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Meandering instability of air flow in 
a granular bed: self-similarity and 
fluid-solid duality
Yuki Yoshimura, Yui Yagisawa & Ko Okumura

Meandering instability is familiar to everyone through river meandering or small rivulets of rain flowing 
down a windshield. However, its physical understanding is still premature, although it could inspire 
researchers in various fields, such as nonlinear science, fluid mechanics and geophysics, to resolve their 
long-standing problems. Here, we perform a small-scale experiment in which air flow is created in a 
thin granular bed to successfully find a meandering regime, together with other remarkable fluidized 
regimes, such as a turbulent regime. We discover that phase diagrams of the flow regimes for different 
types of grains can be universally presented as functions of the flow rate and the granular-bed thickness 
when the two quantities are properly renormalized. We further reveal that the meandering shapes are 
self-similar as was shown for meandering rivers. The experimental findings are explained by theory, 
with elucidating the physics. The theory is based on force balance, a minimum-dissipation principle, and 
a linear-instability analysis of a continuum equation that takes into account the fluid-solid duality, i.e., 
the existence of fluidized and solidified regions of grains along the meandering path. The present results 
provide fruitful links to related issues in various fields, including fluidized bed reactors in industry.

Fluid flows in a medium often display spectacular instabilities; there are various examples of this in cosmological1, 
geophysical2, biological3, and physical systems4. Among such phenomena, meandering instability is familiar to 
everyone in the form of small rivulets of rain flowing down a windshield or, in a more large-scale form, in river 
meandering. In particular, for a meandering fluid interacting with a solid surface, the physics has been relatively 
well understood. The meandering of a liquid jet flowing down an inclined plate and some variations of this have 
actively been studied5–7 (for larger-scale experiments, see ref. 8 and references therein). For such a meandering, the 
physical mechanism has been elucidated in terms of force balance, linear stability9–11 and flow-rate fluctuation12.  
On the contrary, for a meandering fluid interacting with a surrounding “complex fluid,” the mechanism of the 
instability has yet to be clarified. This latter case includes the meandering of rivers, which is ubiquitous and is 
even found on Mars13, and has been studied in geography8,14, biology15–17, hydrodynamics18–20, and physics, from 
various viewpoints such as pattern formation20,21, random walks22,23, and statistical models24,25. For example, more 
than a half-century ago, shapes of meandering rivers were shown to be scale invariant or self-similar, i.e., the cur-
vature, amplitude, and wavelength of the shape all scale with the width, using the data obtained by field studies26, 
which has yet to be understood. More recently, a systematic dependence of the sinuosity of meandering rivers on 
the Froude number has been shown, which is interpreted through results obtained by a simple numerical model27.

Here, we perform a small-scale experiment in which an air flow is created in a granular bed as follows: the 
flow of a lighter fluid is surrounded by a heavier “complex fluid,” which is similar to river meandering. As a result, 
we find that the flow can be destabilized to show meandering shapes. The meandering regime can be universally 
demonstrated as a function of the normalized flow rate and normalized granular-bed thickness. In addition, the 
meandering flow shape is found to be scale invariant or self-similar, as was shown for river meandering. These 
experimental findings can be explained by the proposed physical principles.

Results
Experiment. Setup. The main setup consists of a transparent acrylic cell and a gas-flow controller (see 
Fig. 1(a)). The inside thickness D, width W and height H of the cell satisfy the condition < d D W H. The 
cell was filled with beads with diameter d and connected at the bottom with a Teflon tube (F8006, Flon Industry, 
Japan) to the gas-flow controller (LogMIX, Front, Japan). Through the controller, “air” (nitrogen gas of density 
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ρA =  1.29 g/cm3; A3125N, Kenis) was injected into the cell at the bottom at a fixed flux Q, while the cell was held 
in the upright position. The depth of the observed region in the granular layer was more than approximately 
10 cm from the air-granular interface so that the granular pressure approaches a constant value due to Janssen’s 
mechanism28. The cell width W is either W =  80 mm or W =  40 mm. We used the following three types of beads: 
(1) glass beads with an average diameter d =  113 μm (Bz01, As One), (2) glass beads with an average diameter 
d =  196 μm (Bz02, As One), and (3) Alumina beads with an average diameter d =  124 μm (Taimei Chemicals). 
The density of glass beads is ρG =  2.5 g/cm3 and that of alumina beads is ρG =  3.9 g/cm3.

