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Abstract: Gait analysis is an important assessment tool for analyzing vital signals collected from
individuals and for providing physical information of the human body, and it is emerging in a
diverse range of application scenarios, such as disease diagnosis, fall prevention, rehabilitation, and
human–robot interaction. Herein, a kind of surface processed conductive rubber was designed
and investigated to develop a pressure-sensitive insole to monitor planar pressure in a real-time
manner. Due to a novel surface processing method, the pressure sensor was characterized
by stable contact resistance, simple manufacturing, and high mechanical durability. In the
experiments, it was demonstrated that the developed pressure sensors were easily assembled with
the inkjet-printed electrodes and a flexible substrate as a pressure-sensitive insole while maintaining
good sensing performance. Moreover, resistive signals were wirelessly transmitted to computers in
real time. By analyzing sampled resistive data combined with the gait information monitored by a
visual-based reference system based on machine learning method (k-Nearest Neighbor algorithm),
the corresponding relationship between plantar pressure distribution and lower limb joint angles
was obtained. Finally, the experimental validation of the ability to accurately divide gait into several
phases was conducted, illustrating the potential application of the developed device in healthcare
and robotics.

Keywords: gait phase; insole sensors; surface processing; inkjet printing; visual-based reference;
machine learning

1. Introduction

Gait monitoring is able to diagnosis certain diseases by analyzing human gait patterns, especially
for chronic diseases threatening the elderly in the aging society [1,2]. Fall prevention for disabled and
older people is another essential application of gait monitoring [3]. Moreover, gait monitoring plays an
important role in athletic training to help athletes improve their performance [4,5] and in the gait design
and control of bipedal humanoid robots [6,7]. In addition, gait phase is broadly investigated in the field
of wearable exoskeleton robots [8,9], because only when the rotation movement of the exoskeleton’s
joints changes reasonably with the human gait can it provide favorable walking assistance and comfort
for the wearer [10].
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In the versatile application scope, many significant efforts have been devoted to gait detection.
The imaging processing method is one of the effective ways to capture the visual information of gait
cycles [11]. However, it has spatial and temporal restrictions that limit the analysis to be at a specific
time and/or in a confined location [12]. To estimate temporal gait parameters, Lee et al. developed a
compactable wireless system based on two three-axis inertial sensors [13]. Although inertial sensors
are lightweight and can be conveniently mounted on the human body, compared with image-based
methods, there are some limitations with the quantity and the accuracy of motion signals captured
by inertial sensors [14]. The electromyography (EMG) sensors are used to classify a person’s gait by
collecting electromechanical signals directly reflecting the user’s motion intentions [15]. However,
the signals are unstable and time-varying due to muscle fatigue and electrodes degradation [16].
Recently, wireless wearable devices have been developed rapidly in motion capture and health
monitoring [17,18]. Insole pressure sensors, as a kind of wearable sensor, have shown great potential
for future applications [3]. They are convenient, portable, unobtrusive, and versatile, providing a rich
source of information for real-time gait analysis in both indoor and outdoor environments [19]. For
example, by leveraging a smart insole system, Najafi et al. [20] exploited a comprehensive investigation
of adherence to alert-based cues of plantar pressure offloading in patients with diabetic foot disease
during activities of daily living. However, the effectiveness of the insole system was validated by
setting risk pressure thresholds rather than by providing sufficient gait information [20].

Here, we proposed an effective and low-cost laser processing method to modify the surface of
conductive rubber, enhancing the stability of sensing performance when sensing units contact with
electrodes directly. The developed conductive rubber was further integrated as an insole device that
was experimentally validated by sampling planar pressure in real time. The accuracy of the divided
gait phase was verified adequately by the image-based method. The primary novelties of this work are
listed as follows: (1) a novel method for stabilizing surface resistance of conductive rubber through
the laser surface modification method; (2) a detailed feature and fabrication process of sensor units,
characterization of sensor units, and experimental validation of the developed flexible insole sensor;
and (3) integrating plantar pressure information and visual information for analysis and comparison.

This paper is organized as follows. Section 2 presents the related state-of-the-art work, including
wearable insole sensors and light algorithms. Section 3 describes the structure and fabrication process
of the flexible pressure sensing unit. Section 4 discusses the experimental results, including resistance
before and after surface processing, electrical characteristics of sensing units and inkjet-printed
electrodes, data acquisition and data analysis of a pressure-sensitive insole, construction of a visual
reference system, and the validation of flexible insole sensors. Section 5 evaluates and analyzes the
proposed framework. Finally, the future work (Section 6) and a brief conclusion (Section 7) establish
that the vision aided intelligent insole platform will later collect more data of the planar pressure and
the joint angles of the lower body for gait analysis to find the connection between the two parameters
by machine learning.

2. Related Work

Nowadays, most available smart insoles are embedded with force sensitive sensors (FSRs) that are
ultra-thin, flexible, and have good linearity. Nevertheless, the FSR also has its limitations. Firstly, FSRs
are not cost-effective [21]. Secondly, FSRs are prone to breakage via fatigue stress because the electrodes
directly bear alternating load induced by the external force applied to the ultra-thin sensor [10].
Thirdly, the drift and hysteresis error of FSRs is ten to one hundred times higher than that of the load
cell [22]. Another promising method is to embed insoles with six-axis force sensors. For instance,
Ishiguro et al. [23] presented a control system where the force sensors were embedded into two insoles
to construct an interface for a human teleoperator to control a humanoid robot leg. However, most
commercial six-axis force sensors are expensive, and they are easily broken by loading with long-term
and heavy force because they are made of rigid components, especially when they are used for gait
monitoring [24]. With the development of functional materials, many materials show great potential
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for pressure sensing [25]. Piezoresistive conductive rubber is a kind of promising flexible material
to be complementary to FSRs since, during the fabrication process, it can be reinforced to reduce
creep by adding carbon nanotubes [26] or by changing the electrode configuration of the integrated
sensor [27]. Some researchers have demonstrated that conductive rubber has a long lifetime [28] and
low production cost [29]. Generally, the traditional conductive rubber sensors are usually connected
with electrodes by using silver conductive paste or polymer adhesive, which can effectively reduce the
impact of contact resistance. However, this connection mode easily falls off due to fatigue, especially
when it is used for an insole sensor for long-term and high-load monitoring. Saito et al. [30] used
conductive rubber to make a pressure-sensitive insole directly in contact with electrodes, but the
resistance data fluctuated during static calibration.

