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Abstract
1. Shrub encroachment has far-reaching ecological and economic consequences in 

many ecosystems worldwide. Yet, compositional changes associated with shrub 
encroachment are often overlooked despite having important effects on ecosys-
tem functioning.

2. We document the compositional change and potential drivers for a northern 
Namibian Combretum woodland transitioning into a Terminalia shrubland. We use 
a multiproxy record (pollen, sedimentary ancient DNA, biomarkers, compound-
specific carbon (δ13C) and deuterium (δD) isotopes, bulk carbon isotopes (δ13Corg), 
grain size, geochemical properties) from Lake Otjikoto at high taxonomical and 
temporal resolution.

3. We provide evidence that state changes in semiarid environments may occur on a 
scale of one century and that transitions between stable states can span around 
80 years and are characterized by a unique vegetation composition. We demon-
strate that the current grass/woody ratio is exceptional for the last 170 years, as 
supported by n-alkane distributions and the δ13C and δ13Corg records. Comparing 
vegetation records to environmental proxy data and census data, we infer a com-
plex network of global and local drivers of vegetation change. While our δD record 
suggests physiological adaptations of woody species to higher atmospheric pCO2 
concentration and drought, our vegetation records reflect the impact of broad-
scale logging for the mining industry, and the macrocharcoal record suggests a 
decrease in fire activity associated with the intensification of farming. Impact of 
selective grazing is reflected by changes in abundance and taxonomical composi-
tion of grasses and by an increase of nonpalatable and trampling-resistant taxa. 
In addition, grain-size and spore records suggest changes in the erodibility of soils 
because of reduced grass cover.
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1  | INTRODUC TION

Shrub encroachment is affecting savannas worldwide (Saha, 
Scanlon, & D’Odorico, 2015; Stevens, Lehmann, Murphy, & Durigan, 
2017; Tian, Brandt, Liu, Rasmussen, & Fensholt, 2017). This process 
is assumed to indicate a savanna state change from open wood-
lands and grasslands, characterized by dominance of C4 grasses, to 
a bush-thickened savanna (Joubert, Rothauge, & Smit, 2008; Meyer, 
Wiegand, Ward, & Moustakas, 2007). Southern Africa is a hotspot 
of studies reporting shrub encroachment (O’Connor, Puttick, & 
Hoffman, 2014; Roques, O’Connor, & Watkinson, 2001; Wigley, 
Bond, & Hoffman, 2009). This is not only because shrub encroach-
ment is a widespread phenomenon, but also because the area is tra-
ditionally used as grazing grounds and encroachment reduces the 
land-carrying capacity, threatening local economies (De Klerk, 2004; 
Moyo, O’Keefe, & Sill, 1993).

Shrub encroachment has been described as an alternative 
stable state occurring several times during the last two millennia 
in African savannas (Gil-Romera, Lamb, Turton, Sevilla-Callejo, & 
Umer, 2010). There is also some indication that African savannas 
are characterized by grassland/woodland phases occurring with 
a periodicity of 250–600 years (Gillson, 2004; Gil-Romera et al., 
2010). Such woodland phases were not always led by the spread 
of encroaching species (Gil-Romera et al., 2010; Scott, Cooremans, 
de Wet, & Vogel, 1991), which suggests that a mere increase in 
woody cover, as reported by several studies since the 20th cen-
tury (Hoffman, Rohde, & Gillson, 2019; van Rooyen, le Roux, van 
der Merwe, van Rooyen, & Geldenhuys, 2018; Wiegand, Ward, 
& Saltz, 2005), does not necessarily mean shrub encroachment. 
Accordingly, identification of encroached states should be related 
to the increasing cover of encroacher species and the suppres-
sion of perennial grasses (Gil-Romera et al., 2010). However, the 
low taxonomic resolution of pollen records, particularly regarding 
Poaceae, constrains the identification of these phases on a long 
timescale.

It is assumed that resilience of savanna ecosystems is scale de-
pendent. For example, savanna seems to be resilient to changes at a 
centennial timescale, as the vegetation fluctuates between two sta-
ble states of grassland and woodland (Gillson, 2004; Gil-Romera et 
al., 2010). Conversely, savanna seems to be less resilient at a decadal 

scale, as encroachment may occur within a century and without re-
gression to a grassy state even at a patch scale (Rohde & Hoffman, 
2012). Similarly, African landscapes are predicted to shift to wood-
land states, with abrupt transitions at the local scale, but smoother 
at the continental scale (Higgins & Scheiter, 2012). Transitions have 
been described as the unstable equilibrium between the “basins 
of attraction” of stable states (Holling, 1973; Scheffer, Carpenter, 
Foley, Folke, & Walker, 2001), but surprisingly little is known about 
the duration of such transitions (Higgins & Scheiter, 2012; Joubert 
et al., 2008) or the compositional changes they entail (Joubert et al., 
2008; Liao, Clark, & DeGloria, 2018).

Different opinions exist as to the causes of shrub encroachment 
in savannas (Devine, McDonald, Quaife, & Maclean, 2017; Venter, 
Cramer, & Hawkins, 2018; D Ward, 2005). Among others, changes 
in precipitation, atmospheric pCO2, vegetation fires, and land use 
are considered to be triggers and/or drivers (Aleman, Blarquez, & 
Staver, 2016; Berry & Kulmatiski, 2017; Buitenwerf, Bond, Stevens, 
& Trollope, 2012; Case & Staver, 2017), which likely interplay at dif-
ferent timescales. For example, while climate shifts are considered 
the main driver of changes in the grass/woody vegetation ratio on a 
long timescale (Gil-Romera et al., 2010; Scott et al., 1991), changes in 
grazing pressure and fire, besides stochastic variations in rainfall, are 
thought to drive decadal-scale variability (Gillson, 2004; van Rooyen 
et al., 2018). Interestingly, different studies have shown that precip-
itation, fire, and herbivory may have different effects on encroacher 
species, and thus a different effect on savanna stability (Joubert et 
al., 2008; Joubert, Smit, & Hoffman, 2012, 2013). Hence, disentan-
gling triggers that induce changes of state, as well as understanding 
stabilizing feedbacks, requires long time series with adequate taxo-
nomic resolution.

In addition, gradual change in environmental conditions is as-
sumed to have little effect on the feedbacks that support a stable 
state but still alters its resilience (Scheffer et al., 2001). For example, 
management legacies are assumed to affect the properties of tem-
perate woodland responses to current environmental change up to 
200 years after disturbance (Perring et al., 2018). Similarly, shrub en-
croachment of Namibian savannas has been related to management 
strategies during colonial administration (Moyo et al., 1993; Rohde 
& Hoffman, 2012; Verlinden & Kruger, 2007). However, it remains 
unclear to what extent management may have affected species com-
position and thus savanna stability in Namibia.

4. Synthesis. We conclude that transitions to an encroached savanna state are sup-
ported by gradual environmental changes induced by management strategies, 
which affected the resilience of savanna ecosystems. In addition, feedback mecha-
nisms that reflect the interplay between management legacies and climate change 
maintain the encroached state.
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Lake sediments represent unique environmental archives. 
Traditionally, they are mostly used to resolve millennial-scale en-
vironmental changes in savannas (Metwally, Scott, Neumann, 
Bamford, & Oberhänsli, 2014; Quick et al., 2018). Vegetation recon-
struction using pollen deposited in lakes has been demonstrated to 
be a powerful method to track structural and compositional changes 
in savannas despite the low pollen taxonomic resolution (Miller & 
Gosling, 2014; Neumann, Scott, Bousman, & van As, 2010). Recently, 
sedimentary ancient DNA (sedaDNA) using the g-h universal prim-
ers (Taberlet et al., 2007) was established as a further proxy. This 
technique enables the reconstruction of tropical plant diversity at 
high taxonomic resolution (Boessenkool et al., 2014; Bremond et al., 
2017). Further, fire dynamics and its impact on savanna vegetation 
can be reconstructed from sedimentary charcoal (Colombaroli, van 
der Plas, Rucina, & Verschuren, 2018; Gillson & Ekblom, 2009), while 
carbon (δ13C) and deuterium (δD) isotope compositions of plant-wax 
n-alkanes can be used to reconstruct vegetation structure and hy-
drological variability (Garcin et al., 2018; Miller et al., 2019; Walther 
& Neumann, 2011). In addition, grain-size analyses of lake sediments 
are useful to reconstruct sediment mobility in savanna landscapes 
and to identify soil erosion (Walther & Neumann, 2011). However, 
high-resolution multiproxy approaches that include the use of se-
daDNA, and that track vegetation and environmental changes in 
semiarid savannas at a decadal scale, are still missing.