Flow Regimes. The flow created in the glass-bead bed is divided into three regimes, as shown in Fig. 1(b) (movies 
for Bz01 are available as Supplementary Movies 1–3). (I) Straight regime: a nearly straight path ends in the middle 
of the granular bed as a result of absorption of air by the bed. (II) Meandering regime: regular wavy shapes appear 
in a transient but well-defined manner; above the wavy path, bubbles are sometimes formed. (The observed 
meanders appear near the outlet of the tube before they slightly travel along the path; once stabilized the meander 
shapes do not travel.) (III) Turbulent regime: different from the other regimes, the path goes through the bed to 
the air-granular interface, and the flow appears as a hydrodynamic turbulent flow. The turbulent flow tends to be 
straight for small D (Fig. 1(b)–(4)) with fingering patterns along the side edges of the path, whereas the flow tends 
to be wavy for large D (Fig. 1(b)–(5)). Regimes I to III appear in this order as the flow rate Q increases for a given 
set of D, d, and ρG.

Phase Diagram. In Fig. 2(a–d), the phase diagrams are shown on the (D, Q) space. The filled circles stand for the 
case in which the path is clearly in the meandering regime (at least 4 waves can be recognized). The open squares 
(crosses) stand for the case in which the path shape is clearly in the straight (turbulent) regime. The open triangles 
represent the case in the crossover region in which the waves are less than three and the path has characteristics of 
more than two regimes. All the ensuing analyses of the meandering path are performed for the data represented 
by the filed circles in Fig. 2.

The two results for the glass beads, Bz01, shown in (a) and (b), demonstrate a weak dependence on the way of 
packing the beads in the cell. We obtained (a) through the following process (Method A): (1) we poured the beads 
in the cell, (2) injected a strong gas flow of approximately Q =  5 μm3/s and (3) gradually decreased the flow to record 
the data points. In contrast, to obtain (b), we added one more step (Method B): between step (1) and (2), we injected 
a strong gas flow of approximately Q =  5 μm3/s and gradually decreased the flow to zero. In spite of this difference, 
the results in (a) and (b) look reasonably similar to each other. In fact, the slight differences in (a) and (b) may instead 
be due to differences in other conditions that cannot be controlled precisely, such as humidity and electrostatic 
effects. In the present study, all the data, except for the data in (a), are obtained through Method B.

The phase diagrams in Fig. 2(a–d), obtained for glass beads, Bz01 and Bz02, and the alumina beads, look  
similar to one another. To quantify the similarity, we collect in plot (e) all the data shown in (a)–(d), preserving 
the colors and symbols in the phase diagram with renormalized axes, D/d and Q/Q0 (the definition of Q0 will be 
given later). The dashed and solid lines in Fig. 2(e) are drawn according to the following principles: we consider 
the slopes of the lines obtained by connecting the origin with all the points represented by filled circles and select 
the line with the smallest (largest) slope as the dashed (solid) line (in selecting the solid line, we neglect two 
exceptional filled circles at = .

