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Objective: The study aims to detect the potential relationship between iron deposition

and the function of the glymphatic system in the normal aging brain.

Methods: We recruited 213 healthy participants. We evaluated the function of the

glymphatic system using the index for diffusivity along the perivascular space (ALPS-

index), assessed iron deposition on quantitative susceptibility mapping (QSM), and

analyzed their relationship.

Results: The mean age of participants was 60.1 ± 7.3, and 107 (50.2%) were female.

The mean ALPS-index was 1.4± 0.2. The QSM values of the caudate nucleus, putamen,

globus pallidus, thalamus, red nucleus, substantia nigra, and dentate nucleus were all

related to the ALPS-index (all P < 0.001).

Conclusions: The main finding of the current study is that the regional brain iron

deposition was related to the function of the glymphatic system.

Advances in knowledge: We first evaluated the relationship between deposition of

brain iron and the dysfunction of the glymphatic system.
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INTRODUCTION

Iron is an electron facilitator and is involved in many brain functions, including oxygen transport,
myelin production, electron transfer, and neurotransmitter synthesis (Hare et al., 2013). Both
imaging and postmortem analyses have shown that the concentration of iron in the brain is not
uniform. Previous studies have demonstrated that iron accumulates in the normal aging brain,
which might damage precognitive function (Ramos et al., 2014; Gong et al., 2015). However, the
exact mechanism of iron deposition in the aging brain remains unclear.

Recent work has led to the discovery of the “glymphatic system,” which is a coined phrase
that combines “gl” for glia cell with “lymphatic system” (Plog and Nedergaard, 2018; Rasmussen
et al., 2018). Within the glymphatic system, cerebrospinal fluid enters the brain via peri-arterial
spaces, passes into the interstitium via astrocytic aquaporin-4, and then drives the peri-venous
drainage of interstitial fluid and its solute (Plog and Nedergaard, 2018; Rasmussen et al., 2018).
Evidence suggests that the glymphatic system is an important fluid-clearance system in the brain
(Bakker et al., 2016). Numerous neurological disorders have been found to be closely related to
the dysfunction of the glymphatic system, including Alzheimer’s disease and Parkinson’s disease
(Rasmussen et al., 2018; Zou et al., 2019). Evidence also revealed that iron deposition was one
of the most important underlying mechanisms in Alzheimer’s disease and Parkinson’s disease
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(Liu et al., 2018; Chen et al., 2019). Some scholars also believe that
the glymphatic system may be the major contributory factor to
the deposition and clearance of iron in brain tissue (Wang et al.,
2020), but evidence is still lacking.

Taoka et al. proposed a new method using diffusion tensor
imaging analysis along the perivascular space (ALPS)-index
to evaluate the glymphatic system using diffusion tensor
imaging (DTI) and susceptibility weighted imaging (SWI)
(Taoka et al., 2017). The authors evaluated water diffusivity
along the right-to-left direction of the periventricular brain
tissue, which matched the running direction of the deep
medullary veins. Expected water diffusivity along the right-
to-left direction could partially reflect the function of the
glymphatic system. Using this method, they demonstrated
a significant correlation between water diffusivity along the
right-to-left direction and severity of cognitive dysfunction in
Alzheimer’s disease.

Therefore, in this study, we evaluated the function of
the glymphatic system by ALPS-index based on DTI and
SWI, assessed brain regional iron deposition using quantitative
susceptibility mapping (QSM) based on SWI, and analyzed the
relationship between them, aiming to discover the link between
the glymphatic system and iron deposition in brain tissues.

MATERIALS AND METHODS

Patients
This study was approved by our institutional review board, and
the requirement for patient consent was waived. From December
2017 to September 2019, 213 healthy participants (106 male and
107 female, age range 43–80) underwent multi-mode MRI scans.

FIGURE 1 | The susceptibility maps illustrate the selected regions of interest covering the cerebrum, midbrain, and cerebellum. (A) shows the region of interests

(ROIs) of caudate nucleus (CN), putamen (PUT), globus pallidus (GP), and thalamus (TH). (B) shows the ROIs of red nucleus (RN) and substantia nigra (SN). (C) shows

the ROI of dentate nucleus (DN).

MRI Protocol
MRI was performed on a 3.T scanner (GE Discovery MR750).
The standard MRI protocol included axial unenhanced T1-
weighted imaging (T1WI) (TR, 500ms; TE, 10ms; slice thickness,
5mm; field of view, 240mm; matrix = 320 × 356), DTI (b, 0;
and b, 2,000 s/mm2, TR, 6,600ms, TE, 89ms,MPG, 30 directions,
field of view, 230mm, matrix = 94 × 94, slice thickness, 3mm),
and SWI (TR, 22ms; TE, 11.5ms; field of view, 230mm; slice
thickness, 2mm; matrix, 320× 251; flip angle, 20◦).

Image Analysis
The magnitude image and phase image were generated
from the SWI raw image. Then the magnitude image was
processed to generate a brain mask on a brain extraction
tool contained in the FMRIB Software Library (Jenkinson
et al., 2012). Phase images were divided by 2πTE to obtain a

TABLE 1 | Demographic and basic imaging data.

