterol; Matsuda index =  10000/
(Glucose0*Glucose120*INS0*INS120)1/2; OR, Odds ratio; SP, systolic blood pressure; TC, total cholesterol; TG, 
triglyceride. P1 were from Mann Whitney U test. FC represent mean ratio of DM to HC. Odds ratio (OR) and 
confidence interval (CI) per s.d., and P (P2) values were from basic and advanced logistical regression models 
and S.D. scaled data.
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The five AAs were differentially expressed in healthy lean, overweight/obesity and diabetes 
individuals.  In the nested cross sectional study, 216 gender matched individuals were selected from the SHOS 
Study, including 72 healthy leans (HL), 72 healthy overweight or obese subjects (OW/OB), and 72 overweight 
or obese subjects diagnosed with type 2 diabetes (DM). We first assessed the correlations between five AAs and 
metabolic markers. The heat map showed their strong correlations (Fig. 2a). In particular, five AAs had the clos-
est positive correlation with HOMA-IR, and the combined score reached the highest correlation (r =  0.42 and 
P <  0.001) (Fig. 2b). Their metabolic status discrimination performances were also examined and summarized in 
Table 2 and supplemental Table 3. The OW/OB group had significantly higher levels of the five AAs compared to 
the HL group (fold change range 1.07–1.19). Although not statistically different from OW/OB group, DM group 
showed even higher levels of AAs compared to HL (fold change range 1.11–1.30). The combined score of the five 
AAs (Fig. 2c), had the lowest p-values, highest fold changes, and largest AUC areas. Compared to the five AAs, 
some of the metabolic markers, particularly, the HOMA-IR, performed better in discriminating the three groups 
(Fig. 2d). In summary, five AAs were closely associated with metabolic status of individuals, especially insulin 
resistance, but not as good as some of the metabolic markers in distinguishing individuals with diabetes from 
their healthy counterparts.

Discussion
In this work, we conducted two nested studies using participants (n =  429) from the SHDS and SHOS cohort 
studies to evaluate the performances of five AAs (valine, leucine, isoleucine, phenylalanine, and tyrosine) in pre-
dicting the risk of developing diabetes, and to understand the associations between the AAs and the metabolic 
status (e.g., insulin resistance) in Chinese populations. First, from the longitudinal study, the baseline serum 
levels of five AAs were significantly elevated in those who were diagnosed with diabetes 10 years later. Among the 
five AAs, valine stands out with a 251% increased odds (per s.d.) of developing diabetes in the future (P <  0.001, 
Table 1). Our results highlighted the predictive value of the five AAs for future diabetes, which supports previous 
studies conducted by Wang9, Weurtz11, and Batch8. Second, in the cross sectional comparison, the five AAs were 
progressively increased in overweight/obese and diabetes subjects, and closely associated with metabolic markers 
of insulin resistance (HOMA-IR), BMI, TG, HbA1c, etc. These findings are consistent with several studies on 
obese nondiabetic individuals10, metabolic abnormalities8, and in the middle-aged Finnish individuals7.

The performance of five circulating AAs over clinical metabolic makers in predicting or discriminating dia-
betes was different in two studies. In the longitudinal study the five AAs and their combined score outperformed 
clinical metabolic markers in diabetes risk prediction. This suggests that the blood levels of AAs elevated long 
before the rise of clinical markers in response to the onset of diabetes. In the second study, five AAs were differ-
entially expressed in three groups, lean, obese, and obese with diabetes, with an increasing trend (i.e., HL <  OW/
OB <  DM). However, they were not as strong markers as clinical metabolic markers such as HOMA-IR in distin-
guishing diabetic patients from their healthy counterparts.

These essential amino acids, valine, leucine, isoleucine, and phenylalanine, and a conditionally essential amino 
acid, tyrosine, play important roles in the synthesis of specific neurotransmitters, protein degradation and turno-
ver, lymphocyte growth and proliferation, dendritic cell maturation, glycogen synthesis, energy metabolism, and 
so on17–22. They were reported as early indicators of cardiovascular23–25, pancreatic adenocarcinoma26, kidney dis-
ease27, and cardioembolic stroke28. Although not completely understood, there exists several possible mechanism 
underlying the association between these AAs and the risk of developing diabetes. First, type 2 diabetes begins 
with insulin resistance of peripheral tissues29,30. To compensate for this resistance, pancreatic beta-cells respond 