Lakes are rare in southern Africa. Lake Otjikoto, a sinkhole lake 
located in the Karstveld area in northern Namibia (Figure 1), rep-
resents a unique environmental archive (Scott et al., 1991). Applying 
a multiproxy approach to lake sediments from Otjikoto including 
the analyses of pollen, sedaDNA, biomarkers, geochemical proxies, 

grain size, and macrocharcoal analyses, this study provides the first 
decadal-scale record of the turnover of open savanna woodlands 
to shrublands from northern Namibia in the period between about 
1,850 and the present day. This enables the discussion of savanna 
state changes and, in combination with climate and land-use data, 
the investigation of potential triggers and drivers and related feed-
backs of the vegetation.

2  | MATERIAL S AND METHODS

2.1 | Site

The lake basin is formed from a groundwater cave, which developed 
from soluble dolomite of the Tsumeb subgroup of the Damara sequence 
(Kamona & Günzel, 2007). Water depth is ~71 m; diameter is ~102 m. 
Water pH measurements vary between 7.0 and 8.7 (Marchant, 1980). 
The potential natural vegetation in the vicinity of the lake comprises 
Terminalia prunioides-Combretum apiculatum woodlands (Mendelsohn, 
El Obeid, & Roberts, 2000). Accordingly, a low grass layer and domi-
nance of trees characterize this vegetation type, which is common 
on shallow sandy–loamy soils. Terminalia prunioides, C. apiculatum, C. 
imberbe, Commiphora glandulosa, Vachellia reficiens, V. hebeclada, and 
Senegalia mellifera are the most common taxa. The shrub layer com-
prises Grewia sp., Gymnosporia senegalensis, Dichrostachys cinerea, and 
Croton gratissimus. However, a dense shrubland characterizes the cur-
rent local vegetation, which is mainly composed of T. prunioides, S. mel-
lifera, D. cinerea, Ziziphus mucronata, and Grewia sp. Shore vegetation is 
sparse, with Sclerocarya birrea and Ficus growing on the steep rock walls 

F I G U R E  1   Map of the study site in Namibia

19.193°S

19.196°S 29.3°S

22.8°S

16.4°S

19.4°S

19.2°S

19°S

17.3°E 17.5°E 17.8°E

11.5°E 18.5°E 25.5°E17.548°E 17.55°E 17.551°E

19.195°S

20 km0

Image ©2019 CNES/Airbus

N

15OJ10

Lake Otjikoto

Tsumeb

100 m0

15OJ06



     |  965TABARES ET Al.

surrounding the lake. Crop fields are close to the lake. Mean annual pre-
cipitation is 456 mm, falling mainly in the summer months (November–
March); mean monthly temperature in summer is 27°C and in winter 
15°C (Tsumeb climate station; Harris, Jones, Osborn, & Lister, 2014). 
Cattle farming is the dominant land use.

2.2 | Materials

Two cores—15OJ10 (length 31 cm, Ø = 6 cm) and 15OJ06 (length 
30 cm, Ø = 6 cm)—were collected in March 2015 using UWITEC cor-
ing equipment at a water depth of 50 m (19.19467°S, 17.54980°E). 
The core extraction was carried out with a pulley and without motor 
support. Divers from Dantica diving club Windhoek assisted with 
the core extraction from the lake bed. Core 15OJ10 was sampled at 
a 0.5 cm resolution in the field. We obtained 61 samples for pollen 
analysis; 30 subsamples were used for sedimentological, geochemi-
cal, n-alkane, and isotope analyses. Core 15OJ06 was sampled at 
a 1.5 cm resolution at the Alfred Wegener Institute, Helmholtz 
Centre for Polar and Marine Research. We obtained 21 samples 
for sedaDNA and charcoal analysis. All samples were stored at 4°C.

2.3 | Dating

Sixteen subsamples from core 15OJ10 and 21 from core 15OJ06 
were analyzed for 210Pb, 226Ra, and 137Cs by direct gamma assay at 
the Liverpool University Environmental Radioactivity Laboratory. 
Measures were obtained using an Ortec HPGe-GWL well-type 
coaxial low background intrinsic germanium detector (Appleby et 
al., 1986). 210Pb dates were calculated using the CRS dating model 
(Appleby & Oldfield, 1978). Corrections were made using the 137Cs 
date 1964 as a reference point (Appleby, 2001).

2.4 | Pollen and palynomorph analysis

Pollen extraction was performed using standard procedures (10% 
HCl, KOH, 40% HF—including 4 hr boiling—and acetolysis) (Faegri & 
Iversen, 1989; Moore, Webb, & Collison, 1991). We added one tablet 
of Lycopodium spores (batch 1,031) to each sample to calculate pol-
len concentrations (Stockmarr, 1971).

At least 400 pollen grains were counted per sample using a mi-
croscope of x400 magnification. Critical identification was made 
by x1,000 magnification based on standard literature (Bonnefille 
& Riollet, 1980; Gosling, Miller, & Livingstone, 2013; Leźine, 2005; 
Schüler & Hemp, 2016; Scott, 1982), taxonomical studies (Banks & 
Lewis, 2018; Poston & Nowicke, 1993), and online pollen catalogues 
(Bremond, 2011). We differentiate the Acacia type into Vachellia 
and Senegalia by means of columella identification (Kyalangalilwa, 
Boatwright, Daru, Maurin, & van der Bank, 2013). Spores’ identifi-
cation follows Gelorini, Verbeken, Geel, Cocquyt, and Verschuren 
(2011). Pollen percentages were calculated based on the total 

terrestrial pollen sum per sample. Shore taxa (Ficus, Cyperaceae) and 
aquatic taxa were not included in the pollen sum.

2.5 | Sedimentary ancient DNA analysis

The sampling of core 15OJ06 for sedaDNA was carried out at +10°C in 
a climate chamber that was previously cleaned (DNA-ExitusPlusTM—
AppliChem, Germany; deionized water and ethanol 100%) to pre-
vent contamination. Extraction and polymerase chain reaction (PCR) 
followed the same procedures as described in Zimmermann et al. 
(2017). For each sample (n = 21) and extraction negative control 
(n = 3), we performed six PCR replicates to ensure the accurate de-
tection of taxa (Ficetola et al., 2015). For each PCR, we used two 
negative controls and different primer tag combinations leading to 
a total of 126 PCR products and 30 negative controls. All PCR prod-
ucts were purified using the MinElute PCR Purification Kit (Qiagen, 
Hilden, Germany) according to the manufacturer's instructions. DNA 
concentrations were measured with the dsDNA BR Assay Kit (Life 
Technologies, USA) using 1 µl of the purified amplifications with the 
Qubit 2.0 fluorometer (Invitrogen, Carlsbad, CA, USA). Purified sam-
ples were pooled in equal concentrations and sent to the Fasteris 
SA sequencing service (Geneva, Switzerland) for library prepara-
tion following the MetaFast protocol. Sequencing was realized on 
an Illumina HiSeq 2,500 platform (2 × 125 bp) (Illumina Inc., San 
Diego, CA, USA) using 1/10 of a flow cell lane. Obtained data were 
processed and assigned their taxonomic name using the software 
package OBITools (Boyer et al., 2016) following the descriptions in 
Zimmermann et al. (2017). Sequences selected for further analyses 
needed at least 95% best identity with respect to an entry in the 
reference database and at least 10 sequence counts in at least two 
samples in the dataset. Taxa percentages were calculated based on 
the sum of sequence counts per sample. After sequencing, two rep-
licate batches were excluded from the analysis because they lacked 
sequencing depth, probably due to errors in the allocation of tags.