In terms of lightweight algorithms of machine learning methods for wearable applications,
Krause et al. [31] deployed machine leaning methods based on Kohonen Self-Organizing Maps
(KSOMs) and k-Means clustering on a mobile phone to realize a classifier to identify user states
and to automatically modify algorithms’ settings based on experience. LeMoyne et al. [32] utilized the
multilayer perceptron neural network as a machine learning platform to classify gait patterns based on
data from wearable inertial sensors. However, the data of the above methods were post-processed in
additional computer or cloud computing resources. To reduce the network and privacy cost of sending
data to the cloud and to make machine-learning algorithms scalable, Rawassizadeh et al. [33] presented
lightweight algorithms to identify daily human behavioral patterns on small wearable devices. All
these efforts illustrate the feasibility to leverage machine learning methods to recognize physical
activity based on wearable devices. In this work, machine-learning classification, as a popular method,
was used to validate the feasibility of developed flexible insole sensors for gait phase detection.

3. Materials and Methods

3.1. Structure Design

In this paper, we developed a kind of flexible pressure sensor for planar pressure detection by
using multi-wall carbon nanotubes (MWCNTs) and Polydimethylsiloxane (PDMS). MWCNTs were
chosen due to their electrical conductivity [34]. PDMS was chosen because it has good flexibility and
the stiffness of PDMS can be adjusted by changing the hardening agent to PDMS base ratio [35], which
is suitable for personalized products of users of different weights. An interdigital electrodes array was
printed on the polyimide (PI) substrate, as shown in Figure 1a,b. Figure 1c presents the multi-layers of
one sensing unit. From top to bottom, they are adhesive material layer (to fix the sensing unit on the
flexible circuit), MWCNTs/PDMS pressure-sensitive layer (where the resistance is sensitive to applied
pressure), interdigital electrodes [which are made of silver nanoparticles (AgNPs) printed by an inkjet
printer], and PI substrate (as the carrier of flexible circuits and sensitive units). Here, we did not use
any conductive adhesive material (such as conductive silver adhesive and conductive polymer) [36,37]
but directly mounted the sensing unit on the surface of the electrode through the adhesive material
layer (tape) and realized electrical connection through direct contact. The sensing mechanism can be
described in the following statements. When a load pressure is applied on the top surface of the sensor,
the PDMS layer deforms, and MWCNTs uniformly dispersed inside PDMS gradually close to each
other. Then, the number of connected conductive paths between carbon nanotubes increase, and thus
the resistance of the sensing unit declines. The sensor thus functions as a force-to-resistance transducer.
The cylindrical sensing unit has a diameter of 1 cm and a height of 1 mm. As shown in Figure 1d, the
resistance was detected by using a digital multimeter (DMM, Keysight Truevolt 34461A, Keysight
Technologies, Shanghai, China), and the external force was applied by a testing system (ZQ-990B,
Zhiqu Precision Instrument Co., Ltd., Dongguan, China). The comparison between the proposed
design and the state-of-the-art design is summarized in Table 1.
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[30] 
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The fabrication process of the pressure-sensitive layer is shown in Figure 2. In order to obtain a 
sensitive conductive layer, firstly, we mixed MWCNTs (MK1858, Nanjing Muke Nano Technology 
Co., Ltd., Nanjing, China), PDMS prepolymer (Sylgard 184, Wuxi Changxu Technology Co., Ltd., 
Wuxi, China), and N-Hexane (Aladdin reagent Shanghai Co., Ltd., Shanghai, China) at a mass ratio 
of 20:40:1. Then, the mixed solution was stirred at 1200 RPM for 10 min to obtain a uniform mixture 
by using magnetic stirrer (98-1, Shanghai Sile Instrument Co., Ltd., Shanghai, China). After evenly 
dispersing MWCNTs in the mixture, we added a 10 wt% curing agent (in PDMS ratio) followed by 
magnetic stirring for 10 min. Secondly, to cure the mixture, it was placed in a vacuum oven (Bangxi 

Figure 1. The structure design of a sensing unit and the experimental setup. (a) Schematic illustration
of a sensing unit (scalar bar: 5 mm). (b) Photograph of a sensing unit after being packaged. (c) The
layout of a pressure-sensitive unit. (d) A performance test system for the flexible pressure sensor.

Table 1. Comparison of the state-of-the-art design of wearable sensors for gait phase detection.

Sensor Type Authors Design Features References

Optoelectronic sensors Crea et al. An insole with shading structures used
optoelectronic signal to detect pressure [38]

Inertial sensors Ding et al.

The inertial measurement unit was attached
onto the anterior surface of a shoe and

measured the three-axis angular velocity
and the acceleration of the foot

[10]

Electromyography
(EMG) sensors Joshi et al. The reflective markers were attached on

limbs to detect the EMG signal [15]

Multi-axis force sensors Lind et al.
Unique multi-axis foot force/torque sensors
were integrated into a military style boot to

measure the forces on the human foot
[39]

Conductive rubbers
Saito et al.

The flexible conductive rubber sensors were
fixed to the insole with traditional circuit

for electrical connection
[30]

Our work Conductive rubber sensors processed by
laser cutting were fixed on flexible insoles.

