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ABSTRACT: Carbohydrates constitute a structurally and
functionally diverse group of biological molecules and
macromolecules. In cells they are involved in, e.g., energy
storage, signaling, and cell−cell recognition. All of these
phenomena take place in atomistic scales, thus atomistic
simulation would be the method of choice to explore how
carbohydrates function. However, the progress in the field is
limited by the lack of appropriate tools for preparing
carbohydrate structures and related topology files for the
simulation models. Here we present tools that fill this gap.
Applications where the tools discussed in this paper are
particularly useful include, among others, the preparation of
structures for glycolipids, nanocellulose, and glycans linked to
glycoproteins. The molecular structures and simulation files generated by the tools are compatible with GROMACS.

■ INTRODUCTION

Carbohydrates constitute a large and diverse class of chemical
compounds involved in all aspects of life including energy
storage and conversion, cellular signaling, and recognition. The
function of carbohydrates is often based on highly specific
interactions and seemingly tiny but extremely important
structural details. Given this, atomistic simulations would be
an exceptionally useful technique to explore such specific
features. However, the progress in the field of computer
simulations to address questions related to carbohydrates has
been slow, and the reason is quite simple: the lack of accurate
force fields. The force fields commonly used in biomolecular
simulations, such as CHARMM36 or OPLS,1,2 have been
optimized for proteins, and this situation has lasted for decades.
Recently, lipids and nucleic acids have also been given the
attention that they deserve, resulting in high-quality force fields
for these molecule types.3−9 Meanwhile, the development of
force fields for carbohydrates has not been given the same
weight. For instance, carbohydrate parametrization in the OPLS
force field is based on a single glucose unit only,10 which
demonstrates how substandard the situation has been. Another
example is the GROMOS force field, which has an extension
for hexopyranoses only.11,12 Considerable improvement has

taken place only through the recent development of
GLYCAM,13 a force field based on AMBER, which includes
parameters for describing a quite large set of carbohydrate
types.
Thanks to the emerging progress in improving the quality of

carbohydrate force fields, the next task is to develop practical
tools for the design and preparation of carbohydrate structures.
The first thing the tool should do is to define the molecule in
terms of its chemical structure, thus constructing the molecular
topology. This is not an issue with proteins and nucleic acids,
for instance, since practically all packages for molecular
dynamics (MD) simulations have tools for automatic
preparation of topologies for these molecules. However, for
carbohydrates found in, e.g., glycoproteins, the present state-of-
the-art is less advanced. The only tools currently available for
generating the molecular topology are GLYCAM Web14 and the
Glycan Reader part of CHARMM-GUI.15,16 GLYCAM Web
generates a topology file for glycoprotein simulations, but the
files can only be used for MD simulations in the AMBER
program,17 and converting the topology file for other MD
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simulation packages is not a simple feat. Meanwhile, the Glycan
Reader tool (used with CHARMM) requires the input protein
coordinate file to include carbohydrates for generating the
molecular topology file. This is a severe limitation, since one of
the main problems in glycolipid and glycoprotein modeling is
the lack of three-dimensional (3D) structures of carbohydrate
branches, which due to considerable thermal fluctuations are
not resolved from crystal structures or they are removed from
the protein prior to crystallization. The same issue concerns
highly flexible protein loops. However, while for protein loops
there are numerous tools allowing one to put them back to the
protein structure, there is no analogical software for
carbohydrate branches of glycoproteins, with one exception.
The GlyProt tool enables addition of N-glycans to proteins;
however, it lacks the feature of adding O-glycans, and it does
not generate the molecular topology file for MD simulations.18

There are also other challenges. In particular, while there are
several tools available for constructing and predicting 3D
structures of glycans, such as SWEET-II,19 Glydict,20 POLYS,21

and Shape,22 none of these tools work in conjunction with
proteins or generate the topology files required for MD
simulations.
In the context of glycolipids, the only tool available is the

Glycolipid Modeler part of CHARMM-GUI.15 However, this
tool can use only a set of predefined glycolipids and glycan
sequences. Possibilities to build glycolipids of ones own interest
are therefore limited.
In this article, we present new Open Babel23 and python-

based tools for preparation of carbohydrate structures that can
be simulated with the GROMACS software package.24 The
tools generate topologies of carbohydrates in the GROMACS
format and then prepare 3D structures of carbohydrates
covalently linked to the given lipids and proteins. The tools
allow one to construct both linear and branched carbohydrates
based on a user-defined glycan sequence. They have already
been tested and validated in a number of case studies (see
Figure 1).