2.6 | Biomarker analysis

For the analysis of n-alkanes, 30 freeze-dried sediment samples were 
extracted using a dichloromethane containing 1% methanol. Further 
procedures used for the analysis of n-alkanes follow those described 
by Vogts, Moossen, Rommerskirchen, and Rullkötter (2009) and 
Badewien, Vogts, Dupont, and Rullkötter (2015).

The carbon (δ13C) and deuterium (δD) isotopic compositions of 
saturated hydrocarbons were measured using gas chromatography 
isotope ratio mass spectrometry consisting of a GC-Unit (7890N; 
Agilent Technology, USA) connected to GC-Isolink and coupled to a 
Delta V Plus mass spectrometer (Thermo Fisher Scientific, Germany). 
We used a combustion interface for δ13C, and a pyrolysis furnace for 
δD (Supplement 1.A). Isotope measurements were controlled based on 
n-alkane standards with known isotopic composition (Campro Scientific, 
Germany, and Arndt Schimmelmann, Indiana University, USA).
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Isotope measurements of bulk organic carbon (δ13Corg) were 
made on decarbonized samples using an elemental analyser (1,108 
from Carlo Erba) coupled to a MAT 252 isotope ratio mass spectrom-
eter from Thermo Fisher Scientific (Supplement 1B). All subsamples 
were analyzed in duplicate.

2.7 | Charcoal analysis

Charcoal was extracted from 1 cm3 subsamples following Mooney and 
Tinner (2011). Samples were bleached (24 hr) and washed through a 
sieve (125 µm) to separate macrocharcoal particles. All charcoal parti-
cles (>125 µm) were counted for each sample using a binocular micro-
scope at ×15 magnification and a Bogorov counting chamber.

2.8 | Geochemical analysis

Total carbon (TC) and total nitrogen (TN) contents were analyzed for 
30 freeze-dried subsamples (core 15OJ10) using an Elementar vario 
EL III (CNS) analyser. An Elementar vario MAX C was used to quan-
tify total organic carbon (TOC). Total inorganic carbon (TIC) was cal-
culated by deducting TOC from TC values.

2.9 | Grain-size and end-member modeling analysis 
(EMMA)

Samples were pretreated with CH3COOH (10% for 24 hr) to remove 
carbonates, and with H2O2 (initial 0.3%, with addition of 10 ml (35%) 
every second day for up to six weeks) to remove the organic sedi-
ment fraction. Grain-size analysis was performed using a Coulter LS 
200 Laser Diffraction Particle 30 Analyser.

Robust grain-size end-members (EMs) have been modeled from 
all grain-size distributions using the EMMA algorithm of Dietze et al. 
(2012). We used the compact protocol in the R package EMMAgeo 
(Dietze & Dietze, in press). Definition of the robust EMs considered 
the main mode classes that were modeled most frequently (see ker-
nel density estimate in Figure S2a), when the number of end-mem-
bers and weight transformation limit was varied between a minimum 
and maximum value (after Dietze et al. (2012) and Dietze & Dietze, 
in press). EM loadings (Figure S2b) represent scaled grain-size class-
wise EM contributions, and scores (Figure S2c) represent the contri-
bution of EMs in the samples.

3  | RESULTS

3.1 | Chronology

The core 15OJ10 covers the period from 1886 to 2015. The results 
suggest a relatively steady accumulation since the late 1980s with 
a mean sedimentation rate of 0.34 cm/year. Sedimentation rates in 

the 1930s were around 0.21 cm/year, increasing to around 0.31 cm/
year by the early 1980s (Figure S3a). Low 210Pb concentrations in the 
pre-1930 samples made accurate dating problematic. However, 210Pb 
dates suggest even lower sedimentation rates in the late 19th and 
early 20th century with a mean value of 0.15 cm/year. We applied 
linear interpolation to obtain the chronology of segments between 
dated samples.

The core 15OJ06 covers the period from 1849 to 2015. Since 
the 210Pb concentrations reach the limit of detection at a depth of 
23.25 cm (dated to 1907), we calculated ages for samples below 
23 cm by linear extrapolation. The sedimentation rate since the 
early 1980s has a mean accumulation value of 0.30 cm/year (Figure 
S3b). The results show lower sedimentation rates increasing from 
0.14 cm/year during the first few decades of the 20th century to 
0.20 cm/year during the period from 1940 to the 1970s.

3.2 | Pollen and nonpollen palynomorph records

We identified 116 pollen and spore taxa (Table S4). The most dominant 
taxa are Poaceae, Anacardiaceae, and Combretaceae. The pollen dia-
gram captures a signal of grasses decreasing up the core, with values 
dropping below 60% in the 1970s and from the turn of this century, 
while the pollen signal of woody vegetation increases (Figure 2).

Based on a visual inspection of all proxies of both cores and 
guided by the results of the cluster analysis of the pollen record, 
we defined three zones. The taxa association in zone 1 (1886–
1910) comprises Combretaceae, Dichrostachys, Croton, Grewia, 
Euclea, Senegalia, and Petalidium. Bignoniaceae, Spirostachys, and 
Colophospermum mopane yield high percentages at the border to 
zone 2. The pollen signals of Dichrostachys and Ziziphus are high 
in zone 2 (1914–1997), while Grewia is lower compared with zone 
1. Furthermore, zone 2 is characterized by high abundance of 
Myrtaceae, as well of Alternanthera, Tribulus, Pentzia, Monechma, 
Opilia, Montinia, Gymnosporia, and Euphorbiaceae taxa. Zone 3 
(1998–2015) is characterized by high values in Vachellia, Senegalia, 
Grewia, and Ziziphus. This goes together with an increased signal 
of Alternanthera and low values for Euclea. The signal of Prosopis 
increases toward the top.

NPP results show a gradual decrease of Gelasinospora and Sordaria 
toward the top of the core. Glomus reaches highest values in zone 3.

3.3 | Sedimentary ancient DNA records

We obtained 4,211,287 sequence counts (sqc) from Illumina sequenc-
ing for 21 samples with four replicates. After bioinformatic filtering, 
1,840,462 sqc were assigned to 177 taxa (Table S5). Of these, 37 could 
be identified to family level (905,299 sqc), 58 to genus level (323,335 
sqc), and 64 to species level (239,924 sqc). Most dominant taxa are 
Moraceae, Combretum, and Anacardiaceae. Overall, the sedaDNA re-
cord reflects a turnover from taxa characteristic of open savanna 
woodlands in zone 1 to shrubland taxa in zone 3 (Figure 3).
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Zone 1 (1849–1907) is characterized by dominance of 
Dichrostachys, Combretum, Ebenaceae, and Catophractes alexan-
dri and the occurrence of Gossypium. A mixed grass layer consist-
ing of perennial grasses such as Fingerhutia africana, Schmidtia, and 
Cenchrus and annual grasses such as Brachiaria deflexa, Aristida, 
and Tragus characterizes zones 1 and 2, as well as the occurrence 
of Karroid shrubs. Zone 2 (1919–1991) is distinguished by a high 
abundance of taxa associated with pastures such as Antigonon lep-
topus, Mentzelia, Tribuloideae, Alternanthera pungens, Geigeria, and 
Acanthospermum, as well as of shrub taxa from the Euphorbiaceae, 
Celastraceae, and Opiliaceae families. In zone 2, the signals of 
Myrtoideae are high. Zone 3 (1996–2015) is characterized by high 
signals of Terminalia, Vachellia, and Senegalia, as well as Grewia, 
Rhamnaceae, and Medicago. The perennial grasses Hyperthelia dis-
soluta, Panicum, and Heteropogon contortus characterize zone 3. 
Furthermore, the relative abundance of Moraceae increases in the 
upper part of the core.

