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Spatial localisation meets biomolecular networks
Govind Menon 1 & J. Krishnan 1,2✉

Spatial organisation through localisation/compartmentalisation of species is a ubiquitous but

poorly understood feature of cellular biomolecular networks. Current technologies in systems

and synthetic biology (spatial proteomics, imaging, synthetic compartmentalisation) neces-

sitate a systematic approach to elucidating the interplay of networks and spatial organisation.

We develop a systems framework towards this end and focus on the effect of spatial loca-

lisation of network components revealing its multiple facets: (i) As a key distinct regulator of

network behaviour, and an enabler of new network capabilities (ii) As a potent new regulator

of pattern formation and self-organisation (iii) As an often hidden factor impacting inference

of temporal networks from data (iv) As an engineering tool for rewiring networks and net-

work/circuit design. These insights, transparently arising from the most basic considerations

of networks and spatial organisation, have broad relevance in natural and engineered biology

and in related areas such as cell-free systems, systems chemistry and bionanotechnology.
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Networks are pervasive across a range of natural and
engineered systems, and the analysis of networks is a basic
way of dissecting, elucidating and engineering these sys-

tems. Indeed, network analysis represents a basic way of thinking
about a broad variety of complex systems, which might, on the
face of it, have little in common. Biomolecular networks are a
central ingredient of systems biology, synthetic biology, biological
engineering and systems chemistry. Complex biomolecular net-
works are central to how information is processed in these sys-
tems, and how cellular life is organised and maintained. Despite
the wide diversity of networks, they are ultimately comprised of
key motifs and modules, which are widely observed, and studying
these recurrent building blocks has been a fruitful way to study
basic aspects of network function.

Spatial organisation is another fundamental aspect of living
systems, seen at multiple levels spanning cellular, tissue, organ and
organism levels. At the intracellular level, the ubiquitous presence
of localisation/ compartmentalisation is a basic feature of bacteria
and eukaryotes, with spatial organisation being directly exploited
in evolution. There are pervasive ingredients encountered at
multiple levels, notably the localisation of components and the
disparity in transport rates between components (some compo-
nents being highly diffusible and others weakly diffusible). This is
especially evident at the cellular and tissue level.

Understanding the interplay of spatial organisation and bio-
chemical networks is therefore fundamental to the understanding
and engineering of biological systems, with further relevance to
cell-free systems. There are a variety of examples testifying to the
broad relevance of this theme (Fig. 1a).

Systems/synthetic biology presents numerous examples of the
confluence of weakly/non-diffusible, highly diffusible and localised
entities (discussed in detail in Supplementary Information). Cellular
examples span bacteria and eukaryotes (C. Elegans, fungi, mam-
malian cells), different pathways (e.g. MAPK, Calcium signalling)
with different roles/outcomes: gradient generation, polarity genera-
tion, spatial positive feedback and switching, membraneless
compartments1–6. Population-level examples include multifunctional
circuits in development, localisation of metabolic pathways in dif-
ferent cells/spatial zones (for instance, determining tissue-level
insulin response)7,8. Synthetic biology examples include compart-
mentalisation of circuits in cell-free systems, artificial and natural
cells, reconstituting circuits in cells, engineering cellular decision-
making for tissue engineering and creation of synthetic population
mimics for programming multicellular structures9–14.

The above examples clearly indicate the need for an in-depth
understanding of the interplay between space and biochemical/
biomolecular networks, which is broad-based and transcends the
individual context. In this paper we develop a systems approach,
systematically accounting for network features and spatial aspects
(in particular, localisation) to achieve this. In so doing, we reveal
multiple facets of this interplay, and address both network-centric
and space-centric issues: (i) What does spatial organisation con-
tribute to the behaviour of networks, and our understanding of
processes in terms of networks? (ii) How does the presence of
spatial organisation affect data-driven inference and modelling
of processes through networks? (iii) What does the consideration of
network features contribute to our understanding of basic spatial
aspects of interest such as gradient-sensing and pattern formation
(and spatial information processing)? (iv) How can spatial organi-
sation be employed in the engineering of biomolecular networks?

Results
Some basic aspects of spatial organisation in networks, arising
from the interplay of local and global entities, have been studied
in the literature, from various perspectives, including the capacity

to generate patterns, building from Turing’s classic work15, for
e.g. see ref. 16–18 and the behaviour of network modules with
elements of contrasting diffusivities19. In the present study, a
crucial new ingredient is the presence of spatial localisation, a
widespread ingredient in biological systems. We focus on this, by
examining the interplay of localised with local and global entities
in networks.

We examine multiple facets of the interplay of biochemical/
biomolecular networks and space/localisation (see schematic in
Fig. 1b, c) from two complementary perspectives (see Methods
for details). We consider three types of spatial characteristics of
species: local (weakly/non-diffusible), global (highly diffusible)
and localised (species localised at designated spatial regions). A
spatial network description involves the specification of the spa-
tial domain (and boundaries) and spatial characteristics of nodes,
in addition to the network interactions. We employ partial
differential equation (PDE) models in a 1-D spatial domain
(sufficient for this study) with appropriate boundary conditions
(no-flux, periodic). A network is comprised of nodes (of inter-
converting species) and interactions between nodes. Unless
otherwise mentioned, the species (active/inactive forms) con-
stituting a node are assumed to have the same spatial char-
acteristic (either localised, highly diffusible (global), or weakly/
non-diffusible (local)). Our study focusses on a broad class of
candidate spatial networks, obtained as follows. One exploration
starts by examining networks, with different spatial characteristics
of nodes. To do this we examine a variety of three-node motifs
which encompass a wide range of relevant behaviour20, imposing
different spatial characteristics of nodes systematically. We build
on this to also examine the spatial charactersitics of the interac-
tion (which may involve other species implicitly) by again asso-
ciating them with the aforementioned spatial characteristics. In
this manner, the use of realistic and representative spatial orga-
nisation in network motifs allows us to access and analyse net-
works which are not limited in their spatial complexity. This
approach is more focussed and fruitful than scanning motifs of
larger sizes and focussing exclusively on the spatial characteristics
of nodes. A complementary perspective starts from the spatial
classes and involves examining how a given network is distributed
between the three spatial classes. This involves building up spatial
networks with the different classes as a basic vantage point. While
these perspectives essentially overlap for simple networks and
simple localisation patterns, they provide distinct vantage points
from which to examine and construct more complex spatially
organised networks.

Our results below are underpinned by a broad exploration of
the impact of localisation in networks (as outlined above). We
present representative and striking features of the effect of loca-
lisation as follows: (i) basic effects of localisation, which are
observed even in very simple networks (ii) effects of localisation
on networks exhibiting specific characteristics (e.g. bistability,
oscillations). We subsequently present results on (iii) pattern-
forming capabilities of such networks (iv) the impact of locali-
sation on network inference and (v) a selection of cases from an
engineering perspective. We employ a combination of basic
networks (illustrating general points, broadly relevant), specific
networks (exhibiting noteworthy behaviour), and additional
exemplar cases (demonstrating specific applications).

The effect of spatial localisation on networks. We first address
the question: how and in what types of ways can spatial locali-
sation affect network behaviour and function?

Localisation, by itself, introduces multiple new features:
gradient creation, dependence on diffusivity and location relative
to boundaries. The most basic effect of having localised entities in
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Fig. 1 Schematic summary of the focus of the paper, the ingredients, approaches and types of insights. a Schematic summarising the central role of the
interplay between local (non-diffusible/slow diffusing), global (diffusible/fast diffusing), and localised components, in multiple contexts of biochemical
information processing in natural and engineered biology and at their junction (related references: Robbins et al.1, Durrieu et al.49, Basu et al.50, Semenov
et al.9, Li et al.14, Joesaar et al.13). b Schematic illustrating the two complementary approaches used in our study, bringing together networks and spatial
classes. See ‘Methods’ for details. c Schematic summarising the types of insights emerging from the study, elucidating the role of localised components in
spatial and temporal information processing by biochemical networks. combining basic effects, the impact on pattern formation, the hidden role in network
inference and the potential for engineering synthetic circuits (the results arising from the study are summarised in Fig. 10).
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a network is that it introduces steady state gradients to other
species in the network (whose diffusivity is at neither extreme).
We examine this in a two-node feedback motif by localising one
of the interactions. This results in gradients for both nodes, which
may be commensurate or opposing, which depends on whether
the non-localised interaction is activating or inhibiting (Fig. 2b).
In general, the relative nature of gradients depends on the nature
of the non-localised interaction, rather than the overall behaviour
of the circuit: this is clearly exemplified by the case of feedback
circuits.

Another basic feature that emerges from localisation is the
effect of boundaries (described by no-flux boundary conditions in
this instance) of the spatial domain. Localised regulation
(activation/inhibition) causes characteristics of the steady state
response to depend on position of localisation relative to
boundaries. This is exemplified by the case of a single node
(moderate diffusivity) with a localised activating signal (Fig. 2c,
d). Furthermore, two different measures of the output (local
concentration at input location and spatial average concentration)
can exhibit opposite trends in response to change of input
location relative to boundaries. The former is amplified as the
input location moves closer to a boundary, while the latter is

attenuated. The effect of a change of localisation position can be
accentuated for moderate diffusivities, while it is minimal for low
and high diffusivities. An associated insight is that changing
species diffusivity for fixed localisation, can result in a non-
monotonic response.

What are the consequences for the qualitative behaviour of basic
information-processing motifs? We build on the above observations
to examine two basic information processing motifs exhibiting
distinct characteristic behaviour—a two-node positive feedback
motif exhibiting bistability, and a three-node negative feedback
motif exhibiting oscillations. We see that the above effects can
produce qualitative changes in the dynamical characteristics of such
motifs. For instance, in the bistable motif with one of the nodes
localised and the other diffusible, the location of the localised
element can affect bistable characteristics—with locations closer to a
boundary favouring bistability (Fig. 2f). Similarly, the location of
localised nodes in an oscillator motif with one of the nodes localised
and the others diffusible can impact oscillatory behaviour—with
locations closer to a boundary favouring oscillations (Supplemen-
tary Fig. 2). Some of these aspects can be understood analytically
(see Supplementary Notes 1.2, 1.3). Non-trivial diffusivity-depen-
dent behaviour (a consequence of localizaion) manifests itself

Fig. 2 Basic effects of localisation: location and diffusivity-dependent behaviour. In all figures that follow, θ denotes the spatial co-ordinate, and the
concentration of the species plotted is the active form of the node in the associated motif. A shaded node in a motif denotes a localised node and a
coloured arrow denotes a localised interaction. a Schematic of a single node highlighting how activation or inhibition is implemented. bWhen an interaction
is localised in a feedback motif, the resulting gradients of species can be commensurate or opposing depending on the nature of the non-localised
interaction (blue curves denote X*, red curves denote Y*). c Altering the location of localisation of input node X introduces location dependence of the
steady state of a moderately diffusible output node Y, without affecting X itself. A higher level of output is attainable locally (for a fixed input level),when
the localisation is closer to a closed boundary (solid curves denote the case where localisation is close to the boundary, dashed curves, the case where
localisation occurs in the middle of the domain). d This location dependence is also reflected in other measures such as the spatial average of Y (hereafter
spatial average is denoted by < >). In contrast to (c), the maximum value of the average occurs when X is localised in the centre of the domain. e
Diffusivity-dependent behaviour: The bistable behaviour of a two-node positive feedback motif with localised input signal is affected by the (equal)
diffusivity of the nodes. The system exhibits bistability for low and higher diffusivities, and loses it at intermediate diffusivity. f The same motif, with one of
the nodes localised, can exhibit location dependent bistable behaviour, with locations closer to a boundary favouring bistability. In (e) and (f) curves with
different colours denote different bifurcation curves as the diffusivity is varied.
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clearly in these motifs. With a single localised element, we see that
the bistable/oscillatory behaviour may be seen for both high and
low diffusivity, but may be absent for intermediate diffusivity
(Fig. 2e, Supplementary Fig. 5c).