3.2. Fabrication

The fabrication process of the pressure-sensitive layer is shown in Figure 2. In order to obtain a
sensitive conductive layer, firstly, we mixed MWCNTs (MK1858, Nanjing Muke Nano Technology Co.,
Ltd., Nanjing, China), PDMS prepolymer (Sylgard 184, Wuxi Changxu Technology Co., Ltd., Wuxi,
China), and N-Hexane (Aladdin reagent Shanghai Co., Ltd., Shanghai, China) at a mass ratio of 20:40:1.
Then, the mixed solution was stirred at 1200 RPM for 10 min to obtain a uniform mixture by using
magnetic stirrer (98-1, Shanghai Sile Instrument Co., Ltd., Shanghai, China). After evenly dispersing
MWCNTs in the mixture, we added a 10 wt% curing agent (in PDMS ratio) followed by magnetic
stirring for 10 min. Secondly, to cure the mixture, it was placed in a vacuum oven (Bangxi Instruments



Sensors 2019, 19, 5197 5 of 20

Technology Co., Ltd., Shanghai, China) and heated at 50 ◦C for 24 h. After the curing process, we used
the laser cutting machine (FD–300, Shanghai Fengying Computer Technology Development Co., Ltd.,
Shanghai, China) to modify the surface of the mixture at 50% of energy (in the total energy of 30 watts)
and 5% of cutting speed. Finally, the shapes of pressure-sensitive units could be cut by punchers or
laser cutting machine. When packaging the sensing unit, the inkjet printer (Functional nanomaterial
deposition system, Shanghai Ruidu Photoelectric Technology Co., Ltd., Shanghai, China) was used to
print interdigital electrodes on a PI substrate, and the number of repeated printing cycles was set to
three times. Then, the sensing unit was directly placed above the inkjet-printed interdigital electrodes,
the up layer of which was packaged by tape.
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Figure 2. Schematic illustration of the fabrication steps of pressure sensors based on multi-wall carbon
nanotubes (MWCNTs)/Polydimethylsiloxane (PDMS).

4. Results and Discussion

4.1. Sensing Unit Stabilizing

In the fabrication process, the surface of the sensing unit was modified by a laser processing
method. Before laser processing, the surface of the sensing unit was condensed with a large amount of
PDMS due to gravity during the curing period. During the laser treatment, the PDMS on the surface
of the sensing unit was ablated, and the surface of the sensor was covered with MWCNTs so that
the sensing unit resistance significantly dropped and became stable. The resistance was detected by
using the interdigital electrodes array. The test results are shown in Figure 3, in which the sample was
loaded with a cyclic force ranged from 0 N to 5 N with a time interval of 30 s. It can be seen that the
surface resistance had adverse impacts on the resistance in two aspects: the mean of resistance value
and the fluctuation of resistance variation. In Figure 3a,d, Rmax represents the maximum resistance
during the sampling time; Rmin represents the minimum value; R represents the average value of the
resistance; σ represents the standard deviation of the resistance data. As illustrated in Figure 3a,d,
after laser processing, the resistance value of the unloaded sensing unit dramatically reduced from 215
kΩ to 1.78 kΩ, and the fluctuation of resistance decreased obviously from 13.49% to 0.51%. Statistical
analysis of two kinds of sensing units when loaded with the cyclic force is illustrated in Figure 3b,e.
The corresponding resistive responses of two kinds of sensing units are also illustrated in Figure 3c,f to
show the effects of laser processing intuitively.

As shown in Figure 4, a laser confocal scanning microscope (VK-150, Keyence Corporation, Japan)
was used to observe the surface topography of laser-processed and non-processed sensing units.
As illustrated in Figure 4a–c, there were clear parallel traces induced by laser treatment. Compared
with the results in Figure 4d–f, the surface roughness of the laser-processed unit was relatively larger
than that of the non-processed unit, indicating that the polymer on the surface of the sensing unit was
removed effectively, thereby enabling more MWCNTs inside PDMS to be exposed to air. Hence, when
the laser-processed one directly assembled on the electrodes, it showed good stability compared to the
non-processed one, since the MWCNTs of the non-processed one were mostly wrapped inside the
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PDMS concentrated on the surface. Therefore, it can be concluded that the static performance of the
sensitive layer was effectively improved after removing the surface resistance.
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Figure 3. Comparison of stabilization of sensor units. (a) The resistance of non-processed unit without
loading. (b) Statistical analysis of the resistance of non-processed unit loaded with two levels of force
(0 N and 5 N). (c) The resistive response of non-processed unit loaded with two levels of force (0 N and
5 N). (d) The resistance of laser-processed unit without loading. (e) Statistical analysis of the resistance
of laser-processed unit loaded with two levels of force (0 N and 5 N). (f) The resistive response of
laser-processed unit loaded with two levels of force (0 N and 5 N).
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Figure 4. Optical images of laser-processed unit and non-processed unit. (a) Surface topography
tracking of laser-processed unit. (b) Laser track of laser-processed unit. (c) High-low image of
laser-processed unit. (d) Surface topography tracking of non-processed unit. (e) Laser track of
non-processed unit. (f) High-low image of non-processed unit.

4.2. Sensing Unit Characterization

Sensing characteristics of the sensing units were measured and analyzed under a pressure-sensing
mode in both dynamic and static experiments. The resistance of the inkjet-printed electrodes decreased
as the number of prints increased, as shown in Figure 5a, which was detected by a digital multimeter
(DMM). At the same time, it can be seen that, under the change of external loading force (from 5 N



Sensors 2019, 19, 5197 7 of 20

to 25 N), the resistance of inkjet-printed electrodes—of which the printing cycle number was three
or more—showed good stability. Therefore, when selecting the number of printing cycles of the
interdigital electrodes, we chose to print three times to obtain stable conductive electrodes with a
lower resistance.
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Figure 5. Characterization of inkjet-printed electrodes and sensing units. (a) The resistive response of
inkjet-printed conductive traces loaded with five levels of force. (b) Calibration of a sensing unit (A
pressure-response curve of relative change in current vs. force). (c) Resistive hysteresis of sensing units
loaded with five kinds of force ranges.