3.4 | Biogeochemical and macrocharcoal analysis

Concentration of organic and inorganic carbon (TOC, TIC) is high-
est in zones 1 (5.1%) and 3 (4.9%), respectively (Figure 4). The av-
erage chain length (ACL; Poynter, 1989) values for n-alkanes with 
an odd number of carbon atoms (C27-C33) range from 31.1 to 30.3 
and increase with depth. The carbon preference indices (CPI25-35; 
Marzi, Torkelson, & Olson, 1993) range from 13.6 to 3.4 with an av-
erage of 8.4. The C/N ratios range from 18.05 to 13.4 with an aver-
age of 16.04. The carbon isotopic compositions of organic matter 
(δ13Corg) range from −19.9 to −27.3 with an average of −24.0‰ and 
with the more 13C-depleted values in zone 3. Similarly, the weighted 
mean δ13C values of n-alkanes with an odd number of carbon atoms 
(δ13CWMA27-33) range from −24.6‰ to −32.3‰ and have the more 
13C-depleted values in zone 3. We also find the more depleted 
weighted mean δD values (δDWMA27-33; range: −135.7‰ to −159.6‰) 

in this zone. In addition, macrocharcoal flux is highest in zones 1 and 
2 and decreases upwards in the core (Figure 3).

3.5 | Grain-size end-members

We obtained five rEM (robust grain-size end-members) after calcu-
lating similarly–likely EM models (Figure S2). The mean rEMs explain 
77% of the mean total variance of the original grain-size dataset. The 
rEM1 (23% explained variance) has a primary mode between 0.2 and 
14.5 µm with a maximum at 1.8 µm, covering the clay and very fine 
silt fraction. The rEM2 (13% explained variance) has a broad primary 
mode between 3 and 66 µm covering the whole silt fraction, with a 
maximum at 18.7µm, which corresponds to medium silt. The rEM3 
(14% explained variance) has a mean mode between 16 and 144µm, 
and a maximum at 51µm (medium silt to fine sand fraction). The rEM4 
(23% explained variance) has a very robust mode in the very fine to 
fine sand between 51 and 310 µm, with a maximum at 127 µm. The 
coarsest component rEM5 (26% explained variance) has a robust 
mode in the fine to medium sand between 86 and 454 µm, and a 
maximum at 211 µm.

4  | DISCUSSION

4.1 | Source of the lake sediments

We consider terrestrial plants to be a major source of organic mat-
ter in the sediments of Lake Otjikoto due to their high CPI25-35 and 
C/N values (Meyers, 1997). Although higher TOC values (>4%) below 
25 cm depth, and the oscillating variation of δ13Corg content below 
18 cm, suggest a bacterial and algal contribution to the sediments 
(cf. Kristen et al.[, 2007]), corresponding C/N values (>16) indicate a 
higher proportion of allochthonous input relative to the autochtho-
nous component of the organic matter (Meyers, 1997).

F I G U R E  2   Percentage abundance diagram of selected pollen and spore taxa. Arrangement of taxa follows their dominance in the pollen 
zones (separated by dotted lines). Taxa are displayed in subgroups: trees and shrubs (brown), Karroid shrubs (gray), taxa associated with 
pastures (green), local shore taxa (blue), and spores (purple). Pollen influx, as well as mean abundance percentages of woody, grass, and other 
pollen taxa, is displayed. Truncated values are indicated on the bars
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4.2 | Savanna state change: from open woodland to 
dense shrubland

4.2.1 | Multidecadal shift in the grass/woody ratio

Our multiproxy approach indicates a shift in the dominance among 
grasses and woody vegetation. In particular, our results show an 
increase in woody vegetation since about 1915 in the Tsumeb re-
gion with a particularly strong increase after about 1998. These re-
sults validate vegetation models that suggest an increase in woody 
cover at low rates since 1,850 in Africa, and an accelerated rate 
between 1990 and 2010 (Higgins & Scheiter, 2012). Our findings 

also support results from remote-sensing analyses of sub-Saharan 
savannas, which have observed an increase in woody vegetation 
cover over the last three decades (Mitchard & Flintrop, 2013; 
Venter et al., 2018).

The ratio of Poaceae/woody pollen (Figure 2) indicates that the 
current grass/woody ratio is exceptional for the last 170 years and 
is similar to the ratio found by Scott et al. (1991) in a previous paly-
nological study from Lake Otjikoto. Scott et al. (1991) identified two 
earlier woodland phases with woody pollen abundances up to 33% 
and Poaceae pollen below 60% (Figure S6). In our study, we estimate 
grass pollen abundances to decrease to below 60% in the 1970s and 
in the 21st century, while woody pollen percentages increase up 

F I G U R E  3   Diagram of selected sedaDNA taxa. Arrangement of taxa follows their dominance in the sedaDNA zones (separated by 
dotted lines). Taxa are displayed in subgroups: trees and shrubs (brown), Karroid shrubs (gray), taxa associated with pastures (green), grasses 
(yellow), and local shore taxa (blue). Macrocharcoal influx is also displayed
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F I G U R E  4   (A) Biogeochemical and sedimentological proxies from core 15OJ10: Carbon preference indices (CPI25-35); average chain 
length of n-alkanes with an odd number of carbon atoms (ACL27-33); weighted mean of carbon isotopic compositions of n-alkanes 
(δ13CWMA27-33); carbon isotopic composition of organic matter (δ13Corg); weighted mean of deuterium isotopic compositions of n-alkanes 
(δDWMA27-33); total organic carbon (TOC) content; total inorganic carbon (TIC) content; total organic carbon to nitrogen ratio (C/N); and 
scores from robust end-member loadings (rEM). Dotted lines indicate pollen zones. (B) Historical records: Mean annual precipitation (3-year 
running mean—MAP) was calculated from climate data (meteorological station Tsumeb), vertical black dotted line corresponds to the long-
term MAP, and red dotted lines correspond to the standard deviation (SD); livestock numbers Namibia (data 1915–1959, 1961, 2015; Lange 
et al., 1998; FAO, 2018b); CO2 emissions Namibia (FAO, 2018a); documented events (D: drought; F: flood; FMD: foot-and-mouth disease; 
CBPP: contagious bovine pleuropneumonia (Directorate of Planning, 2011, 2005; Nicholson & Selato, 2000; Schneider, 2012; Sweet, 1998))

(a) (b)
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to 32% suggesting a woodland phase in zone 3. These results are 
consistent with a modern pollen-vegetation study conducted in the 
vicinity of the lake, which found a mean woody pollen abundance 
of 33% by a mean woody cover of 74% at the study site (Tabares, 
Mapani, Blaum, & Herzschuh, 2018).

Biogeochemical results also support our pollen findings. The rela-
tively constant δ13CWMA27-33 values throughout zones 1 and 2 indicate 
mixed C3/C4 vegetation with the C4 proportion generally above 50% 
(Badewien, Vogts, & Rullkötter, 2015). Only in the very recent past 
(zone 3) does δ13CWMA27-33 shift toward more 13C-depleted values pro-
viding evidence for an increase of the C3 proportion up to around 80%, 
which is also supported by δ13Corg values around −27‰ (Meyers, 
1997). It has been reported that southern African savanna trees show 
significant variations in their ACL values, which, for example, are higher 
for C. apiculatum and C. mopane than for T. prunioides and Ziziphus 
spp. (Kristen et al., 2010; Vogts et al., 2009; for Australian trees, see 
Hoffmann, Kahmen, Cernusak, Arndt, & Sachse, 2013). Assuming 
a significant contribution of trees to the sedimentary n-alkanes, the 
overall shift of ACL toward lower values throughout the profile is thus 
in agreement with the vegetation shifts inferred from pollen analyses 
and sedaDNA as discussed in detail below.