The previous results involve a single localised element (input/
node/interaction). We now discuss a basic aspect associated with
localisation at a multiplicity of locations, introducing qualitative
distortions. Localising two interactions in a positive feedback
bistable circuit can destroy bistability simply by weakening the
interactions and consequently the feedback. Another example of a
basic distortion of qualitative behaviour is seen when the two nodes
of an incoherent feedforward adaptive (homoeostatic) circuit are
localised at different locations: such a scenario by itself destroys the
adaptation/homoeostatic response of these circuits (even with
respect to uniform stimuli: see Supplementary Note 1.4).

Localisation enables new types of information processing
characteristics which may be otherwise inaccessible. The new
qualitative characteristics introduced can be seen by contrasting
the behaviour of the actual spatially distributed system, with the
ODE model of the interactions (which assumes all entities in the
same location). This is illustrated by the following two cases. A
negative feedback circuit with interactions localised at two
different locations is capable of exhibiting oscillations (Supple-
mentary Fig. 5a)—something impossible in the ODE model (see
Supplementary Note 1.5). Interestingly, in this case, oscillatory
behaviour is seen only for intermediate diffusivity, in contrast to
the above. Similarly for the three-node motif in Fig. 3a, the ODE
network description admits bistability (but no higher order
multistability) whereas the distributed system with two of the
interactions localised is capable of exhibiting tristability
(Fig. 3b–d). The tristability is associated with two steady states
where one of the species is essentially uniform (and high) and the
other localised (and low) (analogous to the ODE steady states),
while the other exhibits graded profiles for both species,
representative of a polarised state. Both these examples point to
the removal of basic constraints by distributing the circuit.

Experimental studies in the C. elegans zygote point to a
mechanism of polarisation which echoes the basic motif studied
above21. Here the role of localised activation considered above is
played by the localised recruitment of ParA and ParB (the
inhibitory nodes of the motif) to the membrane.

Localisation can be used as a control mechanism for translating
network behaviour into spatial outcomes. We highlight a non-
trivial instance of such a possibility, focussing on bistable circuits.
We show how localisation at multiple locations in the context of
bistable switch circuits can result in the maintenance of different
steady states in the regions between the localised sub-domains by
the trapping of fronts at these locations (Fig. 3e, f). We
demonstrate that a localised node inhibiting the two nodes of a
mutual inhibition bistable circuit at two different locations
facilitates the maintenance of two distinct steady states in the
intermediate regions between these locations (the two locations
are placed symmetrically in a periodic domain for specificity).
This also demonstrates how switching between the steady states
can be established independently in each region, by a simple
graded input signal. The effect of localisation is both to segregate
the domain, and ‘control’ the bistable circuit to enable distinct
steady states in different regions.

Localisation and spatial patterns. What is the effect of co-
localising both forward and reverse interactions of a node? In
contrast to localisation of only a single reaction in a node of a
network (e.g. localising a species upstream regulating it) if the
opposing reaction is also localised at the same location,
the gradient-inducing effect of localisation is neutralised, allowing

the node to exhibit a homogeneous steady state profile. If loca-
lisation is present only for this node (as described above), the
network exhibits a homogeneous steady state, identical to the
ODE. Note that the output species at this node is present
everywhere (non-localised): see Supplementary Note 2.1. This
observation applies to all the motifs under consideration. Strik-
ingly, we observe that for certain motifs, it is possible that,
depending on the choice of localised elements, this homogeneous
steady state may lose stability.

Localisation can actually be a trigger for pattern formation in
such cases. We demonstrate this localisation-induced instability
in the case of an activator-inhibitor motif with moderately
diffusible nodes (Fig. 4). With the reactions of the inhibitor node
(Z) localised in the same location, we see that the homogeneous
steady state (corresponding to the ODE steady state) is unstable,
and the system evolves to a highly non-homogeneous steady state
(see Fig. 4d where the uniform steady state can be unstable in
contrast to 4c). Simulations indicate that there are multiple
inhomogeneous asymptotic steady states. Furthermore, we see
that this destabilisation does not require any difference in
diffusivity of the nodes. We emphasise that, in the absence of
localisation, the system has a unique uniform steady state which
is locally stable, as can be seen directly from computational results
and analysis. Furthermore, the observed instability arises only
when the region of localisation is below a certain size. Taken
together, this shows how localising basic interactions by
themselves can generate patterns which can be built upon
by the other network interactions. Even in parameter regimes
where the homogeneous steady state is stable, the system can have
co-existing stable inhomogeneous steady states (and even stable
oscillatory states).

Simulations of the PDE indicate that the number and nature of
inhomogeneous steady states can depend on the position of the
localisation relative to boundaries. For instance, localisation in the
centre of the domain (dividing the domain into identical halves: see
Fig. 4e can give rise to a pair of symmetry-broken, inhomogeneous
steady states (arising from a subcritical pitchfork bifurcation in a
compartmental model analogue), with output level high in one half
and low in the other. In addition, symmetric inhomogeneous stable
steady states can also co-exist. Other types of destabilization (arising
from a transcritical bifurcation) are seen when the localisation is not
symmetrically placed (e.g. it is adjacent to a boundary: Fig. 4d. In the
symmetric case, combinations of both transitions may be observed.
The Supplementary Notes 2.2, 2.3 discuss these aspects further.

We now discuss how fhe confluence of localised and global
elements can generate hybrid pattern-forming systems. Localisa-
tion combined with a global element allows the system to pick up
information from different parts of the domain and feed it into a
pattern-forming motif, without directly introducing distortions to
the pattern from the localised element. We demonstrate an
instance of this by considering two localised elements transducing
information from the environment and feeding into a global
element and subsequently a pattern-forming motif (Fig. 5a–d).
This allows for the confluence of two appealing features with
regard to the external signal, (1) by suitable construction, it is
possible that homogeneous signals do not trigger patterns but
gradient signals can and (2) the nature of the pattern is not
spatially distorted by the localisation.

Positional information (with an externally imposed gradient)
and Turing type pattern formation are two central mechanisms in
developmental biology. The combination of these mechanisms is
a current theme of interest, and the different configurations in
which the two can combine and where these are encountered
have been studied, with positional information upstream or
downstream or in parallel with a Turing mechanism (22,23). The
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model just described is an example of a hybrid model which
combines both these aspects in an essentially different way: the
gradient is essential for pattern formation, while the pattern itself
results from an instability (and depends on initial conditions: see
Supplementary Note 3). This approach also allows for the
construction of more complex pattern-forming elements which
transduce different types of information from the environment,
without distorting the resulting pattern.

Localisation can also be a basis for pattern selection. We
demonstrate another application of combining localised and
global elements, in the context of feedback regulation of pattern
formation (see Fig. 5f, g). We consider an activator-inhibitor
motif where an added negative feedback regulation is essential to
facilitate patterns—stronger homogeneous feedback enables
pattern formation (which is triggered when a perturbation above
a certain threshold is introduced). Introducing localisation by
incorporating an additional pathway with combination of
localised and global elements in this feedback can help bias the
choice of patterns to certain phases, without any distortions
introduced to the pattern. This results in patterns which have a
maximum, coincident with the location of the localised element,

while preventing patterns with a minimum here. The essential
insight follows directly from the understanding of the homo-
geneous feedback (see Supplementary Note 3.1), illustrating an
appealing feature of combining localisation and feedback to both
facilitate and specify patterns.

Spatial organisation and network inference. A basic ingredient
in building network models in natural contexts is that of mea-
surement and making inferences about networks from data. The
combination of networks, spatial organisation, and various types
of measurements introduces certain complexities with regard to
measurement and inference, even in cases involving ODE models
where spatial organisation is not the focal point. We now examine
multiple aspects of this. We first note that typical measurements
(concentrations associated with a particular node) used to build
ODE models are broadly of two different kinds—a local mea-
surement (at a particular location), or an average measurement.
Note that in many experimental contexts, these measurements of
a node may be indirect, relying on downstream readouts. This
dichotomy in measurement (localised vs. average) is also
encountered in cell population-level studies.

Fig. 3 Localisation can introduce new qualitative behaviour. a Bistable to tristable transition: motif under consideration, mutual inhibition between X and
Y. b The spatially distributed realisation considered here involves the regulation of diffusible nodes X and Y by Z with the regulation localised at opposite
ends of the domain. c Bifurcation diagram, with feedback strength of Y on X as bifurcation parameter. The corresponding ODE model exhibits bistability
(blue curve) while tristability is seen in the distributed system (red curve depicting the spatial average). d The three stable, inhomogeneous steady state
profiles are shown: in addition to two steady states where X or Y dominate, the system has a third steady state where they co-exist, each dominating in a
particular region. Here blue and red curves denote X* and Y* respectively. e Spatial switching: motif under consideration, mutual activation (giving
bistability) between X and Z (moderately diffusible); both inhibited by node Y, which is localised at two symmetric locations in a periodic domain.
f Localised inhibition by Y divides the domain into two parts, and by trapping of fronts, and allows essentially different steady states of the X–Z bistable
motif to be maintained in the two parts of the periodic domain (see left and right panels: both regions have high levels of X and Z (ON) in the left panel,
while in the right panel, one region has low levels of X and Z (OFF)). Furthermore, the switching of steady states confined to specific sub-domains can be
achieved by a graded input signal, and this switching remains when the gradation of signal is removed.
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Different measures of the same node (local and spatial average)
can be quantitatively different when the network contains localised
elements as seen in the case of a simple signal transduction cascade
with a single localised element (see Fig. 6a–c). Such quantitative
differences may be accentuated and reflect as qualitative differences,
in the presence of other non-linearities in the network such as
thresholds (Fig. 6c).