The relative current change (defined as ∆I/I0, where I0 is the initial current value flowing through
the sensing unit, and ∆I is the present current value minus the initial current value) of one sensing
unit as a function of force is presented in Figure 5b. Here, we chose a force range of 0–25 N, which
was equivalent to 0–320 kPa that was calculated by contact area (a circle with a diameter of 10 mm)
of the sensing unit as the measure range to be consistent with daily plantar pressure. After linear
fitting independently in three ranges (0–5 N, 5–15 N, and 15–25 N), the calibration result showed an
approximately linear relationship between ∆I/I0 and applied force with three force sensitivities of S =

0.29 N−1, 0.12 N−1, and 0.04 N−1, respectively, where the force sensitivity is defined as S = (∆I/I0)/∆F
(∆F is the variation of force in corresponding detection range). Figure 5c shows the resistive hysteresis
of the pressure sensor during five kinds of loading–unloading cycles (0–5 N, 0–10 N, 0–15 N, 0–20
N, and 0–25 N). The maximum hysteresis was approximately 8.9% at 5 N when the sensing unit was
applied with a force range of 0–25 N.

To verify the adaptability of the sensing unit to be applied to gait phase detection with different
wearers and whether the frequency response of the developed sensing unit matched the normal step
cadence (from 0.76–1.04 Hz in [38]; around 0.7 Hz in [40]; below 5 Hz in [41]; and around 1.18 Hz in
our work, see more details in Section 5.3), an experiment of the sensing unit regarding the stability at
different levels of pressure (i.e., different weights) and several time intervals (i.e., different genders)
was carried out, as shown in Figure 6. Since the test machine (ZQ-990B described in Figure 1d) can
only realize step inputs with a maximum loading speed of 500 mm/min, the experiment protocol here
was to apply multiple levels of constant/step force with different loading speeds by leveraging the
test machine. Figure 6a–c show results of the sensing response of a sensing unit at a loading range
0–20 N and nine time intervals, illustrating that the developed sensor had a frequency response range
of 0.012–1.25 Hz. As illustrated in Figure 6d, the pressure sensor was capable of steadily measuring
different levels of external force (5 N, 10 N, 15 N, 20 N, and 25 N). In Figure 6e, cyclic force (including
loading and unloading process) between 0 and 25 N at a speed of 50 mm/min without pause was
applied to the sensing unit, and loading and unloading speeds were the same. The deformation-to-time
relationship could be regarded as a triangle waveform, because the load cell of test machine could
only be actuated according to speed and force threshold rather than designated input (force) signal.
Figure 6e shows the sensing response of the sensing unit in part of the durability test under a force
range of 0–25 N (or a pressure range of 0–320 kPa) at a loading speed of 50 mm/min. The sensing
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response of the developed pressure sensor remained substantially stable after 5000 loading–unloading
cycles, indicating excellent repeatability and durability of the sensing unit. The dynamic resistance
response in Figure 6a–e was constant with the results in Figure 5b. In addition, the developed sensing
unit showed a fast response time (30 ms) and recovery time (90 ms) in the transient test, as illustrated
in Figure 6f. To clearly quantify the repeatability, the data shown in Figure 6d were further processed
and showcased in Figure 7. Figure 7a depicts that the non-repeatability (defined as the maximum
deviation of three loading/unloading times divided by the entire output range in percentage) was
about 5.9%, while that shown in Figure 7b was about 7.9%.
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levels of force. (e) Durability test of the sensing unit loaded with a cyclic force of 0–25 N at a speed of
50 mm/min. (f) Transient response of the sensing unit at a force stimulus of 2 N.
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Figure 7. Repeatability test. (a) The resistive response of sensing unit from 0 to 25 N. (b) The resistive
response of sensing unit from 25 to 0 N.

The above results illustrate that the flexible MWCNTs/PDMS pressure sensor had excellent and
stable electromechanical characteristics, while it was manufactured by a simple fabrication process.
All specific details about the developed sensors mentioned above were summarized in Table 2.
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Table 2. Summary of characteristics of developed sensing unit.

Items Parameters Test Conditions

Detection range 0–25 N Loading speed of 1 mm/min

Nonlinear errors
10.4% Loading range of 0–5 N at a speed of 1 mm/min
1.0% Loading range of 5–15 N at a speed of 1 mm/min
2.8% Loading range of 15–25 N at a speed of 1 mm/min

Sensitivity
0.29 N−1 (3.63 MPa−1) Loading range of 0–5 N at a speed of 1 mm/min
0.12 N−1 (1.5 MPa−1) Loading range of 5–15 N at a speed of 1 mm/min
0.04 N−1 (0.5 MPa−1) Loading range of 15–25 N at a speed of 1 mm/min

Repeatability 5.9% Loading range of 0–25 N at a speed of 5 mm/min
7.9% Unloading range of 0–25 N at a speed of 5 mm/min

Hysteresis 8.9% Cyclic force range of 0–25 N at a speed of 1 mm/min
Frequency response 0.012–1.25 Hz Loading range of 0–20 N

Durability 5000 cycles Loading range of 0–25 N at a speed of 50 mm/min
Response time 30 ms Transient test (from 0 N to 2 N)
Recovery time 90 ms Transient test (from 2 N to 0 N)

4.3. Integration of Flexible Insole Sensor

There are several key pressure points on a foot, which reflect gait information. If the pressure
detection points are not selected properly, important gait information will be lost to some extent [42].
Figure 8a shows the natural bone composition of the human foot, which guides us to focus on some
critical pressure detection areas on the plantar. Here, we measured six parts of plantar pressure
distribution under dynamic and static conditions, including heel, arch, first metatarsal, second
metatarsal, third to fifth metatarsal, and first toe. Therefore, we printed six interdigital electrodes in
these six areas on PI substrate, as presented in Figure 8b. Then, we mounted six sensing units on the
six printed interdigital electrodes, as shown in Figure 8c. As illustrated in Figure 8d, the readout circuit
for resistive signals based on a voltage divider rule is widespread [43]. Here, we used this principle
to detect resistances of six sensing units of the insole. In Figure 8e, in order to improve the comfort
of wearing, we used wireless Bluetooth for signal transmission. As presented in Figure 8f, the micro
control unit (MCU, MEGA2560), the circuit board (R-board), and the battery (9 V) were mounted on
a wearable band. The R-board consisted of an array of resistive dividers. Then, we connected the
flexible flat cable (FFC) with the smart pressure-sensitive insole by using silver conductive adhesive.
Moreover, the MCU and the R-board were connected by conductive wires.
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Figure 8. Integration of flexible pressure-sensitive insole. (a) Distribution of human foot bones. (b) The
plantar inkjet-printed circuit diagram (scalar bar: 10 mm). (c) Distribution and assembly diagram of
the sensing unit in the sole. (d) Principle of the voltage divider rule. (e) Voltage divider circuit and
Bluetooth module on the R-board. (f) Plantar pressure detection system.
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4.4. Gait Reference System Based on Vision