∼D 10 3 and 11.7).
In Fig. 2(e), we clearly see universal or robust features of the meandering phenomenon in the present study: the 

dashed and solid lines in Fig. 2(e), which are selected as specified above, work reasonably well as the lower and upper 
phase boundaries, respectively, irrespective of d and ρG. In fact, when the dashed and solid lines in (e) are mapped 
back to the original plots, (a)–(d), the corresponding dashed and solid lines in (a)–(d), work well as guides for the 
eyes to recognize the phase boundaries in each plot. Note that the triangles corresponds to an intermediate state, i.e., 
a path with characteristics of a meandering path. Further remarks will be given in the Discussion.
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Figure 1. (a) Experimental setup. (b) Flow-shape change with the flow rate Q. Snapshots in (1–5) are obtained 
for the glass beads Bz01 for the cell width W =  80 mm under the conditions, (D [mm], Q [μm3/s]) =  (1.0, 0.5), 
(1.0, 1.25), (1.0, 1.17), (0.7, 1.67), and (1.2, 4.17).
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In Fig. 2(a), it is shown that the change in the cell width W has practically no effect if the condition D W  is 
satisfied. The symbols in green are the data obtained with a cell of width W =  40 mm. The green data nearly  
overlap with the data obtained with a cell of width W =  80 mm.

Self-similarity. The centroid of the meandering shape is, in principle, of the form x =  A sin(2πy/λ), with ampli-
tude A and wave length λ, where x and y are the vertical and horizontal positions within the cell, respectively. If 
this description is essentially correct, the curvature R will satisfy the scaling law

Figure 2. (a–d) Phase diagrams, D vs. Q, for different beads and packing methods. The green symbols in  
(a) are the data obtained for W =  40 mm. All of the other data are obtained for W =  80 mm. (e) Phase diagram 
with renormalized axes. The labels, I, II, and III, represent the straight, meandering, and turbulent regimes, 
respectively.
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λR A1/ / (1)2

As shown in Fig. 3(a–c), we found that the three characteristic lengths all scale with the width w. From numer-
ical fitting, we obtain

λ = = =k w A k w R k w, , and (2)1 2 3

with k1 =  3.31 ±  0.13, k2 =  0.445 ±  0.02 and k3 =  1.27 ±  0.05. These relations are summarized as the following scaling  
laws:

λ   A R w, (3)

which means that the meandering shape is scale-invariant or self-similar: there is a single length that character-
izes all different meandering shapes.

Scaling law and renormalization. As shown in Fig. 3(d), we experimentally found that the width w is well char-
acterized by the following scaling law involving the gravitational acceleration g:

ρ ρ .w Q D gd( / ) /( ) (4)A G

Here, as indicated in Fig. 3(d), the numerical coefficient is of the order of unity, as expected. A simple physical 
explanation of this scaling law will be given later.

The renormalization of the two axes performed for the phase diagram in Fig. 2(e) is in fact motivated by this 
scaling law, which can be cast into the form,

∼
��Q w d D( / ) (5)

with =Q Q Q/ 0 and =
∼D D d/ . The characteristic flow rate is given by

ρ ρ= =Q d V V gdwith / (6)G A0
2

0 0

Here, as will become clear shortly, V0 scales with the velocity of the air flow in the granular medium, which 
implies that Q0 is the flow rate for a section d2. In other words, the renormalization of D and Q employed in 
Fig. 2(e) corresponds to taking d as the unit length.

Figure 3. (a–c) Wavelength λ, “amplitude” A*, and radius of curvature R vs. width w, demonstrating that the 
three quantities are all linearly dependent on w. For the definition of A* see Fig. 4(b) and Methods. (d) w vs. 
renormalized Q, demonstrating a scaling law for w. The units of ρG, d, D, and W are g/cm3, µm, mm, and mm, 
respectively.
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Equation (5) suggests that the dashed and solid lines (phase boundaries) in Fig. 2(e) correspond to the lower 
and upper bounds for the width w in the length unit d. This is because on the 

∼D-Q plot, the data on a straight line 
going through the origin are the collection of data having the same value of w/d. This implies that the slopes of the 
dashed and solid lines correspond to the minimum and maximum values of w in the unit d.