An additional aspect of understanding spatially distributed
networks is the relationship between measurements, behaviour of
nodes and the network picture as captured by an ODE
description. We make two points in relation to this: (1) it is
possible that one type of measurement may give an input–output
dose response curve close to the ODE description while the other
type of measurement may not (see Fig. 6b in comparison to
Fig. 6a), (2) in the same network, the behaviour of some nodes (in
terms of a particular type of measurement) may conform to the
ODE while others do not (see Fig. 6b, c showing this dichotomy
for nodes Y and Z, with spatial averaged measurements).

These dichotomies have important consequences for the use of
such network ODE models, noting that depending on the
application context, particular nodes, and/or output measures
may be especially important. It can result in either significant
deviations in the behaviour of some (unmonitored) nodes, or in
incorrect inferences drawn as to the source of observed behaviour.

In many networks, only some nodes are measurable. The
presence of localised elements can introduce new pitfalls in
making inferences about the network using such partial
measurements. For instance, we have already seen how the
location of a localised element relative to boundaries can affect
the dose response of an output (both locally, and in terms of its
average). If only the input signal and the output average are
measured, and the localisation is not accounted for, a mere
change of location for the localised node might be inferred as a
change in the kinetics/total concentrations of species associated
with signal transduction (Supplementary Fig. 5). Such pitfalls can
be strongly accentuated in more complex networks, where basic
effects of localisation can combine with other features of the
network in a way which is essentially obscured by partial
measurements.

We now examine cases of network nodes with species of
different diffusivities. Nodes with different diffusivities for active/
inactive forms are a key feature of multiple intracellular pathways.
A key ingredient in intracellular spatio-temporal organisation is
interconversion between slow and fast diffusing forms of a
protein: for example, complexes with different cytoplasmic
mobilities in C.elegans zygote24,25, and cytosolic and membrane
bound forms such as the Min system in E.coli and polarisation
circuit in S.cerevisiae21. Furthermore, feedback regulation of the

Fig. 4 Localisation-induced instability. a Motif under consideration: activator-inhibitor type motif where X is the activator and Z the inhibitor. b Schematic
of spatial realisation: both forward and backward reactions at node Z are co-localised (the spatial domain has closed boundaries). c This localisation allows
the system to have a homogeneous steady state, exactly equivalent to the ODE steady state. However, the homogeneous steady state may not be stable,
and the system can exhibit multiple stable inhomogeneous steady states. Blue, green and red curves denote X*, Y* and Z* respectively in (c–f). d When the
localised sub-domain is adjacent to a boundary, the system can have two co-existing inhomogeneous steady states, one where X and Y output are high
outside the localised sub-domain, and another where they are low. e With the localised sub-domain located symmetrically with respect to boundaries, the
system can exhibit multiple inhomogeneous steady states, including two symmetry-broken steady states where the X and Y output are high in one part of
the domain and low in the other (right column), as well as symmetric steady states (left column).
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interconversion between forms with different translocation rates
between nucleus/cytoplasm is shown to be a key ingredient in an
interphase to mitosis switch in S.cerevisiae4. In such cases, the
local concentration of the output of a node at different locations
within the domain can exhibit qualitatively different dose
response behaviour—increasing in one region and decreasing in
another. We demonstrate this in the case of a single node with
different diffusivity for the active and inactive forms, with a
localised inhibitory signal (Fig. 6d, e), also see Supplementary
Note 4 for analytical work). It also follows from this that it is
possible for local and average measurements to exhibit qualita-
tively different trends (Fig. 6e, f, g). These qualitatively different

trends can result in qualitatively incorrect inferences about
interactions between nodes, as can be easily seen in simple
networks. The fact that ignoring spatial organisation can lead to
incorrect causations from observed correlations is highlighted by
these simple networks.

We now discuss how incorrect network structures may be
inferred in such cases. Basic feedback and feedforward motifs are
associated with certain qualitative behaviour based on their
network structure—for instance positive feedback with bistability,
negative feedback with oscillations etc. Here we show that, if we
aim to consolidate the observed behaviour (as obtained from
data) in terms of a purely temporal network picture, the network

Fig. 5 Localisation as a regulator of pattern formation. a Schematic of hybrid pattern-forming motif, where information from the input is processed
through two localised nodes feeding into a global node. b Schematic depiction of how motif in (a) can give rise to patterns in a gradient, without distortions
introduced by the gradient. c Response to uniform and graded signals. A uniform signal cannot trigger pattern formation, while a graded signal with the
same spatial average can produce a pattern. Furthermore, triggering pattern formation also depends on the phase of the gradient in the signal. d Varying a
spatially uniform signal over a range does not elicit a patterning response: the steady states are uniform with zero spatial amplitude. e Spatial average
output of node Y as a function of the amplitude of the graded input signal (signal average same as in (c)). The discontinuity indicates the onset of pattern
formation, as the amplitude of the gradient is increased. f Schematic of a feedback control structure allowing for phase selection in pattern formation
(periodic boundary conditions). g The initial conditions are set by a transient spatial cue (input to Y). Initial conditions with a peak in Y at (or close to) the
location of the localised feedback node G lead to a steady state pattern (left panel) with a peak in Y at this location, while other initial conditions do not
(right panel). This demonstrates how patterns with particular phases may be selected for, by the confluence of localised and global elements in feedback.
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so obtained may be significantly different from the actual
interaction motif. To do this we examine a two-node motif with
a feedback loop, with one of the nodes (X) having a low diffusing
active form and a high diffusing inactive form (Fig. 7),
reminiscent of classes of circuits encountered biologically. X
activates the node Y, which is global, and Y in turn inhibits node
X. Thus, in the absence of any localisation, the two nodes form
(and behave like) a negative feedback loop (Fig. 7a–c). However,
on localising a particular interaction—the inhibition of X by Y,
we see that the motif essentially behaves like a positive feedback
loop, even producing bistable characteristics (Fig. 7d, e).
Reconciling such characteristics within a temporal network,
could result in a completely incorrect inference about the nature
of the feedback (also see Supplementary Notes 4.3, 4.4). Fig. 7f
shows dose response curves for X at different spatial locations,

and also demonstrates that spatial averaging can mask the
presence of multistability.

To generalise the above result, we consider two-node
feedback circuits where one node is a two diffusivity node.
We find (see Fig. 7g–i), Supplementary Note 4.5): (i) If the slow
diffusing form is the active form, then localisation of the two
interactions in different spatial regions can result in ‘deviant’
feedback behaviour (negative feedback behaving as positive
feedback, as seen previously, or vice-versa); co-localisation of
both interactions ensures this will not happen. (ii) Suppose
both forms of the two diffusivity node have activity. If the fast
diffusing form is the more active form, then co-localisation of
interactions can result in ‘deviant’ feedback behaviour, while
localisation in different regions prevents it. (iii) In the above
instances, even when the feedback behaviour is maintained,

Fig. 6 Measurements and spatial organisation. a Simple signal transduction cascade, no localisation: dose response of node Y (identical to ODE model).
b Localising the input node X (fixed total amount): while node Y exhibits gradients, its spatial average may still exhibit a quantitatively similar dose
response to the ODE model seen in (a). However, there is a significant difference between local (at location where X is localised, red curve) and spatial
averaged measures of output (blue curve). c In this case (spatial average measurement), if the regulation of node Z by Y involves no threshold behaviour,
the dose response of node Z (spatial average) may be similar, even quantitatively, to the ODE model. If it does involve a threshold, even the spatial average
dose response (red curve) can be qualitatively different to the ODE model (blue curve). d Schematic of a node with slow diffusing active form and fast
diffusing inactive form. Input signal consists of a localised inhibition at the centre of the domain. e Contrasting responses to input within and away from the
input location: decreasing at the input location (consistent with increasing inhibition) and increasing away from this location. f The domain average
response exhibits a (decreasing) trend consistent with increasing inhibition. g Contrasting dose response in terms of local concentration of X* (red curve)
and global average of X* (blue curve). For even lower diffusivity of X*, the change in average response to increasing signal becomes negligible, while the
local level of X* exhibits a prominent ‘inverse’ response.
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there are spatial regions where the feedback can have
anomalous effects.

Relevance to engineering biomolecular systems: homoeostasis
and circuit rewiring
Adaptation and Homeostasis. Control for adaptation and homo-
eostasis is a fundamental aspect of biomolecular networks. When
spatial organisation is combined with the network, this leads to
two complementary questions: (1) how does spatial organisation
(localisation) affect the homoeostatic capabilities of the network?
(2) can networks be designed to enable homoeostasis to spatial
factors such as distance? We discuss both these aspects.

How does localisation impact homoeostasis/adaptation? We
study this in two canonical circuits, the negative feedback and

incoherent feedforward motifs26. (1) If the output node is not
highly diffusible, then introducing localisation (in either one of
the feedforward arms or feedback) results in an erosion of
homoeostatic capabilities even to spatially uniform stimuli, as a
consequence of gradients in the output (even if the spatial average
of output node is the output of interest: see Supplementary
Information, Supplementary Fig. 8). In this regard, we point out
that if the output node was an open node (i.e. with production
and removal as opposed to interconversion), then the spatial
average of the output adapts to a homogeneous stimulus, even if
the output profile does not. This further reinforces how particular
measurements can mask key aspects of underlying behaviour. We
then turn to the case of a highly diffusible output node where
steady state gradients are negligible and adaptive behaviour to
uniform stimuli is maintained. In such a scenario we find that: (2)

Fig. 7 Inferring the nature of a feedback motif. a Schematic of the negative feedback motif (purely temporal realisation). b Schematic of the spatial
realisation with the X node involving interconverting forms with different diffusivities. c Bifurcation analysis of the ODE model shows monostable
behaviour. The corresponding PDE model exhibits bifurcation characteristics identical to that of the ODE model, for a uniform input signal. d Schematic
indicating localisation of one of the interactions: inhibition of X by Z. e This system can exhibit bistability. The two co-existing stable steady state profiles
for a fixed input level are shown here (X* blue curves, Z* red curves). f Bifurcation analysis of the PDE model reveals bistable behaviour. However, if the
domain average is used to characterise the steady state(s), the contrast between the steady states may not be significant, and a transition from one branch
to the other may be consequently obscured (left panel). The same steady state can be characterised as a high X* or a low X* if a local measure of the output
is used to characterise the steady state (two right panels). g–i Characterising feedback behaviour in circuits with two diffusivity nodes and localisation of
interactions. g Assessing the impact of different types of localisation in a feedback circuit containing a two diffusivity node. The type of circuit is depicted in
(b). This is depicted in the table which is organised along two axes-the localisation of the interactions (whether in the same location or different locations)
and the relative activity of the slow and fast diffusing forms. The table is relevant to both negative and positive feedback and highlights scenarios which can
lead to deviant feedback behaviour (see text). h depicts the specific instance of a negative feedback circuit where the fast diffusing form is more active (but
both forms are active). i Nullcline-based analysis (see Supplementary Information) shows that when interactions are co-localised, in certain ranges of
activity ratios, this feedback circuit can exhibit bistability (crossing of nullclines at three points: red curve X-nullcline, blue curve Z nullcline).
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localising the negative feedback node (Fig. 8a) essentially allows
for the maintenance of the same homoeostatic capability (as the
non-localised case) provided the total amount of species in this
node is maintained. Adaptive responses to both homogeneous
and graded input signals ensue. (3) By contrast, localising one of
the feedforward pathways (Fig. 8b) in an analogous way
essentially distorts the adaptive response resulting in non-
adaptive responses to gradients. This distortion arises as a

consequence of two distinct types of information processed
through the arms of the feedforward circuit, regulating the
(global) output: information about the entire stimulus (local)
through one arm, and information about the stimulus at a
particular location (localised), through the other. These gener-
ically do not cancel out. This represents a distinct type of non-
adaptive spatial computation in a gradient consistent with
adaptation in a homogeneous stimulus. (4) We show that by
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combining localised and global elements in each leg of an
incoherent feedforward loop yields a distinct "gradient detector"
consistent with adaptation in homogeneous stimuli, without
requiring the output node to be highly diffusible (and without
introducing output gradients). This works by pitting responses to
signal levels at prescribed locations against one another to
determine the response (see Supplementary Note 5).