The image processing method is one of the effective ways to divide the gait phase because it can
obtain a great deal of information about gaits, such as leg swing angle, stride length, stride time, and
stride frequency [44]. In order to facilitate comparison, reference, and analysis of gait signals collected
by pressure-sensitive insole, we used the kNN machine learning method to recognize images captured
by a camera (picture acquisition rate is 30 frames per second). The kNN machine learning model
was trained to identify three gait phases by using three kinds of angles in each image. As shown
in Figure 9a, we attached five markers to the hip, the knee, the ankle, the heel, and the toe of the
volunteer’s right leg. Markers were identified by the MATLAB images recognition method. Then,
the positions of the five markers were drawn on raw original pictures. After that, the shapes of the
thigh, the calf, and the feet were sketched to show the gait of the volunteer, and the angle data of each
joint were calculated based on the shape. After the above steps, we obtained images and angle data
of volunteers walking (2 km per hour). Then, as shown in Figure 8c, we labeled the obtained angle
data by referring to the corresponding photo according to the gait phase division method proposed by
Perry [45], as shown in Figure 9b. Finally, by adjusting test-total ratio and K value, the recognition
accuracy of gait recognition could be improved. After comparison (see more details in Section 5.2), it
was found that when K = 1 and ratio = 0.1 (where ratio means prediction data as a proportion of the
total data), the overall accuracy of the test was significantly improved. The success rate of recognition
in almost all gait phases was up to 97%. The accuracy of Phase 2 and 3 was 100%, while that of Phase 1
was 93.5%. We applied the model to automatically classify the gait cycle in Figure 9d, and the results
of the automatic phase classification of angles were almost consistent with those of manual phase
classification. There was a sample point from Phase 3 of the former cycle that was incorrectly classified
to Phase 1 of the next cycle.
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Figure 9. Gait reference system based on vision. (a) The process of extracting the joint angles of a leg:
I. Distribution of leg markers. II. Skeleton model of the right leg. III. Extracted joint angles. (b) The
basis of gait classification labels in machine learning [Perry’s method of dividing the period of gait, LR
(loading response), MS1 (mid-stance), TS1 (terminal stance), PS (pre-swing), IS (initial swing), MS2
(mid-swing), TS2 (terminal swing). (c) Angle data of three joints (hip, knee, and ankle) extracted from
the visual system after data processing. (d) The theoretical classification and the machine learning
forecast classification of the phase of visual leg angles during a walking gait cycle.
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4.5. Validation of Gait Phase Detection based on Flexible Insole Sensor

In order to demonstrate that the pressure-sensitive insole has a good static and dynamic response
performance, a healthy adult male volunteer with a weight of 70 kg (volunteer #1, who also participated
in the visual system experiment below) was invited to wear the pressure-sensitive insole. After
obtaining the plantar pressure data of him, we analyzed the pressure distribution, classified his gait
phase according to the classical gait classification criteria [45], and automatically forecasted classified
gait phase through the kNN machine learning method.

First of all, the pressure-sensitive insole can be comfortably worn on a foot. As shown in Figure 10a,
after wearing the pressure-sensitive insole, the volunteer’s actions were not greatly hindered. To obtain
the static response of the pressure-sensitive insole, the resistive data of the sensing units were recorded
when the volunteer was sitting or standing. The pressure cloud chart of the plantar could be drawn
according to the resistance changes of the sensing units. It was obvious that the color of the sensing
points on the pressure cloud chart was darker when the volunteer was standing than that when he was
sitting. When the volunteer was standing up, the body’s mass was all applied to the feet. Thereby,
the pressure on the planar was higher than that in the sitting condition where the body’s mass was
partly borne by the seated buttocks. After several standing–sitting cycles, we found that the changes
in the resistance of each sensing unit had obvious repeatability in Figure 10b. This proved that the
pressure-sensitive insole had good static performance. Walking is an appropriate way to test the
dynamic characteristics of the pressure-sensitive insole. As shown in Figure 10c, 60-gait-cycle data
were selected from the middle of total recorded cycles during the walking experiment. Therefore,
the 60-gait-cycle data were regarded as steady state during the entire walking task. After analyzing
the dynamic resistance-to-time curve of the pressure sensors, the results generally showed good
reproducibility. Along with the repeat gait phase of the volunteer, the resistance also showed the
phenomenon of reciprocating changes. In order to analyze the gait of the volunteers through resistance
data and to automatically classify the data with machine learning later, here, we introduce Perry’s gait
phase division method [45] (Figure 9b) as the basis for our gait division.
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Figure 10. Pressure-sensitive insole function and wear demonstration. (a) Photos of the volunteer
standing or sitting with the pressure-sensitive insole, the in-time pressure cloud diagrams of the six
sensing units in the pressure-sensitive insole, and a zoom view of wearing status. (b) Resistance
response of six sensing units in the pressure-sensitive insole during the volunteer standing and sitting.
(c) Resistance response of six pressure-sensitive units on the insole while the volunteer was walking at
2 km/h. (d) The theoretical classification and the machine learning forecast classification of the phase of
resistive pressure data during a walking gait cycle.
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From a zoomed view of walking cycle resistance data in Figure 10d, the resistance variation trends
of these sensing units were obviously different, because where the foot landed varied with gait phases.
Approximately, a gait cycle of a single foot had a time interval of 1.7 s, which was equivalent to a stride
frequency of 1.18 Hz. Since resistance data of the pressure-sensitive insole were collected only on the
right foot, based on the above resistance data, the gait was divided into three phases during a walking
cycle: Phase 1 (loading response and mid-stance), Phase 2 (terminal stance and pre-swing) and Phase
3 (initial swing, mid-swing, and terminal swing). A single walking cycle can be illustrated by the
following description. The whole gait cycle starts from the landing of the heel of the right foot (marked
as number 1 in Figure 10b), and the resistance of the sensing unit at the heel point decreases in the
following short period. When the arch bone starts to be under pressure, the force on the heel starts to
decrease, which means the heel is going to rise (marked as number 2 in Figure 10d). This is also known
by the dropped resistance of the sensor unit located at the arch bone point and the rise in resistance
of the sensor unit located at the heel point. Phase 1 (including loading response and mid-stance) is
defined by the interval from marked number 1 to number 2 in Figure 10d. Then, this is followed by
a dropped resistance of the sensing unit both located at the toe point and the metatarsal bone point,
which means that the pressure of these areas is increasing. Meanwhile, overall plantar pressure is
centralized on the forefoot. As the left foot lands, the left foot takes over from the right foot as the main
supporting foot. Next, the resistance of the sensing unit located at the toe point and the metatarsal
bone point increases due to the decreased pressure loaded on these areas. Finally, the resistance of the
sensing unit located at the toe point, as the last unit, returns to a non-pressurized resistance value,
which is symbolized as number 3 in Figure 10d to mark the end of Phase 2 (terminal stance and
pre-swing). The dangling state of the right foot is classified as Phase 3 (initial swing, mid-swing, and
terminal swing) because, during this phase, the resistances of sensing units are almost constant.