In addition, grain-size distribution lets us infer changes in 
landscape openness via the type of sediment transport reflected 
in the grain-size rEM (Dietze et al., 2014). The two types of sand 
deposits represented by rEM4 and rEM5 indicate short-term, 
high energetic sediment input from run-off during rain events 
or sand storms in an open landscape with reduced grass cover 
(Dietze et al., 2014; Walther & Neumann, 2011). In particular, 
within the error of the age model, rEM5 can be associated with 
the main flood events documented in the region from the 1920s 
until 2000 (Figure 4). We assume that an increased woody cover 
(as observed from the 21st century) favors the development of 
soil crusts on bare patches by constraining trampling (Thomas & 
Dougill, 2007). Although soil crusts reduce infiltration and pro-
mote run-off and erosion, they also increase soil roughness lim-
iting the detachment of soil particles (Bullard, Ockelford, Strong, 
& Aubault, 2018; Rodríguez-Caballero, Cantón, Chamizo, Afana, 
& Solé-Benet, 2012; Valentin, 1993). Accordingly, soil crusts may 
retain the coarser sand fractions, which would explain the low 
percentages of rEM4 and rEM5 in zone 3. However, prolonged 
drought (as observed in the 1990s), followed by heavy rains, can 
damage the crust surfaces (Kidron, Ying, Starinsky, & Herzberg, 
2017; Thomas & Dougill, 2007), causing the loss of fine sand-
sized particles (100–200 μm), which require less energy to be 
detached compared to coarser and finer-sized particles (Bullard 
et al., 2018; Salles, Poesen, & Govers, 2000). This would explain 
why only fine sand (rEM4) mobilized during La Niña flood in 2006 
(Figure 4).

An increased woody cover would also retain the local dust sed-
imentation (rEM3), by reducing the near-surface wind energies. 
Hence, the associated importance of more remote dust (rEM2) from 
several hundred kilometers away within the detrital sediment frac-
tion is seen during the last decade.

4.2.2 | Compositional turnover in the course of 
shrub encroachment

Our pollen and sedaDNA results indicate a savanna state change 
from open Combretum woodland to Terminalia shrubland during the 
20th century at local (i.e., the vicinity of Otjikoto) and probably re-
gional (i.e., the wider Tsumeb area) scales. These results are the first 
time series with sufficient taxonomic resolution to show composi-
tional change in the course of shrub encroachment in a semiarid sa-
vanna at a multidecadal scale. They confirm theoretical assumptions 
(Joubert et al., 2008; Li, 2002) which were based on compositional 
observations of only a few decades or on the analyses of spatial gra-
dients (van Rooyen et al., 2018; Strohbach, 2001).

According to our proxies, an open Combretum woodland dom-
inated the landscape around Lake Otjikoto until the turn of the 
19th to 20th century (i.e., zone 1 in our record). A high grass 
cover and the dominance of Combretum species in the tree layer 
are characteristic of this vegetation type (Mendelsohn et al., 
2000), which is represented by high Poaceae pollen values and 
up to 50% Combretum in the sedaDNA records. Our results also 
show that Grewia, D. cinerea, Croton, Kirkia acuminata, C. alexan-
dri (Bignoniaceae), and Ebenaceae (likely Euclea sp.) were common 
taxa in the tree and shrub layer of this vegetation type. This aligns 
well with modern observations of this vegetation type preserved 
on flat areas between dolomite hills (Giess, 1971), particularly on 
moderately deep soils (Mendelsohn et al., 2000). In addition, our 
results reflect botanical observations from the early 20th century 
of the existence of woodlands and lime steppes in the Tsumeb 
region (Dinter, 1918). A high pollen signal of Petalidium (likely P. 
eurychlamys) in the late 19th century and the sedaDNA record of 
Gossypium reflect early observations regarding both taxa as local 
indicators of open broad-leaved savanna vegetation (Dinter, 1922; 
Mildbraed, 1941). We assume that open Combretum woodlands 
represent the potential natural vegetation of the region and a sta-
ble savanna state. These results confirm a previous low-resolution 
pollen record from Lake Otjikoto (Scott et al., 1991) that revealed 
the presence of open Combretaceae-Spirostachys woodlands in 
the region during the late Holocene.

Our results allow us to infer a transition phase that ranges from 
1920 to about 1997 (zone 2 in our record) and provide empirical ev-
idence to previous studies, which assume a transition period of sev-
eral decades between alternative stable grassland/woodland states 
(Higgins & Scheiter, 2012; Joubert et al., 2008).

The transition is marked by a high turnover in the vegetation 
proxy composition. While Poaceae are still abundant during this 
period, some shrub taxa are also common (Ziziphus (Rhamnaceae), 
Grewia, Phyllanthus/Phyllantheae) particularly during the second 
half of the 20th century. Furthermore, this transition phase is char-
acterized by unique taxa, particularly those associated with distur-
bance (e.g., common pasture taxa such as Antigonon and Mentzelia 
(López-Olmedo, Meave, & Pérez-García, 2007), and nonpalatable 
weeds such as A. pungens, Tribulus/Tribuloideae, and Geigeria 
(Tabares et al., 2018)). This transition is also distinguished by the 
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propagation of dwarf shrubs (Monechma/Justiciinae, Pentzia), an-
nual grasses (Tragus, B. deflexa, Aristida), and the increase of shrub 
taxa (Croton, Euphorbia, Gymnosporia (Celastraceae), Montinia 
caryophyllacea, Opilia). We assume that our inferred transition 
phase corresponds to the unstable state described by Joubert et 
al. (2008), which is distinguished by the above-mentioned char-
acteristics and by the spread of encroacher seedlings (e.g., S. mel-
lifera) in a mixed grass sward. The increase of Senegalia pollen in 
zone 3 may therefore indicate the maturity of S. mellifera trees 
established in zone 2.

The vegetation at the local and regional scale around Lake 
Otjikoto after 1997 (zone 3 in our record) can be characterized as 
a T. prunioides shrubland (T. prunioides association in Hüttich et al., 
2009; Mendelsohn et al., 2000; Acacia-T. prunioides in Strohbach, 
2014). This represents a stable encroached savanna state (Joubert 
et al., 2008) and is supported by the finding that the compositional 
change within zone 3 is rather small compared to zone 2. The veg-
etation is characterized by high abundances of Vachellia, Senegalia, 
and Terminalia and the decline of Combretum (Figure 3) in our 
sedimentary vegetation proxy records, which likely indicates the 
spread of local encroacher species such as V. reficiens, S. mellifera, 
and T. prunioides in the region (De Klerk, 2004; Strohbach, 2001). 
The transition toward T. prunioides vegetation type is also reflected 
by the changes in the shrub layer: The abundances of Grewia and 
Ziziphus (Rhamnaceae) increase, while C. alexandri (Bignoniaceae) 
and Euclea (Ebenaceae) decrease. Furthermore, a state change to-
ward encroached savanna is indicated by the decline in Poaceae 
pollen signals suggesting a reduction in grass cover, which is 
characteristic of T. prunioides shrubland (Strohbach, 2014). 
Interestingly, the increase of Fabaceae (e.g., Vachellia, Senegalia in 
pollen and sedaDNA values) in zone 3 corresponds with more de-
pleted δ13C values of organic matter. This matches modern studies 
along spatial gradients that likewise found depleted δ13C values in 
Fabaceae C3 plant matter (Badewien, Vogts, & Rullkötter, 2015; 
Vogts et al., 2009).

We hypothesize that the current Terminalia encroached state 
may have occurred earlier in the region, as suggested by the compo-
sitional changes reflected in an early pollen record of Lake Otjikoto 

(Scott et al., 1991). In particular, the early woodland phase (zone O1), 
which is dominated by Combretaceae, may correspond to a phase 
of Terminalia encroachment, since the abundance of Spirostachys is 
low, while Grewia and Acacia have high pollen signals (Figure S6). 
Interestingly, this phase is preceded by high abundances of Tribulus, 
which suggests a transition phase.