Is it possible to buffer against localisation? We now focus on
the complementary problem of which control structures can
buffer against spatial factors. We demonstrate how it is possible
to buffer against the changes in distance between two locations
(also see27 in the context of genetic circuits). To do this we
consider localised activation of a moderately diffusing output
node and focus on the output level at a fixed (different) target
location. This output level can be made to adapt to changes in
separation by introducing negative regulation of the output. This
regulation is performed by a diffusing inhibitor that is activated
(independent of the input signal) at the target location. Analysis
(see Supplementary Notes 5.1, 5.2) indicates the confluence of
factors responsible for this: (i) equal ratio of diffusivity to reverse
conversion rates for the output species and inhibitor (ii) the
inhibitor must target the input node, rather than inhibit output
directly (iii) All the nodes are far from saturation (a significant
fraction of inactive species).

This mechanism can be incorporated into larger motifs, enabling
complex homoeostatic tasks such as adaptation to distance as well
as input signal. Having a signal regulate both the input node and
the (localised) activation of the diffusible inhibitor above allows for
output at target location to be independent of signal as well as
distance (see Fig. 8c–e), Supplementary Note 5.3) This represents
the confluence of two strands studied above: the imposing of spatial
organisation on conventional (temporal) adaptive motifs, and the
creation of motifs dealing specifically with adaptation to a spatial
factor.

The basic ingredients considered above: localised activation/
production, global repression, and changing spatial parameters,
form key ingredients of homoeostatic mechanisms in develop-
mental systems, such as the expansion-repression mechanism for
scale-invariant patterning in growing domains28,29. Our analysis
allows us to examine how buffering against size/distance may be
implemented at both intracellular and tissue levels.

Circuit/Network Rewiring. Rewiring of networks is an experi-
mental tool used to engineer biomolecular networks30. We now
turn to a distinct aspect of spatial organisation: spatial ‘rewiring’
to circumvent kinetic constraints.

Spatial rewiring can enable modular combination of circuits, as
we now demonstrate. We consider two circuits which share
common elements: the behaviour of these circuits in isolation are
characterised: one a negative feedback circuit generating

oscillations, while the other circuit, sharing the same backbone
yields bistability (Fig. 8h–j). However, the combination of both
circuits results in the abrogation of oscillation and only bistable
behaviour being realised, for the basal parameters. By employing
localisation (in this instance) of the element involved in the
postive feedback loop, and varying the extent of localisation, it is
possible to obtain a range of behaviour, which includes (1) the
basal kinetic behaviour—bistable (requiring no localisation) (2)
oscillatory behaviour without bistability (for sufficiently small
localisation of the positive feedback element) (3) a combination of
bistability and oscillations, which could be regarded as a desirable
combination of the behaviour of the two circuits (Fig. 8j). For a
fixed diffusivity (possibly high), tuning the size of localisation can
result in the desired behaviour (demonstrated in Supplementary
Note 6).

Localisation of the positive feedback element and the negative
feedback element in different locations affords further possibi-
lities. To start with, it could circumvent any undesired interaction
between these elements should they exist. Furthermore, this
opens up multiple avenues for the modular combination of these
circuits. In one instance, if the common elements are non-
diffusible/weakly diffusible, this results in essentially, decoupled
circuits at different locations which can be coupled by a global
downstream element. In this manner, we circumvent the
constraint caused by common elements. Direct coupling without
requiring downstream elements, can also be obtained for weak to
moderate diffusivity of common elements (see Supplementary
Information).

Localisation can also enable circuit design by alleviating kinetic
constraints through local elevation. The next example highlights
both the use of localisation as well as a design perspective to
assessing its effect in networks, something crucial to its effective
use as circuit design/rewiring tool. The capacity of localisation to
alleviate kinetic constraints is demonstrated by it enabling
bistability in a two-node positive feedback circuit, with a
threshold interaction, where bistability was initially absent. If
the circuit originally involved only local elements, such localisa-
tion could enable bistability but would constrain bistability to the
particular region of localisation. If the original circuit contained a
global element, this is no longer an issue and localisation has the
desired effect if (i) the threshold occurred in the local-to-global
interaction and (ii) localisation is imposed on the local element:
localisation causes concentration elevation enabling crossing of
thresholds. This would not work if the threshold was in the
global-to-local interaction as localisation has a purely neutral
effect (see Supplementary Note 6.1). In summary localising the
regulating (local) node in the threshold interaction can have the
desired effect (see Supplementary Information).

Now we consider a slightly more complex version of the
previous case where there are multiple local nodes which are

Fig. 8 Localisation and engineering: applications to homoeostasis and circuit rewiring. a–c Control structures. a Imposing localisation on a homoeostatic
negative feedback motif with diffusible (global) output: capable of adaptation to both homogeneous and graded input signals. b Imposing localisation on
one arm of an incoherent feedforward homoeostatic motif with diffusible (global) output: capable of adaptation to homogeneous signals, but not to graded
signals. However, for a fixed amplitude of signal the output adapts to changing signal average (red dotted curve: uniform signal, blue solid curve: graded
signal). cMotif capable of combined adaptation to signal and spatial separation. d For fixed locations of nodes Z and W (compartments 1 and 2), the output
average across the domain (and the output profile itself) essentially adapts to changes in a homogeneous signal level. e For fixed homogeneous signal level,
the output level at compartment 2 essentially adapts to changing location of compartment 1. f–j Spatial rewiring to circumvent kinetic constraints. f With
the Y (local) to Z (global) interaction involving threshold behaviour, localisation of node Y can enable the motif to exhibit bistability. On the other hand,
localising the other local node (X) does not achieve the desired effect (see text). g In contrast, with the Z (global) to X interaction involving threshold
behaviour, localisation of node X can work in the opposite direction. In fact it can weaken/destroy bistable behaviour, if it was present initially. h–j Modular
combination of characteristics. All nodes moderately diffusible. h Negative feedback motif giving oscillatory behaviour. i Introducing positive feedback
interaction between nodes X and Y produces bistability, but destroys oscillatory behaviour. j Both behaviours become accessible when the positive
feedback interaction is localised.
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candidates for localisation (Fig. 8f, g) depicts the case with two local
nodes and one global node). The requirements for localisation to
enable bistability are that localisation is applied to the element
immediately preceding the threshold interaction and that it applies
to a local node (this implies that the threshold cannot be in the
global-to-local interaction, as localising local elements in this
instance has an essentially neutral effect). In such a circuit
(involving a threshold interaction in the local-to-global interaction),
there could be multiple local nodes, ‘upstream’ of the threshold
interaction, and candidates for localisation. A new emerging insight
is that localisation of an element not immediately preceding the
threshold interaction can in fact move the system further away from
bistability. This is because: (i) this can result in a tradeoff with a
local increase of the downstream node at the location and a
reduction elsewhere, (ii) saturation may limit the impact of the local
increase, with the decrease elsewhere dominating (see Supplemen-
tary Information, Supplementary Fig. 8).

Exemplar cases. We illustrate multiple themes of the paper by
exploring two concrete biological contexts, involving localisation
and circuits with two diffusivity nodes. A common feature is the
key role of localisation of Polo-kinase and regulation of the
associated circuits. The results are concisely summarised here.

By dissecting the three-tier cascade underlying gradient
transduction and polarisation in C. Elegans (see Methods, Fig. 9b,
d–f), Supplementary Note 7) we find:

(a) Analysis of cascade building blocks (single tier: two
diffusivity node): analyzing localisation of interconversion of
species in both directions reveals contrasting features for gradient
generation, in particular the possibility of a non-monotonic input
dependence if localisation regulates conversion of the fast
diffusing form. (b) Impact on cascade behaviour: by examining
two different realisations of the three-tier cascade (maintaining
the same input–output relationship), we find significant differ-
ences both when (i) a threshold is present in the interaction and
(ii) there is a mis-localisation of a component enzyme in the
intermediate tier (involving Polo-kinase). (c) Implications: This
reveals underlying design principles/constraints for gradient
transduction, and the impact of localisation. It suggests that the
biological observed design has an inherent advantage for realising
the same outcome, bypassing such non-monotonic effects, and is
consequently more robust.

By evaluating and analyzing postulated circuits underlying spatial
cell-cycle switches in Drosophila (involving a positive feedback
circuit, along with a negative feedback: see Methods, Fig. 9c, g–l),
Supplementary Note 7), we find (a) Spatial switching: the positive
feedback circuit with two two-diffusivity nodes enables spatial
switching, of the type seen experimentally. (b) Negative feedback:
the negative feedback interaction modulates spatial switching
thresholds and amplitude. (c) Deviant feedback behaviour: Fig. 7
reveals ways in which each type of feedback can exhibit an opposite
type of behaviour, something observed when an enzyme is
mislocalized (Fig. 9 (l)). The negative feedback studied can also
exhibit anomalous behaviour in the nucleus if both forms of Polo
have activity. (d) Relative size dependence: changing the relative size
of the two spatial domains (nucleus, cytoplasm) can significantly
impact both feedbacks and system behaviour, and also facilitate
anomalous/deviant feedback behaviour.

Discussion
The widespread features of biomolecular networks and spatial
organisation, and the diverse nature of their interplay pose many
fundamental questions. Addressing these questions requires a
theoretical framework transcending the individual context. The
emerging insights are foundational to natural and engineered

biology. Rapidly emerging techniques for spatial measurement
(imaging, spatial proteomics)31, engineering spatial organisation
(in bottom-up synthetic biology), and the continual blurring of
boundaries between natural and engineered biology provides
further impetus for such a study (Fig. 10).