Since the resistive data of walking cycles had good repeatability, we adopted the machine learning
method to process the data and then automatically classified the gait phase. Here, we used the basic
kNN method to classify the phase. After adjusting parameters and comparing accuracy (see more
details in Section 5.2), we determined the set-up parameters (K = 100, ratio = 0.025). As shown in
Figure 11b, the total recognition accuracy of visual-based gait information was up to 98%. The accuracy
of Phase 1 and 2 was 100%, while that of Phase 3 was 96%. We applied the model to automatically
classify the gait cycle in Figure 9d, and results (illustrated in Figure 10d) of automatic phase classification
of resistive data were completely consistent with those of manual phase classification. These results
reflected that the resistive data set collected by the pressure-sensitive insole was suitable for automatic
classification by the machine learning kNN method.
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5. Evaluation and Analysis

5.1. Key Factors of kNN Algorithm and Data Processing

The kNN algorithm, as a basic kind of non-parametric methods, is used for classification and
regression [46]. The principle of the kNN algorithm is that the labeled data sets constitute a point
cloud in the n-dimensional space, and the raw data are put into the n-dimensional space. The data
to be identified are automatically classified into the label of which the number in a certain category
is the largest among the K nearest existing data of the data to be identified. Appropriate K value
and training ratio parameters in kNN algorithm can effectively improve the accuracy of automatic
classification. We altered K values (1, 5, 10, 50, and 100) and training ratio parameters (0.025, 0.1, and
0.4) int he kNN algorithm in turn to make the model more suitable for the classification of visual data
and resistance data.

With the continuous development of mobile Internet, most wearable systems have equipped with
the smart phone to transport and process wearable data in a cost-effective manner [47]. However, the
limited power and computational capabilities of a smart phone may have impacts on the complex
tasks of data transportation and processing. To address these issues, wearable systems based on
the Internet-of-Things (IoT) cloud was proposed, enhanced by powerful severs where the wearable
data can be stored and analyzed efficiently for computation-intensive data processing [48]. The
IoT-cloud technology is promoting the new revolution of wearable healthcare system, called Wearable
2.0, one primary challenge of which is the end-to-end latency limiting the application in real time
monitoring [49]. To cope with this challenge, edge computing has attracted many researchers to devote
significant efforts to developing a novel approach by leveraging additional processing resources [50].
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Moreover, with the advanced technological innovations and massive production in hardware, on-device
data analysis without the reliance on the cloud is possible [51]. In this work, all collected data were
wirelessly transferred to a personal computer (PC) via Bluetooth for data storage and off-line data
analysis. The communication tool for data storage between PC and flexible insole sensors was based on
MATLAB. The post-processing of data classification based on the machine-learning method was also
conducted on the same PC separately. In the future, we hope to deploy all algorithms on a compactable
processer integrated with flexible insole sensors to explore the feasibility of on-device data analysis.

5.2. Performance Evaluation and Comparison of Classifiers

Appropriate K value and training ratio parameters in kNN algorithm can effectively improve
the accuracy of automatic classification. We altered K values (1, 5, 10, 50, and 100) and training ratio
parameters (0.025, 0.1, and 0.4) in the kNN algorithm in turn to make the model more suitable for the
classification of visual data and resistance data. To completely evaluate the classifier, we computed
the related assessment parameters of the training results, including total accuracy, precision, recall
rate, and F1score, which are summarized in Tables A1–A4, respectively. These data can illustrate the
effect of automatic classification. In some appropriate parameters, these classification indicators are
relatively high. This shows that our framework can be applied to the collection and the analysis of
human gait data.

As shown in Figure 11a,b, by comparing the prediction accuracy of these two data sets, if the
parameters are appropriate (K = 100, ratio = 0.025 for pressure sensors; K = 1, ratio = 0.1 for vision
systems), the prediction accuracy of both can reach above 95% (97% for pressure sensors and 98% for
vision system). In addition, the classifier precision of three phases (Phase 1, Phase 2, and Phase 3)
that were divided based on visual data was 93%, 100%, and 100%, respectively, while that based on
pressure sensors was 100%, 100%, and 95%, respectively. Moreover, the classifier F1-scores of the three
phases that were divided based on visual data were 0.967, 0.971, and 0.977, respectively, while those of
pressure sensors were 1.000, 0.957, and 0.978, respectively. What is more, it was found that the quality
of the data set obtained by using the pressure-sensitive insole was not inferior to that obtained by the
image processing method in the machine learning algorithm using kNN.

5.3. Statistical Analysis and Comparison of Two Methods

The statistical analysis of stride time based on visual signals and plantar pressure distribution
was carried out, as shown in Figure 12. Although the total stride time of a walking cycle is almost the
same, the time length of each gait phase divided by the two kinds of data was not consistent. This was
attributed to the difference of labeling between visual data and pressure data. The visual data were
classified based on the contact between the shoe and the treadmill, while plantar pressure data were
classified based on the contact between the foot and the insole. There is a time difference between the
two kinds of contact modes.