Variables Mean ± SD

Age, year 60.1 ± 7.3

ALPS-index 1.4 ± 0.2

Caudate nucleus, × 10−3 ppm 79 ± 25

Putamen, × 10−3 ppm 88 ± 28

Globus pallidus, × 10−3 ppm 75 ± 27

Thalamus, × 10−3 ppm 45 ± 22

Red nucleus, × 10−3 ppm 79 ± 27

Substantia nigra, × 10−3 ppm 66 ± 24

Dentate nucleus, × 10−3 ppm 61 ± 32

ALPS-index: the index for diffusivity along the perivascular space.
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raw frequency map, and then the background field frequency
was removed using the modified SHARP method (Schweser
et al., 2011). Then the QSM mapping was derived by the
LSQR method (Li et al., 2011). The regions of interest (ROIs)
were determined by a previous publication (Guan et al.,
2017). ITK-SNAP (www.itksnap.org) was used to perform
manual segmentation and to measure the QSM values for
each nucleus. Data for each region were obtained from the
entire visible slice. ROIs were drawn to cover the caudate
nucleus, putamen, globus pallidus, thalamus, red nucleus,
substantia nigra, and dentate nucleus (Figure 1). An experienced
neuroradiologist responsible for the ROI analysis was blinded
to the information about the subjects, including disease status
and demographics.

The ALPS-index was calculated as previously described by
Taoka et al. (2017). On the color-coded fractional anisotropymap
of the plane at the level of the lateral ventricle, 5-mm-diameter
circle ROIs in the area of the projection fibers and in the area of
the association fibers in the left hemisphere were performed by an
experienced radiologist, who was blinded to the clinical data and
other images. Then ALPS-index was calculated as ALPS index =
mean (Dxproj+ Dxassoc)/mean (Dyproj+ Dzassoc).

We auto-segmented white matter hyperintensities using
the LST toolbox and measured the volumes of white matter
hyperintensities (Wirth et al., 2019). Central and cortical brain
atrophy were categorized into three scores (0 = none, 1
= modest, and 2 = severe) as shown in a previous study
(Sato et al., 2016).

TABLE 2 | The relationship between the index for diffusivity along the perivascular

space (ALPS-index) and regional brain iron depositions.

ALPS-index (r, P)

Caudate nucleus, × 10−3 ppm −0.289, <0.001

Putamen, × 10−3 ppm −0.337, <0.001

Globus pallidus, × 10−3 ppm −0.280, <0.001

Thalamus, × 10−3 ppm −0.284, <0.001

Red nucleus, × 10−3 ppm −0.307, <0.001

Substantia nigra, × 10−3 ppm −0.267, <0.001

Dentate nucleus, × 10−3 ppm −0.333, <0.001

Statistical Analysis
Statistical analyses were performed using the SPSS software
version 22. All metric and normally distributed variables were
reported as mean ± standard deviation. Categorical variables
were presented as frequency (percentage). Correlate associations
between variables were assessed by Spearman correlation
analysis. Differences were considered statistically significant at
P < 0.05. Since the values of seven nucleus were measured,
the statistically significant P-value for correlate associations of
nucleus andALPS-index should be<0.007, according to the basic
tests of Bonferroni.

RESULTS

In this study, 213 patients were included. Table 1 shows the
demographic data. Themean age was 60.1± 7.3, and 107 (50.2%)
were female. The mean ALPS-index was 1.4 ± 0.2. The mean
volumes of white matter hyperintensities were 9.7 ± 6.8. The
median scores of brain atrophy on the cortical and center were
1 (1, 2) and 1 (1, 2), respectively. Table 2 shows the relationship
between the ALPS-index and regional brain iron depositions. The
QSM values of the caudate nucleus, putamen, globus pallidus,
thalamus, red nucleus, substantia nigra, and dentate nucleus were
all related to the ALPS-index (all P < 0.05). Moreover, age was
related to both the ALPS-index (r = −0.263, P < 0.001) and
regional QSM values (caudate nucleus: r = 0.218, P = 0.001;
putamen: r = 0.373, P < 0.001; globus pallidus: r = 0.180, P =

0.009; thalamus: r = 0.164, P = 0.016; red nucleus: r = 0.182, P
= 0.008; substantia nigra: r = 0.199, P = 0.004; dentate nucleus:
r = 0.213, P = 0.002). Table 3 shows the relationship between
ALPS-index and regional brain iron depositions after adjusting
for age, volumes of white matter hyperintensities, and scores of
brain atrophy. Figure 2 shows the correlation between the index
for diffusivity along the perivascular space (ALPS-index) and
regional brain iron depositions.

DISCUSSION

The main finding of the current study is that regional iron
deposition in brain tissues was related to the function of the
glymphatic system in normal aging persons. Previously, the

TABLE 3 | Multiple factors analysis of the index for diffusivity along the perivascular space (ALPS-index).