Fluid-Solid Duality. As shown in Fig. 4(a) the granular medium surrounding the meandering path is catego-
rized into fluidized and solidified regions. This snapshot is taken with a relatively long exposure time, 1/20 sec, so 
that we can recognize regions in which particles are almost at rest during this exposure time (solidified region) 
and regions of the opposite character in which particles are moving during the same exposure time (fluidized 
region). Quite naturally, solidified regions are found near “convex” interfaces (“convex” when seen from the side 
of the air path) because the air must be pushed back by the interface to change its direction of flow (as a reaction, 
the air flow pushes the interface through a centrifugal force). Fluidized regions are found near concave interfaces, 
which is also natural because of the absence of centrifugal force near the convex interface that, if it existed, would 
push the interface. In addition, it is potentially noticeable in the snapshot that the density in the fluidized region 
is lower. This suggests that particles lose contacts with one another in the region, that is, the medium is fluidized. 
These points are more clearly visible in a movie taken by a high-speed camera (see Supplementary Movie 3). Note 
that the area of the fluidized region is rather limited because of the principle of minimum dissipation discussed 
below (in the ideal case, the area of the fluidized region would be zero within the crudest approximation). Because 
of this, the duality is not necessarily easy to recognize in Fig. 4(a) but is far more clearly visualized in the movie, 
Supplementary Movie 3. The reader is strongly encouraged to view this movie to confirm the distinction between 
the solidified and fluidized regions.

Theory. Principle of minimum dissipation. The self-similarity of the meandering shape, described by the 
scaling laws in Eq. (2), can be explained as a result of the principle of minimum energy dissipation in the granular 
medium. Since the fluidized and solidified regions are associated with the concave and convex parts, respectively, 
the fluidized regions can be recognized as the triangular parts shown in gray in Fig. 4(b). In these regions, energy is 
predominantly dissipated due to inelastic collisions between particles: the area of a triangular region is a measure  
of energy dissipation. The area scales as (A −  w/2) (λ/2 −  w)/2, as illustrated in 4(b). This decreases to zero as the 
set (A, λ) approaches the following value:

λ .A w w( , ) ( /2, 2 ) (7)

In other words, within this crude approximation, the area of the fluidized region is optimized to zero. 
Accordingly, the fluidized region is in fact very limited. (This is the reason the distinction between the solidified 
and fluidized regions are not necessarily easy to recognize in a still snapshot, but easy to recognize in a movie, as 
mentioned above).

Figure 4. (a) Visualization of fluidized and solidified regions via a snapshot taken with a relatively long 
exposure time, in which the grains in the fluidized region move but the grains in the solidified region do not. 
(b) Illustration of wavy paths with large and small fluidized triangles. (c) Illustration of a path with a small 
perturbation.
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In fact, by inspection, we confirm that all three snapshots of meandering paths in Fig. 1(b)-(2) and (3) and 4(a) 
nearly satisfy this condition! No paths resemble the path shown in the left panel of Fig. 4(b) with large triangles; 
rather the path resemble the path shown in the right panel of Fig. 4(b), with small triangles whose areas are almost 
zero. At a quantitative level, we can confirm that Eq. (7) implies k 21  and k 1/22 , which compare quite well 
with the experimentally observed values given below Eq. (2).

Equation (7), which is realized reasonably well in the experiments, expresses that the dissipation is minimized 
when the scaling relation λ A w holds. These scaling laws are combined with Eq. (1) to obtain the relation 
R w. Therefore, we confirm Eq. (3) on the basis of the principle of minimum dissipation.

Principle of the floating ping-pong ball. The width w of the meandering path is essentially determined by the prin-
ciple of the floating ping-pong ball29, a familiar phenomenon in which a ping-pong ball is levitated with air flow from 
a blower, which is explained by Bernoulli’s Principle. In the present case, at the top end of the air path, as shown in 
the snapshot in Fig. 1(b)-(1) and (2), the sand particles are floating, similarly to a floating ping-pong ball. At the level 
of scaling laws, this condition is expressed as the balance between the dynamic pressure of the air flow of velocity V 
and the gravitational force acting on a sand particle, i.e., ρ ρV gd d/A G

2 3 2. This relation, which in fact means that V 
scales as V0, which was already defined in Eq. (6), is combined with the condition of the flow conservation,

Q wDV, (8)

to reveal the scaling law for the width given in Eq. (4).
As shown in Fig. 3(d), the scaling law is reasonably well satisfied for the meandering paths. This implies that, 

in the present experimental conditions, the permeation of air in the granular medium is not significant at the 
level of scaling laws. This is because the scaling law in Eq. (4), which is confirmed in Fig. 3(d), is derived with the 
assumption of the flow conservation given in Eq. (8).