Figure 1.  Heat map of AA and metabolic marker levels (a) and scatter plot of combined score (b) in individuals of 
healthy control (HC) and diabetes (DM) from longitudinal study. Abbreviations used: Score, the first decomposed 
principal component derived from the abundance of the five AAs; DM, future diabetes; DP, diastolic blood pressure; 
Glucose0, fasting glucose; Glucose120, 2 h glucose; HC, future healthy controls; HDL, high-density lipoprotein-
cholesterol; HOMA-Beta =  20*INS0/(Glucose0-3.5); HOMA-IR =  Glucose0*Glucose120/22.5; INS0, fasting insulin; 
INS120, 2 h insulin; Isoleu, isoleucine; LDL, low-density lipoprotein-cholesterol; Leu, leucine; Matsuda index =  10000/
(Glucose0*Glucose120*INS0*INS120)1/2; Phenyl, phenylalanine; SP, systolic blood pressure; TC, total cholesterol; 
TG, triglyceride; Tyro, tyrosine; Val, valine.
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with increased insulin synthesis and proliferation31. It is estimated that the islet function may be reduced by up to 
50%, compared with healthy control subjects, at the onset of diabetes32. Mammalian target of rapamycin complex 
1 (mTORC1) and its downstream effectors such as S6 kinase-1 (S6K1) are important for growth and proliferation 
of beta cell as well as insulin secretion. Multiple amino acids, particularly leucine, are important regulators of 
mTORC1 signaling33. Elevated levels of plasma BCAAs for a long period may contribute to the hyperactivation 
of mTOR signaling and presumably result in early beta cell dysfunction and destruction34,35. Second, some obser-
vations suggested that BCAAs facilitate glucose uptake by liver and skeletal muscle as well as enhancing glycogen 
synthesis by insulin-independent manner through phosphatidylinositol 3-kinase (PI3-kinase) or protein kinase C 
(PKC) pathways rather than mTOR pathway22,36. Third, accumulating evidences suggest that intestinal microbiota 
composition and perturbation represent a critical environmental factor to the progression of diabetes37–39. Many 
bacterial species are involved in the synthesis of BCAA and decomposition of AAAs40. Therefore, altered micro-
biome and the association with AAs might be another possible mechanism of diabetes-related AA alterations. A 
fourth possibility is suggested by recent studies on the interplay of adipose tissue, BCAA metabolism, and glucose 
homeostasis13. The increased BCAAs may generate more catabolic intermediates propionyl CoA and succinyl 
CoA, leading to accumulation of incompletely oxidized fatty acids and glucose, mitochondrial stress, impaired 
insulin action, and ultimate perturbation of glucose homeostasis. Our recent study also demonstrated that circu-
lating fatty acid levels were significantly elevated in pre-diabetic subjects compared to their healthy counterparts, 
and several unsaturated fatty acids were closely associated with the risk of future diabetes41. Finally, individual 
AAs performed differently when predicting future diabetes among various populations. Phenylalanine and valine 
were superior to the other 3 AAs in the studies with American populations9, tyrosine showed better performance 

Figure 2.  Heat map of Spearman correlation coefficients between AAs and metabolic markers (a), relationship 
between combined score and HOMA-IR (b), Scatter plot of combined score (c) and HOMA-IR (d) in HL, OW/
OB, and DM individuals from cross sectional study. Abbreviations used: ALT, alanine aminotransferase; AST, 
aspartate aminotransferase; Score, the first decomposed principal component derived from the abundance 
of the five AAs; DM, overweight or obesity with type 2 diabetes; DP, diastolic blood pressure; γ -GT, gamma-
glutamyl trans-supeptidase; Glucose0, fasting glucose; Glucose120, 2 h glucose; HDL, high-density lipoprotein-
cholesterol; HL, healthy lean; HOMA-Beta =  20*INS0/(Glucose0-3.5); HOMA-IR =  Glucose0*Glucose120/22.5; 
INS0, fasting insulin; INS120, 2 h insulin; Isoleu, isoleucine; LDL, low-density lipoprotein-cholesterol; Leu, 
leucine; Matsuda index =  10000/(Glucose0*Glucose120*INS0*INS120)1/2; OW/OB, healthy overweight or 
obesity; Phenyl, phenylalanine; SP, systolic blood pressure; TC, total cholesterol; TG, triglyceride; Tyro, tyrosine; 
Val, valine.
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among participants in South Asian14, whereas valine stood out in our study with Chinese population. In com-
parison, most diabetic patients in China had lower BMI, but with more abdominal fat15, which were presumably 
associated with earlier beta-cell dysfunction42 and specific genetic loci for diabetes43,44.