Given the changes in species composition and in the grass/
woody ratio observed in our study, our results provide empirical ev-
idence to support the hypothesis of Rohde and Hoffman (2012) that 
transitions from an open woodland into an encroached state in sa-
vannas from northern Namibia may occur on a scale of one century 
and without reversals to a grassy state.

4.3 | Triggers and drivers

It is likely that a complex network of global, regional, and local trig-
gers and drivers including land management (forestry, husbandry/
cultivation), precipitation, and atmospheric pCO2 caused the ob-
served vegetation turnover in the Tsumeb area (Figure 5). However, 
limited data availability prevents us from doing straightforward mul-
tivariate statistical analyses such as decomposition of explained var-
iances to statistically relate driver changes to changes in vegetation 
(Tian, Herzschuh, Mischke, & Schlütz, 2014); instead, only trends can 
be compared.

4.3.1 | Forestry in the context of mining

Our results support previous studies that assign the emergence of 
shrubland in northern Namibia to forest management (Strohbach, 
2001). In particular, the expansion of thickets in the Tsumeb re-
gion, as indicated in forest reports from the 1950s, has been as-
signed to selective and broad-scale logging in the course of mining 
in the early 20th century (Erkkilä, 2001; Lau & Reiner, 1993). 
Combretum, Spirostachys africana, and C. mopane were cut for 
props and fuel for the Tsumeb mine (Erkkilä & Siiskonen, 1992), 
and this is reflected in the decline of these taxa in the Otjikoto 

F I G U R E  5   Network of triggers and drivers of savanna vegetation change
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pollen record. After logging, it is likely that dense thickets of S. 
africana formed because of its ability to form stump shoots and 
root suckers (Gandiwa, Gandiwa, & Mxoza, 2012; Moyo et al., 
1993). The Spirostachys/Hippomaneae peaks in the pollen and 
sedaDNA records may indicate resprouting events during the 
Depression and the Second World War times, in which the mine 
production came to standstill (Lau & Reiner, 1993). In contrast, 
other local taxa became reduced because of their low growth 
rates (e.g., C. mopane, Cunningham, 1996) or their weak coppic-
ing ability (e.g., Combretum, Strohbach, 2001). In order to supply 
the mines, Eucalyptus was planted in the Tsumeb region from the 
beginning of the 20th century (Dinter, 1909, 1918) and from 1949 
at Lake Otjikoto (Lau & Reiner, 1993), which is reflected in our 
proxy records (Myrtaceae/Myrtoideae). Later on, gradual environ-
mental changes, such as changes in the tree species composition 
and the reduction of soil moisture as a consequence of deforesta-
tion (Moyo et al., 1993), may have favored the spread of Vachellia, 
Senegalia, and T. prunioides, which are better adapted to drier 
conditions.

4.3.2 | Husbandry

Land-use records from this study and census information (FAO, 
2018b; Lange, Barners, & Motinga, 1998) indicate that the intensity 
of husbandry increased throughout the 20th century, which likely 
affected grass species composition and productivity.

The signal of Sordaria, an obligate coprophilous fungus spore 
associated with dung deposits of wild/domestic herbivores (Dietre, 
Gauthier, & Gillet, 2012; van Geel & Aptroot, 2006; van Geel et al., 
2011), suggests the continuous presence of herbivores in the vicinity 
of the lake. The high values of Sordaria in the first half of the 20th 
century could be the result of herding of cattle at watering points 
and on productive pastures close to the lake, particularly during 
drought episodes (as suggested by the fungal peak at about 1946 
[Figures 2 and 4]). Surprisingly, the signal of Sordaria decreases in the 
second half of the 20th century although grazing intensity was likely 
highest during this period—census information on cattle in Namibia 
indicates an increase from ~700k animals before 1930 to ~2500k 
after 1950 (FAO, 2018b; Lange et al., 1998).

The decrease in the Sordaria signal could be related to a decline 
of transhumance pastoralism (as similarly observed by Gelorini, 
Ssemmanda, & Verschuren[, 2012] at lakes in Uganda), which is as-
sociated with changes in land tenure and management in the region. 
During the first half of the 20th century, most of the Otjikoto region 
became freehold land (Mendelsohn, Jarvis, Roberts, & Robertson, 
2009), which resulted in the construction of fences, concentration 
of livestock, and eventually the restriction of traditional transhu-
mance in the surroundings of the lake. From the 1960s, movement 
of cattle was further restricted because of the outbreak of foot-and-
mouth disease (Schneider, 2012). The increase of cattle in the mid-
20th century likely originated from the intensification of farming 
from the 1950s (Lau & Reiner, 1993). Additionally, the introduction 

of subsidies for feed and water-hole exploration in response to the 
prolonged drought in the early 1960s (Figure 4) allowed ranchers to 
increase their stocks in years with good rain, and to maintain them in 
the drought years (Schneider, 2012; Sweet, 1998).

As reflected in the sedaDNA record, these practices led to the 
decrease of highly palatable grasses such as Schmidtia (likely S. pa-
pophoroides), B. deflexa, and F. africana. They were, if at all, replaced 
by less palatable grasses such as H. dissoluta and H. contortus which 
are characteristic of overgrazed areas (Kgosikoma, Mojeremane, & 
Harvie, 2015). High grazing pressure on pastures during the mid-
20th century is also indicated by above-average signals of nonpal-
atable taxa such as Geigeria (Strohbach & Kutuahuripa, 2014) and 
Acanthospermum (Tolsma, Ernst, & Verwey, 1987), as well as by tram-
pling-resistant taxa such as Alternanthera and Tribulus/Tribuloideae 
(Tabares et al., 2018). High grazing pressure alongside poor grazing 
resources would also explain the cultivation of Medicago to comple-
ment livestock fodder from the 1990s around Lake Otjikoto as indi-
cated in the sedaDNA record (Figure 3).

The persistent high grazing pressure on pasture with already 
low grass density may have lowered the seed production of grasses 
to such an extent that potential niches could not be (re)invaded 
(O’Connor & Pickett, 1992; Tessema, de Boer, & Prins, 2016). 
This might explain why our sedaDNA record lacks F. africana and 
Schmidtia (likely S. papophoroides) toward the present day. According 
to the state-transition models, the lack of both species may also 
reflect the vegetation's response to overgrazing when disturbance 
passed a threshold.

4.3.3 | Fire management

Our results show that there were changes in fire management re-
lated to husbandry and cultivation near Lake Otjikoto, which further 
altered the resilience of Combretum woodlands and supported shrub 
establishment in the long-term.

High macrocharcoal flux and high Gelasinospora values (a fun-
gus growing preferentially on burned wood [Revelles & van Geel, 
2016]) in sediments of the early 20th century point to local forest 
fires within a radius of about 5 km from the lake (Clark, 1988; Duffin, 
Gillson, & Willis, 2008). The emergence of cleared areas is reflected 
in the sedaDNA signals of pioneer grasses such as B. deflexa and 
Tragus. During the early 20th century, these areas were likely burned 
prior to crop cultivation as indicated by records of Sorghum (Lau & 
Reiner, 1993). Landscape opening is also reflected by the aeolian 
input of well-sorted coarse silt (rEM3), which was probably blown in 
from burned fields (Ravi et al., 2009).

During the mid-20th century, the coincidence of lower char-
coal flux and a decrease in Sorghum sedaDNA suggest that fire was 
used to manage livestock grazing by fostering the establishment of 
palatable grasses (Lau & Reiner, 1993; Sweet, 1998). This would ex-
plain the rise in sedaDNA signals of Cenchrus (likely C. ciliaris (Gilo 
& Kelkay, 2017)) and Panicum (likely P. maximum) in the second half 
of the 20th century. Both these highly palatable perennial grasses 
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are common in the T. prunioides shrubland (Strohbach, 2014) and are 
usually planted for hay and pasture (van Oudtshoorn, 2016; Sweet & 
Burke, 2006). The expansion of monoculture farming in the Tsumeb 
region, particularly from the 1980s (Lau & Reiner, 1993), is also 
suggested by decreases in charcoal flux and Gelasinospora signals 
(Figures 2 and 3) toward zone 3, which in turn suggest the suppres-
sion of wildfire and/or the reduction of controlled fires to conserve 
pastures for livestock (Joubert, Smit, & Hoffman, 2012).