Minimal model for fluid-solid duality and linear instability. The observed meandering instability can be under-
stood on the basis of the two-dimensional Navier-Stokes equation for the air flow. Since the Reynolds number 
of the flow is relatively high, the distribution of the flow speed on the section perpendicular to the flow is almost 
homogeneous, except near the boundaries (i.e., the flow is a quasi plug flow). As a result, the dynamics are well 
described by considering a path of linear density ρAwD flowing with velocity u(x, y, t) =  (u, v), with air density 
ρA

10,30,31.
Equation (4), which has already been explained in terms of the principle of the floating ping-pong ball, can 

also be explained in this framework. When the path is nearly straight, the dominant component of the velocity is 
u u v( ) and its stationary dynamics is described simply by ρAuux +  px =  0 (the subscripts denote partial deriv-
atives and p is the isotropic pressure) because viscosity and gravity for the air flow can be neglected; the quantity 
ρAu2/2 +  p is preserved along the path (Bernoulli’s principle). Throughout most of the path, this quantity scales as 
ρAV2/2 +  p0, where V is the velocity along the path and p0 is the atmospheric pressure. However, it scales as pG +  p0 
near the top end of the path: at the top of the path, as suggested above, granular particles are fluidized with a high 
packing fraction, giving a pressure scale pG of the order of ρGgd3/d2. Balancing the two pressure scales, we obtain 
Eq. (4).

The initiation of the meandering instability can be understood from the y component of the equation of 
motion for the path of linear density ρAwD, where a deformed path shape is described by y =  ζ(x, t) (see Fig. 4(c)). 
This equation of motion may be described by the equation that minimally reflects the fluid-solid duality of gran-
ular materials along the meandering path as illustrated in Fig. 4(a,b):

ρ ρ ζ τζ+ = − +wD v Vv gD K K( ) ( ) (9)A t x G t1 2

Here, V is the air-flow velocity along the path. The left-hand side of this equation stands for inertia, while 
the right-hand side expresses a simple and minimal interaction of the flow with the granular medium for the  
instability: the K1 term expresses an elastic response, characterizing the solid-like property, whereas the K2 term 
represents a viscous response, characterizing the liquid-like property, with the subscript t denoting the time 
derivative. Here, K1 and K2 are numerical coefficients of the order of unity, whereas τ is a characteristic time.

Maximum wavelength for instability. The linear stability analysis of Eq. (9) leads to two conditions for the insta-
bility, with the one determining the maximum wavelength for the instability. By seeking the solution to a line-
arized version of Eq. (9) of the form ζ σ +

 e t iqx  with q =  2π/λ, we find that the solution becomes unstable 
(Re[σ] >  0) when the following two instability conditions are both satisfied:

ρ ρ≠ > .K q V g K w(1) 0 and (2) /( ) (10)G A2
2 2

1

The first condition implies that the instability requires the K2 term. The second condition can be expressed as 
ρ ζ ρ ζ>wV g KA xx G

2
1 ; the centrifugal force overcoming the restoring force leads to the instability. This is consid-

erably different from the meandering instability of rivulets interacting with solid plates10, in which the centrifugal 
force does not play a role in triggering the instability. The second condition also defines the maximum wavelength 
λm for unstable modes:

λ λ λ π< = .d Kwith (2 ) / (11)m m
2

1
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Fastest growing mode. The scaling law λ  w in Eq. (3), which has already been justified on the basis of the 
principle of minimum dissipation, can also be explained in the present framework: this relation emerges as a 
result of the selection of the fastest-growing mode of the linear instability. The growth velocity of the instability, 
measured by the quantity Re[σ] (> 0), is a monotonically increasing function of q2; the smaller the wavelength, the 
faster the growth of the instability. However, there exists a minimum wavelength in the present theory; the con-
dition λ >  w should be satisfied, that is, the wavelength of the fastest-growing mode is practically given by λ  w. 
This is because the present theory is valid only when the width of the path is smaller than any other length scales 
characterizing the shape of the path; the flow is here treated as a (curved) “line”. In this way, the wavelength of the 
fastest-growing mode λ  w tends to be selected as the wavelength of the meandering path.