Our recent metabolomics study suggests that there are significant gender differences in metabolic profiles of 
obese individuals16. In this study, we compared all the data in male and female participants separately and found 
that the variations of the five AAs were consistent but slightly different between males and females, with more 
significant increases observed in male participants (supplemental Tables 4–7).

Key strengths of the present investigation are the use of two separate cohorts, with participants at several 
stages of diabetes development. The roles of five AAs were evaluated comprehensively by case-control samples 
and carefully selected longitudinal samples, and in male and female subjects, respectively. Comparing with a com-
plete panel of clinical markers measured for all the participants, the five AAs showed a similar diagnostic power 
for diabetes but a remarkably improved predictive performance on future diabetes, highlighting their predictive 
value in clinical and epidemiological applications.

Several limitations in our study exist. First, we are well aware that statistical power would be increased with 
a larger sample size. The use of medium sample sizes in our study is primarily due to the strict inclusion criteria. 
Second, although fasting serum samples were used for analysis, the information regarding diet, sedentary life-
style, and other possible confounders was not available for investigation.

Methods
Study populations.  Longitudinal study.  A group of 213 healthy individuals (20–75 year-old) was selected 
from a prospective cohort study called Shanghai Diabetes Study (SHDS)45. The SHDS started in 1997–2001, 
where baseline fasting serum of all the participants were collected and stored. After a median follow-up time 
of 10.0 years (SD =  3.1), 51 individuals (47% male) developed diabetes and 162 (27% male) remained free of 

Metabolic markers and AAs

P FC AUC

HL vs OW/OB HL vs DM OW/OB vs DM OW/OB /HL DM/HL DM/ OW/OB HL vs OW/OB HL vs DM OW/OB vs DM