Meanwhile, vision and plantar pressure, as two kinds of information sources for gait phase
recognition, have advantages over each other. For example, the heel strike and rise point can be
recorded more accurately through the pressure-sensitive insole, while the feet adjacent and tibia vertical
status could be obtained only through the visual system. Here, we combined the two gait recognition
methods to make up for each other’s limitations, as shown in Figure 11c. The whole gait recognition
system can provide a lot of visual and plantar pressure data for subsequent machine learning methods.
By analyzing the characteristics between the two kinds of data, we hope to find the corresponding
relationship between them. This method is beneficial for the monitoring of human health and the
recovery of disease as well as for providing sufficient information for the control of an exoskeleton.
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5.4. Adaptability Analysis of Pressure-Sensitive Insole

To verify that the results from the developed pressure-sensitive insole for gait phase division are
generalizable, more volunteers were invited to participate in experiments. The detailed information
about health condition of volunteers, including gender, weight, and body mass ndex (BMI (kg/m2),
defined as a person’s weight in kilograms divided by the square of the person’s height in meters),
are summarized in Table 3. All volunteers were requested to wear the developed pressure-sensitive
insole while walking on a treadmill. The walking speed of treadmill was set as 2 km/h. The machine
learning model used to process the data collected from these experiments was the same one with K
= 100, ratio = 0.025. All the results, such as stride frequency, stride time, overall accuracy, precision,
and F1-score, of five users are summarized in Table 4, illustrating the good adaptability of the
pressure-sensitive insole.

Table 3. Summary of detailed information of five volunteers.

Volunteer Number Gender Weight (kg) Height (m) BMI (kg/m2)

#1 Male 70 1.72 23.7
#2 Male 60 1.81 18.3
#3 Female 51 1.61 19.6
#4 Female 54 1.55 22.4
#5 Male 65 1.76 20.9

Table 4. Summary of results of gait phase division with several volunteers based on
pressure-sensitive insole.

Volunteer
Number

Stride
Frequency

(Hz)

Stride
Time (s)

Overall
Accuracy

(%)

Precision (%) F1-Score

Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3

#1 1.18 1.7 98.000 100.000 100.000 95.745 1.000 0.957 0.978
#2 1.12 1.8 96.000 100.000 100.000 91.667 1.000 0.933 0.857
#3 1.26 1.6 92.000 92.308 100.000 80.000 0.923 0.933 0.889
#4 1.34 1.5 88.000 92.308 60.000 100.00 0.923 0.750 0.875
#5 1.26 1.6 91.667 100.000 100.000 87.500 1.000 0.667 0.933
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6. Future Work

This paper focused on addressing the inherent design and implementation challenges with
detailed prototype design and fabrication, an exploratory flexible sensors characterization experiment,
and detailed experimental validation. In the current status, these pressure-sensitive insoles were not
applied to the elderly, young children, disabled people, pregnant women, and other groups with
special plantar pressure as well as a human exoskeleton to detect the heterogeneous distribution of
plantar pressure. We look forward to further applying the developed devices to those areas until the
compatibility of it is improved by the highly intensive integration design of all components, such as
power supply, data acquisition, data processing, and data transmission. Meanwhile, our machine
learning algorithm in the visual reference system is basic and can be adopted for classification. There
is a need for developing a specific algorithm to tackle the challenges in accurate gait phase prediction
considering possible effects of acceleration and deceleration phases at the start and the stop of the
walking task. In future research, we plan to detect the plantar pressure distribution of more types of
people under the whole walking process through this system, collect enough planar pressure and
visual data, and try to establish individual differences in the corresponding relationship between
plantar pressure and the angle of lower limb joints [52]. In this way, the exoskeleton control model can
be trained to achieve the goal of personalized control in which exoskeleton control information is only
obtained through plantar pressure signals.

7. Conclusions

In summary, a pressure-sensitive insole with the laser-processed surface was designed and
fabricated. The highlight of the pressure sensors was that reduced and stabilized resistances of sensing
units were obtained by the laser process. Furthermore, a pressure sensing insole was assembled
by employing laser-processed sensing units and inkjet-printed electrodes. The characteristics of the
pressure-sensitive insole were demonstrated by the experiment, where it was worn by a healthy human
walking on a treadmill. The static characteristics of the pressure-sensitive insole were verified by the
experiment of alternative standing and sitting. The dynamic characteristics of the pressure-sensitive
insole were presented, the planar pressure signals obtained from the pressure-sensitive insole were
analyzed by referring to the visual detection system based on machine learning, and the gait phase
of the human was further divided. This work further compared the performance of the plantar
pressure-sensitive insole with the image processing method by using machine learning. Finally, the gait
monitoring system composed of the pressure-sensitive insole and visual aids is expected to provide an
effective tool to obtain the corresponding data of lower extremity joint angle and plantar pressure to
facilitate the subsequent exoskeleton control.
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Appendix A

Table A1. Comparison of overall accuracy based on volunteer #1 (unit: %).

Methods K = 1 K = 5 K = 10 K = 50 K = 100

Vision systems
Ratio = 0.025 91.304 92.750 94.203 95.652 97.101
Ratio = 0.1 90.614 90.614 93.502 93.863 93.501
Ratio = 0.4 91.772 92.948 93.309 93.580 93.400

Pressure sensors
Ratio = 0.025 96.774 96.774 93.548 90.323 83.871
Ratio = 0.1 98.000 95.000 95.000 92.000 88.000
Ratio = 0.4 94.000 96.250 94.750 91.500 87.000

Table A2. Comparison of recall based on volunteer #1 (unit: %).