Phase boundaries. The existence of minimum and maximum values for w in the length unit d, suggested in the 
renormalized phase diagram in shown Fig. 2(e), can be explained in the present framework. The maximum value 
of w is given as λm from the relations, λ  w and λ <  λm =  (2π)2d/K1, which were already justified. The minimum 
of w is given by the limitation of the present continuum description: the path interface can be regarded as smooth 
only when w is significantly larger than d, that is, the condition kd <  w must be satisfied for the continuum theory 
with k larger than unity. In summary, we expect

π< < .k w d K/ (2 ) / (12)2
1

The minimum and maximum of w/d, k and (2π)2/K1, should correspond, respectively, to the slopes of the 
dashed and solid lines (phase boundaries) in Fig. 2(e), which are 3.84 and 11.0, respectively. From this, we obtain 

.k 3 84 and .K 3 591 , the orders of magnitude of which are consistent with the scaling arguments given above.
This analysis suggests that the solid-like interaction of the form ρGgDK1ζ employed in Eq. (9) is rather uni-

versal and does not depend on the stiffness of the particles. As shown in Fig. 2, the phase boundaries are rather 
universal for the glass and alumina beads, whereas Young’s modulus of alumina is about five times as large as 
that of glass. This implies that the value of K1 is almost the same for the glass and alumina beads despite the large 
difference in the particle-level stiffness. This may be because the interaction between the air flow and “granular 
solid” is weak in the sense that it is not related to the deformation associated with the Hertz contact32 but rather 
to the gravity acting on granular materials (note that the term is proportional to ρGg).

Discussion
Based on our experiment and theory, we have elucidated physical origins of the meandering instability and scale 
invariance by considering the interaction of the flow with the granular medium, which exhibits dual characters 
of solid and liquid. (1) Meandering instability occurs for an air flow whose width is fixed by the principle of the 
floating ping-pong ball. (2) This flow is destabilized due to a linear instability that results from the competi-
tion between the centrifugal force (inducing instability) and the restoring force associated with the jammed or 
solidified granular medium (inducing stability); the flow selects the fastest-growing mode whose wavelength is 
comparable to the width. (3) The growth of the amplitude of the mode with the selected wavelength is suspended 
as a result of the competition between the linear instability and the energy dissipation taking place in the gran-
ular medium, which is brought about by the fluidized granular medium. The instability tends to increase the 
amplitude of the path, but when the amplitude becomes larger, the dissipation becomes larger, and the velocity is 
reduced, thus mitigating the centrifugal force, which is the source of the instability. This subtle balance emerges 
as the principle of minimum dissipation, which sets the quasi-static amplitude comparable to the width. These 
mechanisms justify the scale invariance and the phase boundary lines for the meandering regime.

River meandering is a well-known phenomenon and is related in a number of ways to the work described 
in this paper. Compared with river meandering, the time scale of the meandering instability studied here is 
extremely small. The present meandering paths frequently disappears, which makes them quasi-static. (This may 
be due to noise in the flow, possibly created at the exit of the tube; such nose could trigger the instability on its 
own). Even deep in the meandering regime, the meandering shape is only stable on the sub-second time scale, 
as suggested in Fig. 4(a) and Supplementary Movies 1–3. In addition, the erosion and accumulation processes, 
which are crucial to river-meander formation, are considerably different from the processes associated with 
fluid-solid duality, which is essential to the meandering phenomenon considered in this paper. Nonetheless, 
the two meandering instabilities share several similarities. Meandering fluids in both cases interact not with an 
undeformable solid but with a deformable “complex fluid.” In addition, the self-similarity property in Eq. (2) has 
also been established through field studies of river meandering, and this property seems to be universal and appli-
cable even to meltwater streams on the surfaces of glaciers26. Remarkably, the numerical coefficients, k1 through 
k3, found for river meandering are comparable to those found here. We thus expect that the arguments developed 
here would be useful as a starting point for a physical understanding of river meandering.