The effect of spatial localisation. Spatial localisation can impact
network behaviour in multiple non-intuitive ways, fundamentally
altering it, creating capabilities which cannot be seen in purely
temporal (lumped) network analogues (Fig. 10).

Localisation is used by evolution to enable specific capabilities,
such as eliciting different signalling outcomes by different ligands
(in calcium signalling32, enabling intergenerational memory
(pheromone response of a cell-cycle switch5 and spatial
switching4; mislocalization of key components is implicated in
dysfunction and disease33 The interplay of localisation, diffusivity
and size is central to designing cell-free synthetic pattern-
detection circuits, and in tissue engineering14. Localisation is an
essential tool in the construction of chemical sensing materials
using modular synthetic circuits34, building collective informa-
tion processing systems, combining communicating cells (nat-
ural/artificial) containing different building block circuits13,35.
Dynamic control of localisation is an emerging tool, both at the
intracellular level—through optical control and synthetic scaf-
folds, and at the population-level through control of cell
adhesion36–38. Our dissection of the impact of localisation amidst
different network structures, kinetics, functionalities provides a
basis for mapping out essential transitions arising from alteration
of localisation thus delineating the new capabilities it provides. In
our studies, the interaction motif continued to appropriately
describe interaction between components. Localisation when
occurring in multiple locations can also result in a change in the
interaction network structure by eliminating interactions between
entities not in the same physical location, something which could
significantly impact network behaviour.

Localisation and the complexity of networks. Systems and
synthetic biology span different approaches, depending on the
problem being addressed. Systems biology studies at the intra-
cellular level range from study of fairly small scale networks (key
drivers of behaviour investigated) to networks of moderate
complexity to large scale studies with a fairly large number of
species being involved. Existing studies focussed on spatial
aspects, either at the intracellular or intercellular tend to involve
small scale or moderate networks. Synthetic biology studies
focusses on bottom-up approaches for design of circuits in cell-
free or cellular systems, or the rewiring of existing networks. We
first note that due to advances in imaging and spatial proteomics,
along with manipulation of spatial localisation, the location of
many species can be tracked/manipulated. For studies of small
(ish) networks, our approach bringing the interplay of localisation
and networks is directly relevant: it shows how the key behaviour
may be altered, how different networks may give rise to a given
behaviour etc. With moderate networks (such as our exemplar
studies), again the approach can be used appropriately, by (i)
identifying the key drivers of behaviour within the network and
(ii) assessing where localisation is present and where it may affect
network behaviour. When the network becomes large, then the
approach depends on whether spatial data is available or not. If it
is, then the data can be the basis of a model which incorporates
location as well as network interaction. Here, in addition to
specific insights, our approach of dissecting the network (‘net-
work centric’ and ‘space centric’) will be helpful in assessing
system behaviour. If however, a large scale network is described in
ODE terms, a reasonable question to address would be whether
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spatial localisation alters essential behaviour. Here (i) accounting
of location may reveal that some network interactions may be
absent and result in an altered network. (ii) key core pieces of the
network could be described both with and without localisation to
elucidate key differences. Assessing the role of localisation in
larger networks presents many challenges (i) Both analysis and
inference may be computationally challenging (ii) There is a
greater complexity and a range of possibilities (iii) it will be

necessary to assess and discriminate not only between different
possible network interactions, but also different spatial archi-
tectures. For the latter, focussed experiments involving the
manipulation of localisation, along with spatial measurement may
be especially relevant. It should also be emphasised that many key
consequences of localisation can be studied effectively by exam-
ining these in smaller subnetworks, as it is likely that the key
impact of localisation will already be found there. Space-centric
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approaches can create a basic template structure within which
networks can be organised and studied, building from moderate
size networks, and gradually increasing network complexity.

Our approach directly lends itself to both studies in systems
biology and bottom-up approaches in synthetic biology, where
spatial localisation is a focal point. In rewiring networks in synthetic
biology, analysis using models of modest complexity could drive
design approaches which could be tested and evaluated on real
networks to check if the desired outcome is obtained.

Network inference. Reverse engineering of networks is com-
monplace in biology, involving developing network models based
on data, often neglecting spatial aspects. Non-spatial data is used
to justify the development of purely temporal network models,
either explicitly or implicitly. However our analysis shows how (i)
the result can depend crucially on the type of measurement, even
if non-spatial (ii) trying to encompass spatial networks into a
non-spatial framework is associated with fundamental limita-
tions, and ad-hoc fixes, can lead to erroneous conclusions about
other aspects of the network (iii) Some network nodes (for a given
type of measurement) may behave like the ODE, while others do
not do so, even qualitatively (iv) In employing spatial measure-
ments, the choice of nodes to be measured critically depends on
how localisation enters the network-guidelines from lumped
analogues of such networks are fundamentally misleading.

We found that with networks containing nodes with different
diffusivities, qualitatively incorrect inferences emerge in very
simple cases. There are also multiple instances in networks more
generally (by ignoring localisation) where an inference of an
interaction between two species may be made, where none exists
(see Supplementary Note 4.3 for details). As examples, suppose
two components are in different spatial compartments and non-
interacting. Working in an ODE framework could result in (i)
incorrect inference about their interaction based on in-vitro data
or data in another context (ii) A correlated regulation of these two
components (eg global regulation) could be misinterpreted as an
interaction (iii) The possibility of a common factor functioning in
different ways in two compartments (enabled by localisation,
absent otherwise) and regulating these may be ignored, leading to
a misinterpretation of interaction between the two components
(for e.g. bifunctional enzymes as discussed in39 but this applies
more broadly). Furthermore, working in an ODE framework can
lead to incorrect inferences about the nature of some interactions,
which can then directly lead to other postulated interactions
(non-existent) inferred, to explain network behaviour. Finally,
one node affecting another node’s localisation may be inferred
incorrectly as an interaction.

Our analysis suggests ways of alleviating problems of incorrect
inference (multiple measurements, spatial measurements, system-
atically reducing spatial models to temporal models where possible).

Localisation, pattern formation and engineering information
processing. Localisation combined with global components can
generate pattern formation which (i) takes its cue from localised
upstream/environmental signals (ii) has no distortion due to loca-
lisation. This provides a template for constructing classes of hybrid
pattern-forming systems comprising classic pattern-forming sys-
tems and environment-driven spatial "patterns”. This is directly
relevant to elucidating hierarchical pattern generation in develop-
mental biology (with intricate combinations of pre-patterning and
self-organising elements, which may be difficult to take apart22; this
brings a new dimension to engineering and controlling pattern
formation for tissue engineering. Our results highlight localisation
as a generator of pattern formation, potentially making it an easy to
manipulate but potent tunable dial.

The different dimensions of localisation in homoeostasis–whether
as a distorter of homeostaic behaviour, or a focal point around which
homoeostatic/adaptive circuits need to be designed (buffering against
location/distance) are relevant in natural and engineered biology.
Localisation facillitates modular combination of circuits, eliminating
undesirable interactions and overcoming kinetic constraints, and
provides a new dimension to circuit rewiring making it potentially a
key enabling tool in synthetic biology.

Our study reveals multiple systems facets of localisation/spatial
organisation in biomolecular networks both when space is the
focal point and when it is not, Multiple insights, arising as they do
from the interplay of local, global and localised components in
networks, may also be relevant well beyond the biological realm,
in areas ranging from physics to engineering to social science.

Methods
In order to be able to identify clear patterns in the interplay between space and
network structure, we consider three limiting cases for the spatial characteristics of
components, forming three essentially distinct spatial classes: (i) local components:
these components are present everywhere in the spatial domain and are essentially
non-diffusible (or weakly diffusible), (ii) global components: these components are
highly diffusible across the whole domain, leading to essentially homogeneous
steady state profiles and (iii) localised components: these components are non-
diffusible and confined to one or more sub-domains. In specific cases, where a clear
trend may be discerned, we will also consider the effect of varying the diffusivity of
global or local components to make focussed points.

The nodes/components in a network motif, and the interactions between them,
may be realised in different ways. In a signalling pathway for example, possible
realisations include a node consisting of a pair of interconverting modified forms
(with other nodes possibly regulating the forward and/or reverse modification
reactions) or a single species (with its production and/or degradation reactions
regulated by other nodes). For the purpose of our study, we will consider nodes
consisting of interconverting modified forms (one active and the other inactive),

Fig. 9 Exemplar cases: polarisation and cell-cyle regulation and the role of Polo regulation therein. a A basic building block of circuits considered here is
the two diffusivity node: the results of the two diffusivity node in isolation, as well as different ways in which localisation may be imposed are depicted. b, c
Intracellular contexts involving Polo-kinase based circuits, along with localisation. b A cascade responsible for polarisation in the C. elegans zygote. c Cell-
cycle circuit postulated in Drosophila. d–f Polarisation in C.elegans. d Imposition of localisation of different steps in the basic building block. Localising
conversion to the fast diffusing form can result in non-monotonic input–output response. e Two different realisations of the cascade with similar
input–output responses, but contrasting distributions of the Polo kinase. f Introducing threshold dependence of POS-1 by Polo Kinase reveals striking
contrasts between the two cases. g–l Postulated cell-cycle circuit in Drosophila. g A schematic of the underlying circuit, followed by a depiction of how
localisation is imposed. h The spatially distributed circuit involving CycB-Cdk1 and Cdc25, can exhibit bistability, which serves as the basis for the mitotic
switch. i A schematic of a negative feedback regulation of Polo via Optn: this is overlaid on the Cdc25-CycB-Cdk1 circuit considered previously. j A
depiction of how the Optn feedback affects switching thresholds: switching (indicated by a transition in the Cdc25 profile, from a strong gradient to a weak
gradient) requires higher Polo activation. k, l Design principles, constraints and anomalies associated with feedback. k Anomalous outcome in specific
locations: localised deactivation, as seen in the case of Optn regulation of Polo, can in fact enhance the activity of the target, rather than reduce it. This
depends on the activity ratio of the two forms. l Deviant feedback behaviour: accumulation of active CycB-Cdk1 complex in the cytoplasm, possibly
resulting from the mislocalization of an enzyme, can cause the positive feedback circuit to behave like a negative feedback circuit (see Supplementary
Information). Red and blue curves denote the Cdk1A,N and Cdc25A nullclines respectively.
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with a conserved total amount at each node, and the interconversion between
modified forms regulated by the active form of one or more nodes. The nature of
the regulation can be activation or inhibition, both of which can be realised in
various different ways. For this study, we restrict ourselves to the following ways of
realising activation and inhibition: for activation, the active form of the ‘regulating’
node converts the inactive form at the ‘target’ node to the active form; for inhi-
bition, the active form of the ‘regulating’ node converts the active form at the
‘target’ node to the inactive form. This type of enzymatic regulation, in principle,
involves the formation of enzyme-substrate complexes, and could result in the

sequestration of the regulating species at interacting nodes. It is well known that
sequestration effects can have non-trivial consequences for the behaviour of
pathways and networks. However, since our focus is on the interplay between
regulatory patterns and the spatial characteristics of the interacting components,
we will eschew such additional complexity by working in the limit where the
enzyme kinetics is such that the amounts of these complexes is negligible. This
allows us to clearly discern the most basic aspects of the interplay between network
motif and spatial organisation, serving as a platform for investigating the effects of
sequestration subsequently.
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Models: Kinetics. We use models based on mass action kinetics to represent the
networks. For the kinetic model of a given motif, we have one equation each for the
active and inactive forms associated with each node, describing the time derivative
of the concentrations of those forms. The reactions to be accounted for at each
node include both interconversion reactions: inactive to active and active to
inactive, each of which may be regulated by the active forms of other nodes. In
addition, there may be basal rates for the same reactions (independent of other
nodes). The model for the regulation of one node (labelled Y) by the other node
(labelled X) is given by:

For node X activating node Y

dX
dt

¼ �kxX � ksxSX þ k�xX
�

dX�

dt
¼ kxX þ ksxSX � k�xX

�

dY
dt

¼ �kyY � kxyðX�ÞY þ k�yY
�

dY�

dt
¼ kyY þ kxyðX�ÞY � k�yY

�

For node X inhibiting node Y

dX
dt

¼ �kxX � ksxSX þ k�xX
�

dX�

dt
¼ kxX þ ksxSX � k�xX

�

dY
dt

¼ �kyY þ k�yY
� þ k�xyðX�ÞY�

dY�

dt
¼ kyY � k�yY

� � k�xyðX�ÞY�

ð1Þ

where S represents the input signal to the system, activating the X node. We use the
following notation for the parameters here: ki and k−i represents the basal rate of
conversion to and from the active form, for species i, while parameters of the form
kij and k−ij represent activation and inhibition of node j by node i respectively.

In our study, we also examine the effect of regulation via a Hill function. Such a
regulation, encountered in multiple systems, may be representative of co-operative
or otherwise nonlinear mechanisms in the regulation, which may not be modelled
explicitly. With a Hill function, the same interactions described above, take the
following form:

For node X activating node Y

dX
dt

¼ �kxX � ksxSX þ k�xX
�

dX�

dt
¼ kxX þ ksxSX � k�xX

�

dY
dt

¼ �kyY � kxyY
ðX�Þn

Kxy þ ðX�Þn
 !

þ k�yY
�

dY�

dt
¼ kyY þ kxyY

ðX�Þn
Kxy þ ðX�Þn
 !

� k�yY
�

For node X inhibiting node Y

dX
dt

¼ �kxX � ksxSX þ k�xX
�

dX�

dt
¼ kxX þ ksxSX � k�xX

�

dY
dt

¼ �kyY þ k�yY
� þ k�xy

ðX�Þn
Kxy þ ðX�Þn

 !
Y�

dY�

dt
¼ kyY � k�yY

� � k�xy
ðX�Þn

Kxy þ ðX�Þn
 !

Y�

ð2Þ

We examine functions where the Hill coefficient n may be 2 or 4. Models with
these Hill coefficients have been widely used in describing protein interactions and
signalling pathways.

Models: Space. Studying the behaviour of spatial networks involves expanding
models of the kinetics of networks to bring in spatial aspects: this involves the
description of (i) the spatial domain, (ii) the localisation or diffusion of species in
the spatial domain and (iii) the boundaries. Note that an explicit spatial description
in necessary for such a study and approximations such as representing transport
effects in kinetic terms (or via delays) is not sufficient. For simplicity, we confine
ourselves to examining these reaction systems realised in a 1-D spatial domain.
Note however, that the basic aspects of the interplay between spatial organisation
and network interaction patterns will carry through to higher dimensions, though
additional geometry dependent effects could also play a role. We combine the
kinetics and spatial organisation in an explicit spatial description (PDE) consisting
of reaction-diffusion equations. We can have local nodes where the species are
present everywhere in the domain, with their diffusivity set to a relatively low value
(possibly zero); global nodes where the species are present everywhere in the
domain, with relatively high diffusivity; localised nodes with species confined to
certain sub-domains, with their diffusivity set to zero. Note that, with all three
classes of nodes, unless otherwise mentioned the two interconverting forms are
assumed to be equally diffusible. This simplifies the model, allowing us to describe
only the active forms, by using the total concentration to eliminate the con-
centration of the inactive form, This is because, the equal diffusivity of the two
modified forms implies that, if the total concentration of the two species is initially
uniform in space, then it will remain so subsequently. This is also true for species
localised in a sub-domain. Throughout the study, for all simulations, we will
confine our investigation to initial conditions where the total concentration of
modified forms, for any node, is uniform within the spatial domain containing that
node (whole domain or localised sub-domain). To illustrate the types of models we
use, we consider the example discussed above (node X regulating node Y): the
model of a localised node X regulating a node Y (which could be local or global) is
given by:

For localised node X activating node Y

Within the localised subdomain where X resides

∂X
∂t

¼ �kxX � ksxSX þ k�xX
� þ Dx

∂2X

∂θ2

∂X�

∂t
¼ kxX þ ksxSX � k�xX

� þ Dx
∂2X�

∂θ2

with Dx ¼ 0

∂Y
∂t

¼ �kyY � kxyY X�ð Þ þ k�yY
� þ Dy

∂2Y

∂θ2

∂Y�

∂t
¼ kyY þ kxyY X�ð Þ � k�yY

� þ Dy
∂2Y�

∂θ2

Outside the localised subdomain

ðX and X� being absent hereÞ
∂Y
∂t

¼ �kyY þ k�yY
� þ Dy

∂2Y

∂θ2

∂Y�

∂t
¼ kyY � k�yY

� þ Dy
∂2Y�

∂θ2

ð3Þ

In the above equation Dy depends on the nature of Y (either a local or a global
node). In an analogous way, model of local/global node X regulating localised node
Y can be written.

Fig. 10 A summary of the effects of localisation on networks. a Localisation of network components—nodes or interactions, can enable a network to
exhibit new dynamical characteristics, otherwise inaccessible. A three-node motif exhibiting bistability with no localisation, can exhibit tristability when two
of the interactions are localised in different parts of a spatial domain. b Localisation can circumvent kinetic constraints: ‘spatial rewiring’ of a network by
localising a specific node can enable bistability. Localisation of specific nodes allows for this, while others do not (see design table), highlighting the value of a
design approach. c Localisation of forward and backward regulation of a node allows for a spatially uniform steady state in the network. This can be
destabilised giving rise to a spatial pattern, illustrating how localisation may be a potent tuneable dial for pattern formation. d Localisation can be deployed to
create hybrid pattern-forming systems, combining features of gradient-driven patterns and (Turing mechanism-based) self-organised patterns. Aspects of
the gradient are key to obtaining pattern formation, though they do not distort the pattern. e The presence of localisation can cause bistability in a negative
feedback network to be incorrectly inferred (in an ODE framework) as a positive feedback. f The presence of localised components can introduce
fundamental limitations in network inference based on ODE frameworks. We consider a network with and without localised components (the latter
consistent with the ODE) and focus on nodes and measurements, revealing the underlying source of the disparity. With one of the nodes and one interaction
localised (i) for the same type of measurement, some nodes are inconsistent with the ODE. (ii) for the same node, two types of measurements reveal
opposite trends. g Spatial localisation can be a tool for modular combination of circuits (shown for bistable and oscillatory circuits), where a simple (kinetic)
network combination does not work). h Localisation presents new dimensions to homoeostasis/adaptation which we explore: how localisation impacts
(temporal) homoeostasis, how circuits can be designed for adaption to distance between locations, and how that is combined with adaption to signal.
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We consider spatial domains with both periodic and no-flux boundary
conditions.While both boundary conditions give comparable insights in many
cases (for reasons which are easy to understand), there are also instances where the
nature of the boundary (and consequently boundary condition) play an important
role: we identify those as such, during the discussion of the results.

We comment on the case of nodes which contain local and global sepcies. A
variation of the above models is necessary in those cases where we have nodes that
contain both local and global elements, i.e. where one of the interconverting forms
is fast diffusing and the other is slow diffusing. There are multiple instances of such
cases in the biological literature. Here we employ equations describing the
dynamics of both forms, with the corresponding diffusivities incorporated. In
examining networks with such ‘two diffusivity’ nodes, we find that if the active
form is the highly diffusible form, this behaves in many respects like a global node
(in terms of its contribution to network behaviour). We also point out that it is
possible to have two diffusivity nodes, where one node is localised (in some sub-
domain) and the other is global. In such cases, this requires the conversion reaction
of the global form to be localised in this sub-domain.

Note: At any given node participating in an interaction, at least one of the
interconversion reactions is regulated either by an input signal or by a different
node. If only one of the reactions is regulated in this way (which is typical), then we
assume that the reverse reaction occurs wherever the species is present, and is
associated with a fixed rate constant which does not vary spatially. Codes for the
models used are presented in Supplementary Information (note notation).

Input signal. An important aspect of the behaviour arising from a pattern of
interactions between nodes, is how a designated output (i.e. the concentration of
the active form at a specific node) is regulated by an input signal. In this study, we
consider input signals acting through the same type of enzymatic regulation as the
interactions between nodes. Furthermore, unless mentioned otherwise, we do not
examine dynamically varying input signals, except in special cases. In the spatial
context, we can have spatially homogeneous as well as spatially graded con-
centration profiles for the input signal, each of which can elicit different types of
response from a given motif. For specificity, to represent spatially graded signals,
we employ a sinusoidal signal profile of wavelength equal to the domain size (this is
an analogue of a linear gradient in a domain with periodic boundary conditions).
The basic insights from the study do not depend in any essential way on this choice
of signal. It is worth pointing out that in certain motifs (e.g. feedforward motif), the
node at which the signal acts is naturally determined. In other motifs (e.g. feedback
motifs), there are multiple nodes at which the signal can act. This is especially
significant in our study, as different nodes can belong to different spatial classes.
We have examined this aspect in detail as part of our analysis.

We now discuss parameters. Our focus in this study is to identify broad qualitative
trends in the functioning of motifs with spatially organised components. To this end,
we choose kinetic parameter values for the motifs such that they exhibit the
characteristic dynamic behaviour associated with them in the temporal context (as
ODEs). The results we present do not rely on non-generic values for these parameters.
In all cases, we see that the behaviour we report is observed over a range of values of
these parameters, and thus essentially emerges from the structure of the interactions
themselves. This is reinforced by a bifurcation analysis of the ODE. If there is a range
of parameters which allows for certain behaviour, we choose a parameter set in the
middle of this range, not close to the bifurcation points (which determine the range of
parameters). In essence, all we require of the motifs (and their parameters) is that they
exhibit the behaviour they were expected to show (based on prior studies of such
motifs), and that they have the structure that they do.