An initially reduced grass cover in combination with artificial 
fire suppression may have affected the grass/shrub competition by 
reducing mortality of woody seedlings and saplings (Case & Staver, 
2017; Joubert et al., 2012). The remaining grass tussocks may have 
improved the survival of seedlings of encroaching Fabaceae taxa 
such as Crotalaria and Prosopis, as the tussocks provide soil moisture 
and protection against heat stress (De Dios, Weltzin, Sun, Huxman, 
& Williams, 2014; Wagner, Richter, Joubert, & Fischer, 2018), trig-
gering a vegetation change into an encroached state.

4.3.4 | Precipitation and atmospheric CO2 changes

Comparing the pollen and sedaDNA records of Vachellia and Senegalia 
with the mean annual precipitation curve (Figure 4), it seems plausi-
ble that drought years from 1980 onwards contributed to the spread 
of these drought-tolerant taxa. Previous periods with consecutive 
rainy summers (particularly 1976–1979 and 1954–1956) and reduced 
grass cover also favored the germination and establishment of their 
seeds and saplings. These results are in line with several studies, 
which identified a positive relationship between rainfall, seed pro-
duction, and seedling survival of encroacher species (Joubert et al., 
2008; Joubert, Smit, & Hoffman, 2013; Wagner et al., 2018).

Our records show a die-back of Senegalia in the 21st century. 
This may be related to persistent drought stress, as reported from 
Botswana in 2013 (Joubert et al., 2013). Persistent drought can also 
inhibit the recovery of Cenchrus ciliaris, C. apiculatum, and D. cinerea 
(O’Connor, 1998), which explains the low sedaDNA signals of related 
taxa from the mid-1990s (i.e., zone 3).

Interestingly, the Vachellia pollen and sedaDNA signals in zone 3 
are high when compared with Senegalia, which probably reflects dif-
ferences in drought sensitivity. As observed by Joubert et al. (2013), 
S. mellifera has a lower tolerance for prolonged periods of moisture 
stress than Vachellia species such as V. reficiens, V. erubescens, and 
V. erioloba. According to the authors, S. mellifera mostly relies on an 
extensive shallow-root system, while V. reficiens and V. erioloba rely 
on a deeper tap-root system, which enables water uptake from deep 
soil layers.

The observed depletion of δD values of plant-derived n-alkanes 
since around 1992 (Figure 4) may also reflect the water uptake of 
deep-rooted trees from deep soil layers. In arid and semiarid en-
vironments, soil water has higher δD values than precipitation be-
cause of strong evaporation (Da Silveira Lobo Sternberg, 1988). 
Consequently, water from soil surface layers is more enriched in D 
compared to soil water from deep layers (De Deurwaerder et al., 

2018; Ehleringer & Dawson, 1992). Therefore, under dry conditions, 
xylem water from grasses is expected to have higher δD values com-
pared to trees with a deep root system. Field studies performed in 
Namibian savannas show that xylem water from deep-rooted spe-
cies such as V. erioloba, V. hebeclada, and Prosopis juliflora comes from 
D-depleted deep soil layers (Kanyama, 2017). Our pollen and se-
daDNA results indicate an increase of Vachellia and Prosopis in zone 
3. However, it is unclear to what extent the isotope composition of 
xylem water is reflected by leaf lipids. While greenhouse experi-
ments found a correlation between leaf wax and soil water δD com-
position (Hou, D’Andrea, & Huang, 2008), field studies show that the 
leaf wax δD signature depends mostly on evaporative enrichment of 
leaf water during photosynthesis (Feakins & Sessions, 2010).

Considering the influence of photosynthesis on δD values, de-
pletion in zone 3, particularly since the beginning of the 21st cen-
tury, may also reflect an increase in the water-use efficiency of 
woody vegetation, which in turn is enhanced through, for example, 
reduced stomatal conductance and stomata density due to an in-
creasing atmospheric pCO2 concentration (Figure 4). Studies con-
ducted in tropical environments have shown that trees increase 
their water-use efficiency at higher CO2 concentrations, despite 
high transpiration rates (Brienen, Wanek, & Hietz, 2011; van der 
Sleen et al., 2014). In contrast, trees in arid and semiarid environ-
ments, and under higher CO2 concentrations, reduce their stomata 
opening while carbon assimilation increases (Evans, Schortemeyer, 
McFarlane, & Atkin, 2000; Krishnamurthy & Machavaram, 2000). 
This improved ratio of carbon assimilation-to-conductance results 
in an increase of transpiration efficiency (Evans et al., 2000), which 
in turn leads to 1H enrichment in leaves and thus a decrease in δD 
values. Such higher atmospheric CO2 concentrations may have fa-
vored the propagation of Vachellia and Senegalia toward the pres-
ent day, because Fabaceae species are expected to benefit from 
such conditions in nutrient-limited savanna environments (Wagner 
et al., 2018; Ward, Hoffman, & Collocott, 2014). As observed by 
Evans et al. (2000), Acacia species increase their nitrogen content 
per unit foliage area when growing under a higher CO2 concentra-
tion. Consequently, the photosynthetic capacity of leaves increases 
(Evans, 1989), which can then improve the competitiveness of 
Acacia species against grasses.

The interpretation of the leaf wax δD is complicated further 
as the signature of the water source of plants may have changed 
as well. The high δD values around 1916 (i.e., in the transition be-
tween zones 1 and 2) probably reflect an enrichment of source 
water. Such an interpretation is supported by the high concentra-
tion of inorganic carbon (TIC) and an increase of Ficus pollen that 
inhabits the walls of the sinkhole. A low lake level may result from 
low rainfall between 1916 and 1922 (Figure 4). The decrease of δD 
values from the mid-1990s (i.e., at the transition to zone 3) despite 
high TIC and Ficus pollen signals and low precipitation, however, 
contradicts the interpretation of the leaf wax δD as primarily rep-
resenting a precipitation signal (Niedermeyer et al., 2016; Sachse et 
al., 2012) but rather supports our interpretation of changes in the 
plant water source.
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Our results suggest that environmental changes derived from 
management (i.e., reduced soil moisture, reduced grass cover, 
changes in species composition and competitiveness, reduced fire 
intensity) may have affected the resilience of Combretum woodlands, 
making them more susceptible to change into an encroached state 
by stochastic events such as consecutive years of precipitation and 
drought, and by high pCO2 concentrations. These results are in line 
with state-transition models, which predict gradual changes in en-
vironmental conditions to alter the resilience of stable states, thus 
enhancing the likelihood of a state change (Scheffer et al., 2001).

4.4 | State-stabilizing feedbacks

Comparing our multiproxy record with historical climate and land-
use data allows us to infer the feedback mechanisms that support 
the stable states observed in our study. This allows us to interpret 
the observed vegetation changes in the context of state-transition 
models (Hirota, Holmgren, Van Nes, & Scheffer, 2011; Scheffer et 
al., 2001).

4.4.1 | Open Combretum woodland

Transhumance and intense fires, as reflected by our spore and 
charcoal records, may have stabilized an open woodland phase. 
A high grass cover, as observed in phase 1, may produce enough 
fuel for intense fires, which increase seedling and sapling mortal-
ity (Beckett & Bond, 2019; Case & Staver, 2017; Hirota et al., 2011; 
Staver, Archibald, & Levin, 2011). Since tree seedlings are not as fire-
resistant as adult trees and some of them are very palatable (e.g., 
Dichrostachys), a combination of fire and browsing may also have 
prevented tree seedlings from being recruited to mature age classes 
(Gillson, 2004; Joubert et al., 2012; Scheffer et al., 2001).