This study is also relevant to fluidized beds. Fluidized granular beds have been extensively studied experimen-
tally33–35 and numerically36,37. However, in most cases, air is homogeneously injected at the base of the container, 
which is quite different from the local injection in the present study. In these homogeneous cases, bubbling has 
been thoroughly studied. (However, note that even in the less-studied cases in which jets are injected, no attention 
has been paid to meandering instability34,38–40). For example, it is known that control of the dynamics of the bub-
bles created in fluidized reactors could help enhance the efficiency of the reactors35,41. In the context of fluidized 
granular beds, the effect of air permeation is very important. The viscous force originating from the interstitial 
air in the porous medium governs the onset of the bubbling in the bed when the air injection is homogeneous. 
In contrast, this effect is minor in the present case. This is strongly supported by Figs 2 and 3(c): the discussions 
associated with the figures relay on Eq. (4), in the derivation of which the flow conservation given in Eq. (8) 
is assumed. Fluidization processes are essential for industrial applications, such as temperature control, heat 
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transfer, coal combustion and fluidized bed reactors, which are useful for reactions in the conversion of crude oils 
to gasoline and biomass gasification. The present study is relevant to fluidized beds and might be of some use in 
such industrial applications.

To compare the present results with those obtained in other contexts, such as geoscience and fluidized beds, it 
would be useful to discuss these results in terms of more generic dimensionless factors that are introduced from 
physical pictures at the level of a single particle. (i) In geophysics, the Shields number is quite often used42. This 
number compares (for a grain) the total shear force with the gravitational force, and has been used to discuss the 
onset of sedimentation. In the present phenomena, a similar number could be defined through the floating con-
dition for a grain (or a “ ping-pong ball”), i.e., the relative importance of the force due to the dynamic pressure 
compared with the gravitational force. In the present study, this number is a constant of the order of unity in the 
meandering regime (see the paragraph leading to Eq. (8)). (ii) In the previous study in ref. 27, it is shown that the 
channel sinuosity, defined as the ratio of the total length along the path to the length projected onto the direction 
of the average flow, is weakly dependent on the Froude number, which can be regarded as the ratio between the 
gradient of altitude for a channel in the average-flow direction and the resistance to the flow due to vegetation. 
The sinuosity values obtained from 20 rivers around the world range from 1.2 to 2.2. In the present case, the sin-
uosity scales as R/λ, i.e., the sinuosity is a constant of the order of unity, which is not in conflict with this previous 
result and is in accordance with the result of the study in ref. 26. (iii) In terms of the Reynolds number for a grain, 
which is defined as the ratio of the inertial force to the viscous force acting on a grain, in the present study, the 
fluidized parts of grains are important to the discussion of the dynamic behaviors, and such parts are in the iner-
tial regime, i.e., the Reynolds number is larger than unity, because the interstitial fluid is air in this experiment. 
However, for the discussion on the solidified part, it is possible that the viscosity of the interstitial air could play a 
role. (iv) In granular physics, the inertial number has been established to describe a constitutive law for dry gran-
ular materials43 and the idea is extended to cases with interaction with interstitial fluid44,45. The same constitutive 
law could hold for dry and immersed granular materials if the meaning of the inertial number is properly modi-
fied. The inertial number for a dry granular material can be regarded as the ratio between an inertial time for 
rearrangement due to a pressure and a macroscopic time spent by the particle to move from one hole to the next. 
For the present air flows in a granular medium, the counterpart for the latter time is d/V. The counterpart for the 
former rearrangement time may be a time associated with the dynamic pressure or with the gravitational force, 
and this time scale  is given by: ρd P/G  with ρP VA