Age (β, P) (adjusting

for ALPS-index)

ALPS-index (β, P)

(adjusting for age)

ALPS-index (β, P) (adjusting

for age, volumes of white

matter hyperintensities and

scores of brain atrophy)

Caudate nucleus, × 10−3 ppm −0.175, 0.006 −0.374, <0.001 −0.380, <0.001

Putamen, × 10−3 ppm −0.146, 0.028 −0.354, <0.001 −0.342, <0.001

Globus pallidus, × 10−3 ppm −0.198, 0.003 −0.301, <0.001 −0.306, <0.001

Thalamus, × 10−3 ppm −0.200, 0.002 −0.339, <0.001 −0.355, <0.001

Red nucleus, × 10−3 ppm −0.185, 0.004 −0.359, <0.001 −0.372, <0.001

Substantia nigra, × 10−3 ppm −0.213, 0.001 −0.254, <0.001 −0.260, <0.001

Dentate nucleus, × 10−3 ppm −0.200, 0.002 −0.343, <0.001 −0.361, <0.001
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FIGURE 2 | The correlation between the index for diffusivity along the perivascular space (ALPS-index) and regional brain iron depositions.

glymphatic system has been speculated to be responsible for
the clearance and homeostasis of waste in the brain (Bakker
et al., 2016; Plog and Nedergaard, 2018; Rasmussen et al.,
2018), but it remains unknown whether iron metabolism was

related to the glymphatic system. Most recently, in animal
models of intraventricular hemorrhage, the ability of iron
drainage through deep cervical lymph nodes (DCLNs) was
confirmed by Perl’s Prussian blue reaction. They found that

Frontiers in Aging Neuroscience | www.frontiersin.org 4 December 2020 | Volume 12 | Article 559603

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Zhou et al. Glymphatic System and Iron Deposition

the DCLNs-excised group showed higher ferritin levels at areas
surrounding ventricles than a DCLNs-preserved group 3 days
after intraventricular hemorrhage (Wang et al., 2020). The result
indicated the possible relationship between the function of the
glymphatic system and iron drainage, since the DCLNs were
recognized as downstream of the glymphatic system (Eide et al.,
2018; Zhou et al., 2020). Our results support that in a healthy
aging brain, the glymphatic system might also be involved in
the clearance of iron, suggesting that iron metabolism shared
the same pathway as other waste metabolisms. Moreover, a
study has demonstrated that injury of the microvasculature
and capillary-level microhemorrhages coincided with amyloid
beta (Aβ) deposits in senile plaques (Hansra et al., 2019). Iron
deposition plays an important role in cerebral small vessel
diseases (Del C Valdés Hernández et al., 2015). Therefore, we
inferred that dysfunction of the glymphatic system might lead
to the damage of microvasculature via deposition of Aβ, then
leading to iron deposition.

Moreover, iron deposition might also lead to the dysfunction
of the glymphatic system. Iron metabolism mainly depends
on iron regulatory proteins including ferritin, transferrin and
transferrin receptor, hepcidin, ferroportin, and lactoferrin.
A previous study had demonstrated that abnormal iron
metabolism could generate hydroxyl radicals via the Fenton
reaction, which could further trigger oxidative stress reactions,
damage cell lipids, protein, and DNA structure and function,
lead to cell death, and ultimately influence the process of Aβ

misfolding and plaque aggregation (Wang et al., 2019). The
aggregation and deposition of Aβ in perivascular space may
affect the bulk flow in perivascular space, directly leading
to the dysfunction of the glymphatic system (Mestre et al.,
2017). In addition, both iron deposition and dysfunction
of the glymphatic system have been implicated in the
pathogenesis of Alzheimer’s Disease, Parkinson’s Disease,
and secondary injury following intracerebral hemorrhage,
which supports the relationship between iron deposition and
glymphatic function (Rasmussen et al., 2018; Farr and Xiong,
2020).

We also found a negative relationship between the function
of the glymphatic system and age, which is in accordance with
previous studies (Kress et al., 2014; Del C Valdés Hernández et al.,
2015). Moreover, when both age and ALPS-index were set as
independent variables, they were both independently related with
regional QSM values. It might suggest that, although there are
similar tends in increasing of iron deposition and decreasing of

glymphatic function with age, both of them have an independent
effect on glymphatic dysfunction. Further studies are needed to
clarify the mechanism.

An advantage of this study is that it is the first evaluation
of the relationship between chronic deposition of iron and
dysfunction of the glymphatic system. Our study also has several
limitations. First, the subjects were restricted in our single
center. Further multiple center studies with larger samples are
needed. Second, the ROIs were placed manually, which may be
a subjective factor of our measurement, although the radiologist
is experienced and was blinded to clinical data and other
images. Third, the method of the ALPS-index is theoretically
deductive. Although it has demonstrated a relation with the
severity of Alzheimer’s disease and idiopathic normal pressure
hydrocephalus, histological verification has not been performed.

CONCLUSION

The main finding of the current study is that regional brain iron
deposition was related to the function of the glymphatic system.
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