The values of spatial parameters—diffusivity, domain size and size (and
location) of localised sub-domain, are chosen appropriately for the particular
spatial realisation being studied. We first comment on nominal parameter values.
We keep the overall domain size fixed, as varying this, can be understood in
analogous terms to varying diffusivities. The size of the localised sub-domain is
typically one-fifth of the size of the overall domain. The diffusivity of global species
is chosen to be high enough for this species to be essentially homogeneous in the
given domain size. As a default, the diffusivity of a local species is chosen to be
zero, though in some cases we allow the species to be weakly diffusible (see
Supplementary Information). A localised species is always non-diffusible. To
understand the interplay of spatial organisation and the network, we assess lumped
and spatially organised versions of the network, focussing particularly on input-
ouput characteristics. This already reveals the basic impact of spatial organisation
and is seen transparently for the nominal parameter values. In particular this
interplay already reveals basic capabilities and constraints associated with spatial
organisation. This is reinforced by a focussed analysis of spatial parameters, in
particular, diffusivity of species and location (and size) of the localisation, to reveal
further qualitative trends. Furthermore, multiple trends, associated with the
variation of spatial parameters are observed across different motifs and different
spatial realisations of a motif, and this further testifies to the robustness of our
results. Finally in multiple instances, we reveal qualitative insights regarding new
behaviour emerging, and this is consolidated by analytical work, explicitly revealing
the interplay of factors giving rise to such behaviour. All in all, the analysis (in
some cases computational, in other cases analytical, and in other cases constructive:
see summary in Supplementary Table 1) transparently reveals the reasons for the
observed behaviour and is indicative of the essential robustness of the conclusions.

The parameter values for all the results presented here are given in the
Supplementary Information. The models for a given network are built up as
described above, and the relevant code is presented in the Supplementary
Information (note the notation used).

Choice of candidate networks. The description above allows for the construction
of the model of a given spatial network (specific network, spatial characteristics of
nodes, boundary conditions, parameters). We now comment on how we choose the
networks which form the basis of our study. At the outset we emphasise that
studying the interplay of spatial organisation and networks, entails the dissection of
different networks on one hand, and different spatial realisations of the network on
the other. This can be examined in two complementary ways: (i) imposing spatial
organisation on a given network (Motif-centric approach) and (ii) imposing a
pattern of interactions on components belonging to different spatial classes (space-
centric approach). Taken together this complementary approach allows us to assess
and analyze a variety of networks with different types of spatial organisation. It also
creates a platform for further analysis in multiple contexts.

Motif-centric approach. In this approach we start with a set of two and three-
node motifs involving a maximum of four interactions between them (maximum
two interactions for the two-node motifs). This allows us to keep to a tractable level
of complexity, while still allowing motifs that include multiple feedback loops, and
combinations of feedforward and feedback loops. For this very reason, such motifs
have been the focus on many studies in the temporal context20. The motifs in this
chosen set are capable of exhibiting a wide range of behaviours—from simple signal
transduction and adaptive behaviour, to combinations of multistability and oscil-
lations in the purely temporal context, and self-organised spatio-temporal beha-
viour such as pattern formation and travelling waves.

Limiting ourselves to three nodes can however be quite restrictive in the context of
imposing spatial organisation. For instance, localising two interacting nodes at
different locations would prevent their direct interaction, thus breaking the motif. In
order to overcome such constraints, and to allow us to examine cases with multiple
localised components, we also introduce spatial organisation in the interactions
themselves. In the basic case, a given interaction is allowed to occur at any location
where the two interacting nodes are present. In addition, we will also examine the
following possibilities: (i) the interaction is facilitated by a diffusing (global) species—
this allows interactions between separated localised nodes to be maintained (see
below), (ii) the interaction is itself localised, i.e. restricted to occur in one or more sub-
domains; such a localised interaction between nodes can be facilitated in natural
pathways, for example, by having an intermediate step (essentially an additional node)
in the interaction, that involves a localised species, or if the interacting species are
required to bind to a localised scaffold for the reaction to take place and (iii) the
interaction involves a sequential combination of localised and diffusing components
in the following way—if the network structure of the motif involves a node X
regulating a node Y, then such an interaction is realised by introducing a pair of
implicit nodes, say a localised node Z, and a global node W, and having X activate Z,
which in turn activates W, which then regulates Y. Without node Z, this corresponds
to (i) above, and without W, this corresponds to (ii) above.

All in all, imposing a spatial characteristic of the interaction can be regarded as
spatially describing implicit nodes/intermediate steps in the interaction. This allows us
to examine a broader class of spatial networks: (i) working within the initial three-
node motif class (ii) allowing for more non-trivial spatial organisation, going beyond
the basic restrictions imposed by the presence of only three nodes and (iii) avoiding
the need to scan nodes of a higher number. This allows us to also reveal in a naturally
constructive manner, how different types of spatial behaviour can emerge from small
networks, many of which already have analogoues in real biological systems.

In each case, we first characterise the behaviour of the motif in the purely
temporal context (using the ODE model). Then we examine the different possible
spatial realisations, assigning different nodes to different spatial classes (and also
considering interactions in different spatial classes as outlined above, by
incorporating implicit nodes). We consider a maximum of two different locations,
where nodes may be localised. In a 1-D spatial domain, having two locations of
localisation is sufficient, both to divide the whole domain into distinct regions, and
to allow for basic effects such as source-sink separation, as well as delay effects
arising from diffusion between locations.

Space-centric approach. A complementary approach to building and analyzing
spatial networks is to start from the three different spatial classes (local, global and
locallized) and building up a pattern of interactions (network) involving components
from these three classes. In the case of multiple localisation, the distinct locations are
treated as different spatial classes. In this manner we can visualise the system in terms
of the spatial classes. Many networks built using this approach overlap with networks
studied in the motif-centric approach. However, an advantage of the space-centric
approach is that it allows us to naturally build up complex network patterns, framed
by the spatial organisation at the outset. In particular, it also allows us to build
networks which may not have been obtained easily from a network centric approach
and additionally provides conceptual clarity. Most of the networks studied were easily
constructed from both approaches.
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Comments on models.

1. Our implementation of models has involved models developed in one
spatial dimension. This allows us to focus on the most basic aspects of
interplay between networks and spatial organisation. We point out that this,
by its nature, is also relevant in higher dimensions. However there are
additional aspects (e.g. effect of geometry) which necessitate a dedicated
approach of its own, which is beyond the scope of the current study. The
results presented here serve as a platform for such investigations. Some of
the additional effects which emerge in higher dimensions are more complex
patterns of localisation in the domain, more complex boundaries, a diversity
of pattern formation, more scope for using localisation to control patterns.
A recent study of multi-dimensional effects in symmetry-breaking and
pattern formation in mass conserved systems is presented in ref. 40.

2. Our study focussed on a broad class of representative motifs, which have
been used for studying information processing. Networks can exhibit
different types of complexity with a multitude of nodes. Our analysis
provides insights into a number of basic circuits whose relevance is
demonstrated by the fact that (a) they are present in multiple cellular
networks (exhibiting their characteristic behaviour), (b) they serve as
network building blocks and (c) they also represent a broad range of basic
qualitative behaviour encountered in concrete pathways and networks.

3. Other aspects of network behaviour, for instance the effect of intrinsic noise,
and stochasticity is beyond the scope of the current study, but can draw
from its insights. The study of noise in and its impact on information
processing is an interesting theme (e.g. see ref. 41). In our context, it is
important to establish the implications of localisation in a deterministic
setting first (and we have presented multiple insights in this regard). This
would be a necessary platform for systematically exploring the role of
stochasticity, which needs a detailed and dedicated study of its own.

4. A similar comment can be made about dynamic localisation. As discussed in
the text, dynamic localisation is an important emerging theme (both in natural
and engineered biology). Our results provide relevant insights into the eventual
changes in behaviour following a change in localisation. However, a systematic
exploration of dynamic localisation will involve detailed spatio-temporal
studies which build on this study, and this will be done in the future.

5. Our models which involve basic depictions of localised, global and local
species are relevant in cell-free settings, at the intracellular level and also to
cells and populations. In the case of cells and populations, it depicts the
interactions betweeen species which are globally diffusing (for e.g. in the
extracellular environment), species localised to a specific set of cells in a
given location/region (the cells themselves being immobile and stationary),
and species present in all cells, but non-diffusing.

6. Our systems approach provides a way of exploring the role of localisation in
different types of circuits. Given the current interest in bottom-up synthetic
biology (including in cell-free systems) in engineering biochemical circuits
with different functionalities42–44, this approach can serve as a valuable
addition to the existing toolkit.

7. The models in 1-D are relevant to describing dynamics on the cell
membrane or along a cellular cross section.We point out that tools such as
Virtual Cell can help simulate models with localisation in higher dimensions
and with different regions of localisation therein. However starting out with
computations in such a setting for the networks we examine, can make the
computational analysis time-consuming and obscure certain key underlying
patterns (our focal point). Having isolated key underlying cause-and-effect
patterns, it becomes easier to incorporate factors such as the effect of
dimensions or geometry.

Spatial regulation of Polo Kinase: Models. Here we present the basic aspects of
the models used for the exemplar cases (also see Supplementary Note 7). We
examine two distinct intracellular contexts where experimental evidence shows that
the localisation of a protein, Polo kinase/Polo like kinase plays a central role. The
first is in the transduction of cytoplasmic protein gradients that regulates polar-
isation in the C. elegans zygote. The second involves nuclear localisation of Polo
kinase triggering a mitotic switch, through a mechanism involving multiple pos-
sible feedback interactions. Here we focus on a model suggested by experiments in
Drosophila—however, we note that nuclear localisation of Polo and its role in the
mitotic switch is observed across different organism45. Both these examples
highlight multiple themes encountered in the paper: the effect of localisation, the
presence of two diffusivity nodes, and consequences for inference as well as
engineering design principles.

We first discuss the transduction of cytoplasmic protein gradients by PLK1 A
cascade of intracellular protein gradients is established during asymmetric cell
division in the C. elegans zygote46. The RNA binding protein Mex-5 forms a
gradient, with higher levels in the anterior cytoplasm. This upstream gradient
drives gradient formation in the Polo like kinase PLK-1. The PLK-1 gradient in
turn drives gradient formation in the RNA binding protein Pos-1. Experimental
evidence and modelling suggests that these gradients are formed by spatially graded
interconversion between slow and fast diffusing forms of these proteins in each
case25.