BMI (kg/m2) < 0.001 < 0.001 0.35 1.33 1.35 1.02 1.00 1.00 0.55

Waist (cm) < 0.001 < 0.001 < 0.001 1.14 1.07 0.93 0.97 0.77 0.80

TC (mM) 0.40 < 0.001 < 0.001 0.99 1.25 1.26 0.54 0.84 0.86

TG (mM) 0.05 < 0.001 < 0.001 1.16 2.80 2.41 0.60 0.93 0.88

HDL (mM) < 0.001 < 0.001 < 0.01 0.86 0.77 0.89 0.70 0.83 0.64

LDL (mM) < 0.01 < 0.001 < 0.001 1.08 1.31 1.21 0.64 0.79 0.72

γ -GT (U/L) 0.72 < 0.001 < 0.001 1.17 1.78 1.51 0.52 0.84 0.76

SP (mmHg) 0.82 < 0.001 < 0.001 1.01 1.17 1.16 0.52 0.82 0.80

DP (mmHg) 0.13 < 0.001 < 0.001 1.02 1.12 1.09 0.58 0.73 0.68

ALT (U/L) 0.10 < 0.001 0.05 1.08 1.31 1.22 0.58 0.66 0.60

AST (U/L) 0.79 0.53 0.69 0.99 0.99 1.00 0.52 0.54 0.52

HbA1c (%) 0.01 < 0.001 < 0.001 1.03 1.60 1.55 0.62 0.96 0.95

Glucose 0 (mM) 0.58 < 0.001 < 0.001 1.02 1.58 1.56 0.53 0.91 0.92

Glucose 30 (mM) 0.91 < 0.001 < 0.001 1.00 2.59 2.60 0.51 0.99 1.00

Glucose 120 (mM) 0.50 < 0.001 < 0.001 0.99 1.33 1.33 0.54 1.00 0.99

INS0 (U/L) < 0.001 < 0.001 0.01 1.82 2.17 1.20 0.81 0.89 0.63

INS30 (U/L) < 0.001 0.01 < 0.001 1.57 0.87 0.55 0.72 0.62 0.79

INS120 (U/L) 0.06 < 0.001 < 0.001 1.24 2.43 1.96 0.59 0.82 0.76

HOMA-IR < 0.001 < 0.001 < 0.001 1.87 3.40 1.82 0.80 0.96 0.81

HOMA-beta < 0.001 0.18 < 0.001 1.71 0.90 0.53 0.76 0.57 0.79

Matsuda index < 0.001 < 0.001 < 0.001 0.57 0.27 0.48 0.76 0.99 0.85

Valine < 0.001 < 0.001 0.07 1.18 1.26 1.07 0.69 0.74 0.59

Leucine < 0.01 < 0.001 0.07 1.19 1.30 1.09 0.65 0.72 0.59

Isoleucine 0.04 < 0.001 0.06 1.13 1.22 1.08 0.61 0.69 0.59

Phenylalanine < 0.01 < 0.001 0.16 1.15 1.21 1.05 0.65 0.70 0.57

Tyrosine 0.04 < 0.01 0.45 1.07 1.11 1.04 0.60 0.64 0.54

Combined score < 0.001 < 0.001 0.18 1.30 1.40 1.08 0.71 0.76 0.57

Table 2.   Statistical significance of metabolic markers and AAs in discriminating individuals of healthy 
lean (HL, n = 72), healthy overweight or obese (OW/OB, n = 72), and overweight or obese with diabetes 
(DM, n = 72). Abbreviations used: ALT, alanine aminotransferase; AST, aspartate aminotransferase; AUC, area 
under ROC curve; Combined score: the first decomposed principal component derived from the abundance of 
the five AAs; DP, diastolic blood pressure; FC, fold change; γ -GT, gamma-glutamyl trans-supeptidase; Glucose0, 
fasting glucose; Glucose120, 2h glucose; HDL, high-density lipoprotein-cholesterol; HOMA-Beta =  20*INS0/
(Glucose0-3.5); HOMA-IR =  Glucose0*Glucose120/22.5; INS0, fasting insulin; INS120, 2h insulin; LDL, low-
density lipoprotein-cholesterol; Matsuda index =  10000/(Glucose0*Glucose120*INS0*INS120)1/2; SP, systolic 
blood pressure; TC, total cholesterol; TG, triglyceride. P values were from Mann Whitney U test.
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diabetes or MS in accordance with WHO 1999 criteria and the proposed standard by the Chinese Diabetes 
Society (CDS)46,47. This group was analyzed in two different ways. The first way was to analyze 102 subjects in 
total, including 51 subjects who developed diabetes in 10 years and 51 matched individuals who remained meta-
bolically healthy in 10 years. The second way was to analyze the same 51 future diabetes individuals and all of the 
162 healthy subjects (213 subjects in total).

Cross-sectional study.  A total of 216 Chinese adult individuals (20–65 year-old) including healthy lean, healthy 
overweight or obese, and overweight or obese with type 2 diabetes were selected from the Shanghai Obesity 
Study (SHOS)48. There were 72 participants, 36 males and 36 females, in each group. Participants with type 2 
diabetes were newly diagnosed ones without any complications and antidiabetic medications. The selection of 
individuals into the healthy lean group and healthy overweight or obese group was based on the following 4 
criteria: (1) lean means 18.5 kg/m2 ≤ BMI <  24.0 kg/m2, overweight means 24.0 kg/m2 ≤  BMI <  28.0 kg/m2, and 
obese means BMI ≥  28 kg/m2 49; (2) fasting glucose concentration ≤  6.1 mmol/L and no previous history of dia-
betes; (3) systolic / diastolic blood pressure < 140/90 mmHg and no previous high blood pressure history; and 
(4) fasting plasma TG <  1.7 mmol/L and fasting plasma HDL ≥  0.9 mmol/L (men) or ≥ 1.0 mmol/L (women) and 
no previous history of high cholesterol. Individuals in both healthy lean group and healthy overweight or obese 
group were excluded if they had chronic inflammatory disease, cardiopulmonary, renal or liver disease, active 
malignancy, or were taking any medication (including weight loss or psychotropic medication).

Sample collection.  Serum samples of the two studies were collected and stored following the standard oper-
ation protocol of Sixth People’s Hospital of Shanghai, China. Briefly, fasting venous blood samples were centri-
fuged immediately after collection from the subjects in the morning, and the resulting serum were delivered by 
dry ice storage boxes to the laboratory study and stored in aliquots in a − 80 °C freezer until sample preparation.

All the methods were carried out in accordance with the approved guidelines. All the studies were conducted 
with ethical approval from the sixth people’s hospital of Shanghai, China. Written informed consent was obtained 
from participants prior to inclusion in the two cohort studies, SHDS and SHOS, respectively.

Metabolic markers.  Fasting and 2 h postprandial plasma glucose and insulin levels, serum lipid profiles (total 
cholesterol TC, triglyceride TG, high-density lipoprotein-cholesterol HDL, low-density lipoprotein-cholesterol 
LDL), aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl trans-supeptidase 
(γ -GT), blood pressure (systolic and diastolic blood pressure SP and DP), waist, body mass index (BMI), and liver 
and kidney functions were determined as previously described50. Insulin resistance, secretion, and sensitivity was 
measured by HOMA-IR(Glucose0*Glucose120/22.5)51, HOMA-beta(20*INS0/(Glucose0-3.5))51, and Matsuda 
index(10000/(Glucose0*Glucose120*INS0*INS120))1/2 52 calculated from the glucose and insulin levels. All study 
measures were obtained before 10 a.m. after an overnight fast in accordance as well with the standard operation 
protocol of the Sixth People’s Hospital of Shanghai, China.