■ SOFTWARE FUNCTIONALITIES
Here we present three illustrative examples of the main
functionalities of the novel software package that we introduce
in this work. We first discuss how the tools can be used to build
elongated carbohydrate polymers. In this context, the molecule
of interest is cellulose that is highly abundant in plant cells with
a lot of potential applications. In the second example, we
discuss how to construct carbohydrate branches of glyco-
proteins. Given that glycosylation is very common among the
proteins found, e.g., in plasma membranes, and given that this
topic has not been explored much until now, there is reason to
assume that it will be paid considerable attention in future
simulation studies. In the third and final example, we show how
the tools can be employed to build carbohydrate units found in
glycolipids. This topic is also one of the exceptionally important
ones given that glycolipids modulate quite a few cellular
functions. In all the three examples, we show every step needed
to prepare a model for a given system.
Below, for each of the topics discussed in this paper, we first

briefly outline the biological relevance to study these molecules
or their molecular complexes. Then, we show concretely how
the application prepreader.py (using only lowercase font
in the command name) can be used to prepare carbohydrate
chains for polymer simulations, and the tool doglycans.py
(again using only lowercase) to prepare models for

glycoproteins and glycolipids. Together, these constitute the
doGlycans tool set.

Carbohydrate Polymers. Long carbohydrate polymers
play an important role in the functions of animals, plants, and
microorganisms. Key examples in this context are cellulose and
hemicellulose that are the main components of rigid plant cell
walls. Cellulose is composed of long unbranched glucose chains
having up to thousands of monomers, while hemicellulose
chains that include small numbers of other hexose units may be
moderately branched. Cellulose is the most common organic
polymer on earth and an important means for storing glucose.
It therefore has a lot of relevance in ruminant animals feeding,
and it is also a potential source of fuel and renewable energy.
Cellulose has numerous applications in paper and textile
industries, pharmaceutical industry, and food processing,29 and
it is also a promising material in nanotechnology.30,31

In our previous atomistic MD simulation studies of cellulose
nanofibers, where we used the present tool to build the
carbohydrate units, we identified the cause of cellulose
twisting,25 elucidated the role of amorphous cellulose regions
in the elastic properties of cellulose nanofibers,32 and showed
how cellulose enzymes interact with differently ordered regions
of cellulose nanofibers.33

To set up related cellulose simulations, all one has to do is to
prepare a sequence file with the required number of D-glucose
units and then run the prepreader.py script. Detailed
instructions are given in section 3 in the doGlycansManual. The
procedure to do it is shown schematically in Figure 2.

Glycosylation of Proteins. Glycosylation is a complex
cotranslational and posttranslational process that takes place in
all species in which glycans (oligosaccharides) are covalently

Figure 1. Snapshots of simulations of different carbohydrate systems
that have been built with the present tool set, used as examples in this
article. (a) Crystalline cellulose fragment (Reprinted with permission
from ref 25. Copyright 2011 American Chemical Society.); (b) CD59
protein showing N- and O-glycan branches rendered as blue and red
licorice, respectively;26 (c) EGFR monomer showing N-linked glycans
rendered as blue licorice;27 and (d) structure of the GM1 glycolipid
together with a snapshot of a lipid bilayer with 5 mol % of GM1
(Reprinted with permission from ref 28. Copyright 2011 Nature
Publishing Group).
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attached to proteins.34 A majority of proteins (>50%) secreted
by eukaryotic cells undergo glycosylation, and in general, all
cells in nature are coated with distinct glycans that are
biologically important for cell function.35 There are five
different classes of glycosylation, namely (a) N-linked
glycosylation, (b) O-linked glycosylation, (c) phospho-serine
glycosylation, (d) C-mannosylation, and (e) glypiation
(formation of glycosylphosphatidylinositol (GPI) anchors).36

Each glycan added to a protein is involved in a wide range of
functions discussed elsewhere.37−41

Here we focus on glycosylation in the context of signaling.
Membrane receptors governing many signaling processes have
been studied quite extensively through atomistic simulations,
yet the role of glycosylation in receptor function has been paid
exceptionally little attention through simulations. This is largely
due to the lack of structural information about the carbohydrate
chains. Most of the glycoprotein structures that have been
determined are based on extensively manipulated proteins,
where in particular the carbohydrate chains are often truncated
from the studied receptor before its 3D structure is being
determined (see, e.g., ref 39), since the soft carbohydrates often
hinder or even block crystallization. Given this issue, there is
considerable demand for a tool that would prepare carbohy-
drate structures to be attached to the glycosylation sites of
glycoproteins. The present tool renders this possible and

thereby fosters means to bridge simulations closer to systems
explored in experiments.
In our recent studies on epidermal growth factor receptor

(EGFR), we used the tool to elucidate the role of N-linked
glycans in the structural arrangement and interactions of EGFR
with a lipid membrane.27 We glycosylated EGFR with
Man3GlcNAc2, a minimal N-linked glycan core which is
independent of cell-type and is essential for protein folding in
the endoplasmic reticulum.42,43 We found that the presence of
the Man3GlcNAc2 glycan on the EGFR ectodomain signifi-
cantly altered the receptor subdomains alignment on the
membrane surface by lifting the subdomains from the
membrane surface. Glycosylation-induced elevation of EGFR
from the membrane surface therefore exposes the extracellular
subdomains for ligand binding, which is a necessary step in
subsequent EGFR dimerization and signal transduction
processes.
In section 4 (see the Manual), we show how dogly-

cans.py can be used to glycosylate EGFR by adding N-
linked glycans to the receptor. The description demonstrates
the glycosylation in three steps (see Figure 2), where one first
processes the protein data bank (PDB) file, then prepares the
sequence file, and finally runs the script for glycosylation.
The script can also be used to covalently link O-linked