We build a model of this cascade using nodes having interconverting fast and
slow diffusing forms in a 1-D spatial domain with no-flux boundary conditions.
This type of model has been used to describe an individual step of this cascade and
fit to experimental data25. We parametrise our model to capture the qualitative
features of these gradients shown experimentally. The structure of the model is as
follows:

● Each step of the cascade—Mex5, PLK1 and Pos1 is represented by a node
with interconverting fast and slow diffusing forms.

● At each node, one of the interconversion reactions (fast to slow diffusing
forms OR slow to fast diffusing forms) is mediated by an upstream node
(posterior localised PAR1 in the case of Mex5), while the reverse reaction is
assumed to have a fixed rate constant that is uniform across the domain.

● Posterior localised PAR1 mediates Mex5 conversion from slow to fast
diffusing form.

● The slow diffusing form of Mex5 mediates PLK1 conversion from fast to
slow diffusing form.

● The slow diffusing form of PLK1 mediates conversion of Pos1 from slow to
fast diffusing form.

The model equations are as follows, with * denoting the slow diffusing form:

∂½Mex5��
∂t

¼ k01½Mex5� � k02½Mex5�� � kPAR1½Mex5�� þ DMex5�
∂2½Mex5��

∂θ2

∂½Mex5�
∂t

¼ �k01½Mex5� þ k02½Mex5�� þ kPAR1½Mex5�� þ DMex5
∂2½Mex5�

∂θ2

∂½PLK1��
∂t

¼ k03½PLK1� � k04½PLK1�� þ k3½Mex5��½PLK1� þ DPLK1�
∂2½PLK1��

∂θ2

∂½PLK1�
∂t

¼ �k03½PLK1� þ k04½PLK1�� � k3½Mex5��½PLK1� þ DPLK1
∂2½PLK1�

∂θ2

∂½Pos1��
∂t

¼ k05½Pos1� � k06½Pos1�� � k6½PLK1��½Pos1�� þ DPos1�
∂2½Pos1��

∂θ2

∂½Pos1�
∂t

¼ �k05½Pos1� þ k06½Pos1�� þ k6½PLK1��½Pos1�� þ DPos1
∂2½Pos1�
∂θ2

ð4Þ

The spatial domain is divided into two sub-domains, representing the anterior
and posterior cytoplasm. The rate constant kPAR1 is zero outside of the posterior
compartment.

Note that in the above model the slow diffusing forms of these proteins are the
active forms with respect to downstream regulation.

We also examine an alternative realisation of the cascade, which reproduces the
experimentally observed opposing relationship between the Mex5 and Pos1
gradients, while reversing the PLK1 gradient. In this case:

● The slow form of Mex5 mediates PLK1 conversion from slow to fast
diffusing form.

● The slow form of PLK1 mediates conversion of Pos1 from fast to slow
diffusing form.

Examining both realisations with a consistent relation between the input and
output nodes is done for multiple reasons: (1) it allows us to elucidate basic design
principles associated with gradient transduction across multistep cascades, (2) since
Polo kinase is a focal point, it also examines different ways in which Polo kinase
may be regulated and how it affects the overall outcome.

We now turn to a mathematical investigation of a proposed network governing
mitotic entry in Drosophila with a focus on the role of Polo therein. The
mathematical model is based on a number of experiments which have been
consolidated into a proposed network discussed in47. The goal of this work is to
analyse and evaluate the proposed network model and reveal the underlying design
principles. The model involves inactive Polo initially localised in the cytoplasm
(sequestered by microtubule bound Map205), and being transferred to the nucleus
upon activation. In the nucleus, Polo activates Cdc25 (initially localised in the
nucleus). Cdc25 activation triggers its transport to the cytoplasm, where it activates
the CycB-Cdk1 complex. This triggers localisation of CycB-Cdk1 in the nucleus,
where it can further enhance activation of Cdc25 by Polo. Thus, Cdc25 and CycB-
Cdk1 form a spatially distributed positive feedback loop, which potentially allows a
sharp, irreversible mitotic transition.

Interconversion between forms with different mobility has been used to study
nuclear localisation of CycB-Cdk1 in the context of a cell-cycle switch4. We adopt a
similar approach here, using nodes with interconverting fast and slow diffusing
forms to represent the different spatially regulated components of this network, in
a 1-D spatial domain with no-flux boundary conditions. Note that we do not
explicitly describe the interface between nuclear and cytoplasmic compartments, as
the essential insights emerge are the same, and the functioning of the spatially
distributed network does not depend on this in any essential way.

The structure of the model is as follows:

● The 1-D spatial domain is divided into two sub-domains, representing the
cytoplasm and the nucleus

● Polo is converted from fast (active) to slow diffusing (inactive) form in the
cytoplasm

● The slow diffusing (inactive) form of Polo can be sequestered by binding to
Map205, which is localised in the cytoplasm

● The slow diffusing (inactive) form of Polo can be converted to the fast
diffusing (active) form by an upstream signal, representing Aurora B
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● Cdc25 is converted from fast (active) to slow (inactive) diffusing form in
the nucleus

● Active Polo in the nucleus converts Cdc25 from slow to fast diffusing form
● CycB-Cdk1 can exist in three forms, a fast diffusing inactive form, a fast

diffusing active form, and a slow diffusing active form
● Active, fast diffusing CycB-Cdk1 can be converted to active slow diffusing

form in the nucleus. This conversion involves a positive feedback, as
suggested by4.

● Active Cdc25 in the cytoplasm can convert inactive CycB-Cdk1 to the fast
diffusing active form

● Active CycB-Cdk1 in the nucleus promotes Cdc25 activation by Polo

We use the following notation in the model equations:

● Polo* denotes the slow diffusing, inactive form of Polo
● Polobound denotes the inactive form of Polo bound to Map205 (non-

diffusible)
● Polo denotes the fast diffusing active form of Polo
● Cdc25* denotes the slow diffusing inactive form of Cdc25
● Cdc25 denotes the fast diffusing active form of Cdc25
● CycB− Cdk1** denotes the slow diffusing active form of CycB-Cdk1
● CycB− Cdk1* denotes the fast diffusing active form of CycB-Cdk1
● CycB− Cdk1 denotes the fast diffusing inactive form of CycB-Cdk1

The model equations are as follows:

∂½Polobound �
∂t

¼ � kunbind ½Polobound � þ kbind ½Polo�� ½Map205Total � � ½Polobound �� �þ DPolobound
∂2½Polobound �

∂θ2

∂½Polo��
∂t

¼ kunbind ½Polobound � � kbind ½Polo�� ½Map205Total � � ½Polobound �� �
þ k�Polo½Polo� � k02½Polo�� � kAuroraB½Polo�� þ DPolo�

∂2½Polo��
∂θ2

∂½Polo�
∂t

¼ � k�Polo½Polo� þ k02½Polo�� þ kAuroraB½Polo�� þ DPolo
∂2½Polo�
∂θ2

∂½Cdc25��
∂t

¼ k03½Cdc25� � k04½Cdc25�� � k3½Polo�½Cdc25�� þ DCdc25�
∂2½Cdc25��

∂θ2

∂½Cdc25�
∂t

¼ � k03½Cdc25� þ k04½Cdc25�� þ k3½Polo�½Cdc25�� þ DCdc25
∂2½Cdc25�

∂θ2

∂½CycB � Cdk1��
∂t

¼ k05½CycB � Cdk1� � k06½CycB � Cdk1�� þ k5½Cdc25�½CycB� Cdk1�

þ k07½CycB� Cdk1��� � k8½CycB� Cdk1�� þ DCycB�Cdk1�
∂2½CycB� Cdk1��

∂θ2

∂½CycB� Cdk1���
∂t

¼ � k07½CycB� Cdk1��� þ k8½CycB� Cdk1�� þ DCycB�Cdk1��
∂2½CycB� Cdk1���

∂θ2

∂½CycB� Cdk1�
∂t

¼ � k05½CycB� Cdk1� þ k06½CycB� Cdk1�� � k5½Cdc25�½CycB� Cdk1�

þ DCycB�Cdk1
∂2½CycB� Cdk1�

∂θ2

ð5Þ

The spatial domain is divided into two sub-domains, representing the nucleus and
cytoplasm. DPolobound is set to zero. Spatial constraints are imposed on the following
parameters and kinetic rate constants:

● kbind is zero in the nucleus.
● [Map205Total] is zero in the nucleus.
● k−Polo is zero in the nucleus.
● k03 is zero in the cytoplasm.
● k3 is a function of the total active CycB-Cdk1 in the nucleus: k3= ka+

kb([CycB− Cdk1*]+ [CycB− Cdk1**]). k3 is zero in the cytoplasm.
● k8 is a function of the total active CycB-Cdk1 in the nucleus:

k8 ¼ kp ð½CycB�Cdk1� �þ ½CycB�Cdk1�� �Þ4
Kp þ ð½CycB�Cdk1�� þ ½CycB�Cdk1�� �Þ4. k8 is zero in the cytoplasm.

We also examine a possible negative feedback regulation of Polo by
Optn similar to that proposed by48, as follows (see Supplementary Information):

● Optn is converted from fast (active) to slow (inactive) form in the
cytoplasm.

● Active Polo in the cytoplasm converts Optn slow (inactive) to fast (active)
form in the cytoplasm.

● Active Optn can convert fast (active) Polo to slow (inactive) form in the
nucleus.

We comment on the choice of parameters in the models for the two exemplar
cases involving Polo Kinase above (also see Supplementary Information). Our goal
in each case is to address questions of a qualitative nature. In the case of gradient
transduction we focus on the qualitative nature of gradient transduction, and in
particular reveal sources of qualitative difference in two architectures of the
cascade: this does not depend on any particular parameter set, but emerges from a
basic analysis of the building blocks of the cascade and their interaction. In the cell-
cycle example, we use the models to evaluate certain key postulations about
network interactions and their qualitative impact (the focal point in current
biological studies): the choice of our parameters is sufficient for this, and our
insights again transparently emerge from the network structure

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study are all contained
in the main text and Supplementary Information. Data supporting the findings of this
paper are available from the corresponding author upon reasonable request.

Code availability
We have made the codes for the study available in the following way. The models for all
our studies are available in the Main Text or Supplementary Information. We have
included MATLAB segments for the variations of models which we use in the
Supplementary Information. The full code (i.e. full set of equations in MATLAB format)
is presented for a subset of cases (this is because many cases involved changes within a
basic code). We have included one full code for each of the subsections 2.1–2.4 in the
Supplementary Information. The MATLAB files containing this code are also uploaded
on a GitHub repository at the following link: https://doi.org/10.5281/zenodo.4944672.
From the existing full code, and the different models presented (in MATLAB format),
codes for the various cases can be recreated. Furthermore, anyone interested in further
details can contact the corresponding author.
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