Measurement of BCAAs and AAAs.  The serum levels of the five AAs in all the enrolled participants 
were analysed by ultra-performance liquid chromatography triple quadruple mass spectrometry (UPLC-TQ/MS, 
Waters, Milford, MA, USA). A 40 μ L aliquot of serum sample was used in UPLC-TQ/MS ESI+  analysis. After 
diluted with 80 μ L of water, the sample was extracted with 500 μ L of a mixture of methanol and acetonitrile (1:9, 
v/v). The extraction procedure was performed at − 20 °C for 10 min after 2 min vortexing and 1 min ultrasoni-
cation. The sample was then centrifuged at 4 °C at 12000 rpm for 15 min. An aliquot of 20 μ L supernatant was 
vacuum-dried at room temperature. After that, the residue was redissolved by 100 μ L of a mixture of methanol 
and water (1:1, v/v) with 1 μ g/mL of L-2-chlorophenylalanine followed by the same vortexing, ultrasonication and 
centrifugation steps ahead. A volume of 80 μ L supernatant was trasferred into the sampling vial for UPLC-TQ/
MS analysis (Waters, Manchester, U.K.). In addition to the internal standards used for quality contol, a quality 
control (QC) samples consisting of five reference standards was prepared and run after each 10 serum samples. 
The QC samples were kept at 10 °C during the entire analysis. A 5 μ L aliquot of sample was injected into an ultra-
performance liquid chromatography system (Waters, U.K.) with a 4.6 mm ×  150 mm, 5 μ m Elispse XDB-C18 
column (Angilent, USA). The column was held at 40 °C. The elution procedure for the column was 1% for the first 
0.5 min,1–20% B over 0.5–9 min, 20–75% B over 9–11 min, 75–99% B over 11–16 min, and the composition was 
held at 99% B for 0.5 min, where A =  water with 0.1% formic acid and B =  acetonitrile with 0.1% formic acid for 
positive mode (ESI+ ) and the flow rate was 0.4 mL/min. A Waters XEVO-Triple Quadrupole MS was used for 
the mass spectrometry detection. The temperature for the source and desolvation gas was set at 150 and 450 °C 
respectively. The gas flow for cone and desolvation was 50 and 800 L/h respectively. The capillary voltage was set 
to 3.0 kV. All the compounds were detected in multiple reaction monitoring (MRM) mode.

Statistics.  The acquired raw data from UPLC-TQ/MS was targeted and processed by TargetLynx software 
(v 4.1, Waters, USA). Both internal standard (L-2-chlorophenylalanine) and quality control samples (mixture 
of standards) were used for sample pretreatment in order to ensure data quality and eliminate the run order 
effects of instrument detection. There were no missing values in the data set. A combined score was generated 
by the Factor Analysis based on the abundance of the five AAs (i.e., the first decomposed principal component 
explaining the largest data variance was taken as the combined score). Data in figures and tables were expressed 
as mean ±  SEM. All statistical tests were two-sided, and p values less than 0.05 were considered statistically sig-
nificant. All statistical analysis and graphics were carried out using SPSS (V19, IBM, USA), graphpad Prism (6.0, 
Graphpad, USA), and matlab (2014a, MathWorks, USA).

Mann Whitney U test was applied to examine the significance of the five AAs, the combined score, and met-
abolic markers as over 90% variables are deviated from normality from Kolmogorov-Smirnov normality test. 
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Multiple testing corrections were not conducted considering that samples were matched, and the variable num-
ber was relatively small compared to the total number of samples. The ROC analysis was performed and area 
under ROC (AUC) was used to rank their diagnostic capabilities. The heat map profiling was based on z-score 
scaled data of metabolic markers or AAs. Spearman’s rank correlation coefficients were calculated to examine the 
associations between AAs/the combined score and metabolic markers. Both basic and advanced logistic regres-
sion models were constructed, based on SD scaled data, to assess the correlations of AAs with the risk of future 
diabetes. Basic logistic regression models were adjusted with confounding factors of baseline age, gender, and 
BMI. Advanced models were adjusted with the same three covariants of basic models and 11 more metabolic 
markers, including fasting and postprandial glucose, fasting and postprandial insulin, TC, TG, HDL, LDL, SP, 
DP, and HOMA-IR. Both basic and advanced models were fitted for five AAs and only basic models were fitted 
for metabolic markers.
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