In addition, wetter conditions may have favored competitive-
ness of Combretum and Spirostachys against drought-tolerant taxa. 
An early Combretum-Spirostachys woodland phase at Otjikoto was 
linked to wetter climatic conditions (Scott et al., 1991). Although 
vegetation models predict a woody state in savannas with increased 
precipitation (Hirota et al., 2011), our results allow us to infer that 
under such climatic conditions open Combretum woodland is possi-
ble, but also Terminalia shrubland, as the latter profits from wet years 
followed by persistent drought.

4.4.2 | Terminalia shrubland

Several feedback mechanisms may stabilize the encroached state 
and inhibit the reverse transition toward an open woodland state:

First, open patches in degraded pastures may have supported 
the formation of trampling-resistant soil crusts (Dougill & Thomas, 
2004) containing nitrogen-fixing cyanobacteria. These soil crusts, in 
turn, may have favored the establishment of nitrogen-fixing shrubby 

Fabaceae, which eventually inhibit grass growth under their can-
opy (Maron & Connors, 1996). Such a feedback mechanism would 
explain the decrease in the C/N ratio (Figure 4) in the uppermost 
sedimentary record due to the allochthonous input of nitrogen-en-
riched soil materials (Talbot, 2005) in Lake Otjikoto. The latter is also 
supported by the predominance of fine-sized sediments in zone 3 
(rEM1, rEM2), which may also depress the C/N values by uptake of 
inorganic N, since higher proportions of clay can absorb ammonia 
well (Meyers, 1997).

Second, the reduction of grass cover toward the present day in 
Tsumeb coincides with soil erosion, as suggested by Glomus, a spore 
of an arbuscular mycorrhizal fungus associated with eroded soils 
(Revelles & van Geel, 2016; van Geel et al., 2011) (Figure 2). On bare 
soil patches with soil crusts, run-off increases and water infiltration 
decreases, which further reduces the establishment of grass seedlings 
(Strohbach, 2001). In addition, climate- and/or human-induced damage 
to soil crusts can lead to soil losses (as suggested by rEM4 in zone 3), 
which in turn promote rill formation thus reducing the surface run-off 
and limiting the run-on input to vegetation (i.e., limiting the formation 
of temporary ponds and soils with water tables (Rodríguez-Caballero 
et al., 2012; Valentin, 1993)). Our study supports previous studies that 
find soil erosion in the course of bush encroachment since the second 
half of the 20th century (De Klerk, 2004; Strohbach, 2001).

Third, the practice of bush removal (indicated for Lake Otjikoto 
by a slight decrease of shrub pollen in the uppermost core section 
and observed in the locality of Otjiguinas Farm during fieldwork) en-
ables the establishment of fast-growing species such as H. dissoluta 
(recorded in the uppermost section). This perennial grass spreads 
across disturbed fields forming dense tall swards, which inhibit the 
growth of other grasses (Cech, Edwards, & Olde Venterink, 2010; 
Jordaan, 2017).

Fourth, once established, woody vegetation with a mixed root-
ing system, such as S. mellifera and Prosopis sp., can suppress grass 
production (Smit, 2003), as they can effectively take up soil moisture 
from the upper soil layer after rain events with their lateral roots 
and survive dry phases due to water uptake by deep roots (Ansley, 
Boutton, & Jacoby, 2014; Brown & Archer, 1999). A reduced grass 
cover in turn reduces the intensity of fire, resulting in the self-propa-
gation of a woody state (Higgins & Scheiter, 2012; Hirota et al., 2011; 
Scheffer et al., 2001).

Fifth, climate change (i.e., higher atmospheric pCO2 concentration 
and changes in precipitation variability) may induce physiological adap-
tations (as suggested by our δD record) enhancing the competitiveness 
of trees over grasses. Although persistent drought constrains the CO2-
related photosynthetic advantages for savanna trees (Nackley et al., 
2018), the assimilation rates are still higher for C3 plants compared to 
C4 grasses under such conditions (Bellasio, Quirk, & Beerling, 2018). 
This is because C4 grasses under water restriction experience meta-
bolic inhibitions that have a greater effect on leaf assimilation com-
pared to the limited stomatal conductance of savanna trees (Bellasio 
et al., 2018). Furthermore, under restored watering conditions, pho-
tosynthetic rates recover faster when inhibited by stomatal than by 
metabolic factors, which in turn affects the competitiveness of C4 



974  |     TABARES ET Al.

grasses under optimal conditions (Bellasio et al., 2018). Such a feed-
back mechanism implies that at higher atmospheric pCO2 concentra-
tion, an increase in the frequency of droughts and heavy rains may 
favor the expansion of C3 vegetation (Zhang et al., 2019).

These feedback mechanisms explain the ongoing encroach-
ment processes observed at our study site up to the present, even 
though management intensity may have adjusted to the local carry-
ing capacity (e.g., decline of cattle numbers from the 1970s (Lange 
et al., 1998) and a levelling off of cattle populations since 2000) or 
decreased (e.g., regulation of timber production since 1968 (Erkkilä 
& Siiskonen, 1992)). The current vegetation may thus represent a 
management legacy from the first half of the 20th century, as well as 
the impact of climate change.

5  | CONCLUSIONS

We have shown that the expansion of shrubs is a multidecadal trend 
characterized by the turnover from stable open woodland to a stable 
encroached state. Our results indicate that such a state change may 
occur on a scale of a century and without short-term reversions to 
a grassy state, but with an unstable transition phase, which covers 
about 80 years and is characterized by a steady turnover of taxa, 
some of which are restricted to the transition phase.

We demonstrate that the current grass/woody ratio is excep-
tional for the last 170 years and that such a process is related to 
gradual changes in soil moisture, erodibility, and species compo-
sition and competitiveness. Our inferences largely support prior 
theoretical considerations about shrub encroachment dynamics in 
southern African savannas that were mostly based on space-for-time 
approaches or studies with low taxonomic and temporal resolution.

Our study shows, for the first time, the potential of sedaDNA 
analysis to track vegetation changes in savanna environments, as 
well as to infer related local and global triggers and drivers. In par-
ticular, detailed taxonomical information enabled us to confirm and 
complement our pollen findings, and thus to reconstruct the turn-
over from broad-leaved to fine-leaved tree taxa and Terminalia.

Taking into account an earlier pollen record of Lake Otjikoto 
(Scott et al., 1991), we suggest that shrub encroachment is not a new 
phenomenon and that it possibly occurred in the past in the Tsumeb 
region, as suggested by changes in taxonomic composition and the 
grass/woody ratio observed in the previous record. In this sense, 
the encroached state observed in our study can be interpreted as a 
successive phase in a context of state transitions and is in line with 
previous studies that define encroachment as an alternative stable 
state (Gil-Romera et al., 2010).

Comparing our vegetation proxies to environmental proxies and 
historical data, we inferred the impact of logging, as well as physi-
ological adaptations related to changes in precipitation regime and 
high atmospheric pCO2 concentrations. Furthermore, detailed infor-
mation of grass taxonomical composition (which is restricted in the 
pollen record) made it possible to infer changes in land use, such as 
crop cultivation, selective grazing, and overgrazing. Combined with 

our macrocharcoal record, we deduce changes in fire management 
associated with the intensification of farming.

Our study helps fill a knowledge gap about the feedback mecha-
nisms supporting shrub encroachment. Such mechanisms reflect the 
interplay between historical land use and climate change (Perring et 
al., 2018), enabling us to confirm the far-reaching effects of manage-
ment legacies on vegetation in savanna ecosystems.

Overall, this study highlights the suitability of multiple lake sed-
imentary proxies (particularly sedaDNA) to resolve complex com-
positional change and related environmental conditions in semiarid 
savannas on at least decadal and centennial timescales.
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