2 or ρP gdG , i.e., ρ ρt V d( / ) /d G A  or 
t d g/g , 

respectively. These times, td and tg, are of the same order of magnitude in the present case because of the floating 
condition. The single time scale for rearrangements, 

t td g , is typically a few ms, which is consistent with the 
observation made with a high-speed camera (e.g., Supplementary Movie 3). By comparing this rearrangement 
time scale with the macroscopic time scale, we define the dimensionless number ρ ρ/G A , as introduced in the 
previous studies44,45. This number would also be useful in comparing the present results with those obtained in 
the other contexts.

Conclusion
In this study, we show that an air flow in a thin granular bed can be destabilized to show meandering shape. The 
phase diagram for the meandering regime is shown in a universal way as a function of a normalized flow rate and 
a normalized granular bed thickness. In addition, we show that the meandering shapes are self-similar or scale 
invariant, as observed in river meandering. These experimental results lead to physical insights as summarized in 
the first paragraph of Discussion.

Fundamentally, our results open a new avenue in the field of granular physics28,46,47 by proposing a minimal 
description for the fluid-solid duality and a principle of minimal dissipation, leading to a new opportunity for 
fruitful connections of granular physics to various fields. For example, the physical description in Eq. (9) of 
the interplay between jamming48,49 (solid-like response) and fluidization50 (dissipation) will be useful in under-
standing soil-bed fluidization induced by earthquakes51, and the present framework, including the principle of 
minimum dissipation, may help geophysicists to physically understand river meandering. Practically, the present 
study could be useful for industrial issues such as fluidized-bed reactors.

Methods
Experimental. The experiment was recorded using a digital camera (D800E, Nikon, Japan) to obtain the data 
for analysis. For high-speed visualization of the solidified and fluidized regions, a high-speed camera (UX100, 
Photoron, Japan) was also used. To both cameras, a macro lens (Micro NIKKOR 60 mm F2.8 ED, Nikon, Japan) 
was attached. The cell thickness D was measured by a laser distance sensor (ZS-HLDS5+ ZS-HLDC11+ Smart 
Monitor Zero Pro., Omron, Japan).

Data Analysis. The measurements of w, A, λ, and R are performed as follows. The average value and the error 
bar (the standard deviation) of w and R for a single data point in Fig. 3(a–c) are obtained from 30 to 60 measure-
ments. We used 10 to 20 snapshots acquired under the same conditions (the same ρG, d, D, and W) and selected 
three points (corresponding to y =  nλ with n an integer) from each snapshot to perform the measurements. In 
each measurement, R is determined by fitting a parabolic form to the outside edge of a path. As for λ and A* (see 
Fig. 4(b)), we measured 10 to 20 times for a fixed condition by using 10 to 20 snapshots and making one measure-
ment for each snapshot. In each measurement, λ and A* are determined by selecting a segment containing n 
waves (with n an integer equal to or larger than 4). To estimate λ the length of the segment in the x direction is 
measured, and then divided by the number of waves n. To obtain A*, ⁎Amin  and ⁎Amax  are determined, and then we 
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take the average of these two quantities (We measured A* rather than A because the former quantity can be meas-
ured in a less ambiguous manner, and then used the relation A* =  2(A +  w/2) to obtain A).

Theory. Details of the linear stability analysis are outlined as follows. Equation (9), combined with v =  ζt +  Vζx, leads 
to the equation, ζtt +  2Vζxt +  V2ζxx +  κ1ζ +  κ2ζt =  0, linearized in ζ, where κ1 =  ρG gK1/(ρAw) and κ2 =  ρG gK2τ/(ρAw).  
The solution of the form eσt+iqx with q =  2π/λ satisfies σ κ κ κ κ= − − ± − +iqV iqV/2 ( /2)2 2

2
1 2 . The condi-

tion for meandering instability Re σ >  0 results in the conditions given in Eq. (10).
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