glycans. As a test case we demonstrate (see the SI) the linking

Figure 2. Functionality of the doGlycans tool set described in a schematic manner for glycoproteins, glycolipids, and carbohydrate polymers that are
the main application targets. Part of the diagram shown in pink refers to the use of the CHARMM force field, which required the use of CHARMM
GUI. (bottom-left inset) Cellulose Cel5A complex with cellulose nanofiber (Reprinted with permission from ref 33. Copyright 2015 Springer.).
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of both N- and O-glycans to the human CD59 glycoprotein,
which is a small GPI-anchored glycoprotein, whose function is
to protect host cells by interfering with membrane attack
complex (MAC) structure formation.44

Glycolipids. Glycolipids constitute a large and important
class of lipids. However, they are poorly characterized from the
biophysical point of view. MD simulations are not an exception
here as the number of simulation studies of glycolipids is very
limited.45,46 The three main classes of glycolipids are glycerol-
based galactolipids typical for plants, ceramide-based glycolipids
typical for animals, and lipopolysaccharides (LPSs) typical for
Gram-negative bacteria. Galactolipids are the main component
of photosynthesizing organelles thylakoids, where their content
is as large as 75 mol %. Effectively 50% of all lipids in plant cells
are galactolipids. Ceramide-based glycolipids in animals are
present in small concentrations (of a few mole percent) and are
located predominately in the extracellular leaflet of cell
membranes. Their functions are mostly related to cell signaling
as they act as receptors on the cell surface. For instance,
ganglioside GM1 known to be a receptor for bacterial toxins
such as cholera toxin regulates the function of membrane
proteins such as EGFR.47,48 Gangliosides are known to take
part in cell−cell recognition and to play an important role
particularly in the development of the central nervous system.49

Meanwhile, LPS is a complex molecule with three functional
parts: lipid A, a carbohydrate core, and O antigen. Lipid A is
based on a phosphorylated glucosamine disaccharide with 6−8
hydrocarbon chains attached, while the carbohydrate core is
attached to lipid A and is conserved within the species. O
antigen is the most variable part of the molecule and is
characteristic for a given strain of bacteria, being therefore of
high relevance in medical diagnostics. LPS and its fragments are
recognized by the innate immunological system, thus inducing
a strong immunological response.
To facilitate the preparation of related glycolipid structures

(see Figure 2), in the software package we provide previously
constructed topologies and structure files for the most relevant
glycolipid (GM1) as well as examples of commands and
sequence files needed to prepare them. Predefined lipid bases
are also provided. Instructions to this end are given in section 5
in the doGlycans Manual.
Force Field and Software Limitations. Although the

doGlycans tool set is highly flexible, it has certain limitations.
Perhaps most importantly, only the sugars units defined in
GLYCAM can be used. For instance, in the current version of
GLYCAM, common bacterial sugars present in LPS such as
KDO and amino sugars are still missing.
Moving on, the topologies generated by doGlycans for

glycosylated proteins are currently compatible only with the
OPLS and AMBER force fields, the topologies generated for
glycolipids are compatible with the OPLS force field, and the
topology for carbohydrate polymers is based on the GLYCAM
force field. There is however an extension to AMBER: to
generate glycolipids topology and structure files for simulations
with the AMBER force field, the only input that the user has to
provide to the doGlycans tool set is the ceramide topology.
The carbohydrate polymer topology for simulations with

OPLS can be generated based on a structure file built by
doGlycans, using for example the MKTOP script.50 Structure
files generated by doGlycans for glycoproteins, glycolipids, and
carbohydrate polymers can be used in combination with
CHARMM GUI to generate topologies for simulations with the

CHARMM force field. This is, however, limited to the
components defined in CHARMM GUI.

■ CONCLUSIONS
In spite of the exceptional variety of carbohydrates and their
functions, the progress in atomistic simulation studies of
carbohydrates has been slowed down due to practical
limitations. One of the key issues has been the limited
availability of user-friendly tools to generate the structures and
topology files needed in atomistic MD simulations of
carbohydrate polymers, glycoproteins, and glycolipids. To
overcome these problems, we developed tools for atomistic
MD simulations of carbohydrates and carbohydrate conjugates
(glycoproteins and glycolipids). These tools allow their users to
easily build and simulate carbohydrates with varying complex-
ity.
The structures and simulation files generated by the tools are

compatible with the GROMACS package. The functionalities
of the tools include the preparation of 3D structures of
carbohydrates and the generation of topologies that are
consistent with the GROMACS format. The most important
function of the tools is the preparation of glycoproteins, where
the glycans missing in protein crystal structures are added to
the protein in question.
We extensively tested, validated, and applied the tools in our

previous simulation studies.27 Given this, the doglycans.-
py application (together with prepreader.py) will help
scientists to foster their work in exploring the rich variety of
carbohydrate functions through atomistic MD simulations.
Given that ∼50% of all eukaryotic proteins are glycosylated, the
tool may have a quite considerable impact in strengthening the
progress in the field.
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