Methods Phase K = 1 K = 5 K = 10 K = 50 K = 100

Vision systems

Ratio = 0.025
1 100.000 100.000 100.000 100.000 100.000
2 77.778 83.333 83.333 88.889 100.000
3 90.909 90.910 95.455 95.455 100.000

Ratio = 0.1
1 95.575 93.805 96.460 97.345 96.460
2 79.710 84.058 88.406 89.855 88.406
3 92.632 91.579 93.684 92.632 93.684

Ratio = 0.4
1 92.706 93.412 94.353 93.882 94.824
2 88.104 91.450 94.052 94.052 92.937
3 93.024 93.447 91.748 92.961 92.233

Pressure sensors

Ratio = 0.025
1 100.000 100.000 100.000 100.000 100.000
2 88.889 88.889 88.888 77.778 77.777
3 100.000 100.000 90.909 90.909 72.727

Ratio = 0.1
1 100.000 100.000 100.000 100.000 100.000
2 91.667 83.333 88.888 77.778 77.777
3 100.000 97.778 95.556 91.111 80.000

Ratio = 0.4
1 95.763 98.305 100.000 100.000 100.000
2 89.744 93.162 92.308 88.034 88.889
3 95.758 96.970 92.727 87.879 76.364

Table A3. Comparison of precision based on volunteer #1 (unit: %).

Methods Phase K = 1 K = 5 K = 10 K = 50 K = 100

Vision systems

Ratio = 0.025
1 87.879 90.630 90.625 90.625 93.548
2 100.000 100.000 100.000 100.000 100.000
3 90.909 90.910 95.455 100.000 100.000

Ratio = 0.1
1 88.525 92.174 93.s996 92.437 92.373
2 94.828 89.231 91.045 92.537 92.424
3 90.722 89.691 94.681 96.703 95.699

Ratio = 0.4
1 91.628 94.076 93.692 93.662 92.644
2 91.506 89.781 89.399 90.681 90.253
3 92.086 93.092 95.696 95.511 96.447

Pressure sensors

Ratio = 0.025
1 100.000 100.000 100.000 91.667 78.571
2 100.000 100.000 88.888 87.500 87.500
3 91.667 91.667 90.909 90.909 88.888

Ratio = 0.1
1 100.000 100.000 100.000 91.176 81.579
2 100.000 95.238 91.304 90.909 87.500
3 95.745 91.667 93.478 93.182 94.737

Ratio = 0.4
1 95.763 96.667 92.913 84.286 78.146
2 95.455 97.321 93.103 95.370 88.136
3 91.860 95.238 97.452 95.395 96.183
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Table A4. Comparison of F1-score based on volunteer #1.

Methods Phase K = 1 K = 5 K = 10 K = 50 K = 100

Vision systems

Ratio = 0.025
1 0.935 0.951 0.951 0.951 0.967
2 0.875 0.909 0.909 0.941 0.971
3 0.909 0.909 0.955 0.977 0.977

Ratio = 0.1
1 0.919 0.930 0.952 0.948 0.944
2 0.866 0.866 0.897 0.912 0.904
3 0.917 0.906 0.942 0.946 0.947

Ratio = 0.4
1 0.922 0.937 0.940 0.938 0.937
2 0.898 0.906 0.917 0.923 0.916
3 0.926 0.937 0.937 0.942 0.943

Pressure sensors

Ratio = 0.025
1 1.000 1.000 1.000 0.957 0.880
2 0.941 0.941 0.889 0.824 0.824
3 0.957 0.957 0.909 0.909 0.800

Ratio = 0.1
1 1.000 1.000 1.000 0.954 0.899
2 0.957 0.889 0.894 0.870 0.899
3 0.978 0.946 0.945 0.921 0.867

Ratio = 0.4
1 0.958 0.975 0.963 0.915 0.877
2 0.925 0.952 0.927 0.916 0.885
3 0.938 0.961 0.950 0.915 0.851

References

1. Pang, Z.; Yang, G.; Khedri, R.; Zhang, Y.T. Introduction to the Special Section: Convergence of automation
technology, biomedical engineering, and health informatics toward the Healthcare 4.0. IEEE Rev. Biomed.
Eng. 2018, 11, 249–259. [CrossRef]

2. Verghese, J.; Lipton, R.B.; Hall, C.B.; Kuslansky, G.; Katz, M.J.; Buschke, H. Gait Abnormality and
non-Alzheimer’s dementia abnormality of gait as a predictor of non-Alzheimer’s dementia. N. Engl.
J. Med. 2002, 347, 1761–1768. [CrossRef]

3. Tao, W.J.; Liu, T.; Zheng, R.C.; Feng, H.T. Gait analysis using wearable sensors. Sensors 2012, 12, 2255–2283.
[CrossRef]

4. Chen, K.Y.; Janz, K.F.; Zhu, W.M.; Brychta, R.J. Redefining the roles of sensors in objective physical activity
monitoring. Med. Sci. Sports Exerc. 2012, 44, 13–23. [CrossRef]

5. Yang, G.; Pang, G.; Pang, Z.; Gu, Y.; Mantysalo, M.; Yang, H. Non-invasive flexible and stretchable wearable
sensors with nano-based enhancement for chronic disease care. IEEE Rev. Biomed. Eng. 2018, 12, 34–71.
[CrossRef] [PubMed]

6. Li, T.H.S.; Su, Y.T.; Lai, S.W.; Hu, J.J. Walking motion generation, synthesis, and control for biped robot by
using PGRL, LPI, and fuzzy logic. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2011, 41, 736–748. [CrossRef]
[PubMed]

7. Liu, G.H.Z.; Chen, M.Z.Q.; Chen, Y. When joggers meet robots: The past, present, and future of research on
humanoid robots. Bio Des. Manuf. 2019, 2, 108–118. [CrossRef]

8. Banala, S.K.; Kim, S.H.; Agrawal, S.K.; Scholz, J.P. Robot assisted gait training with active leg exoskeleton
(ALEX). IEEE Trans. Neural Syst. Rehabil. Eng. 2009, 17, 2–8. [CrossRef]

9. Hassan, M.; Kadone, H.; Suzuki, K.; Sankai, Y. Wearable gait measurement system with an instrumented
cane for exoskeleton control. Sensors 2014, 14, 1705–1722. [CrossRef]

10. Ding, S.; Ouyang, X.; Liu, T.; Li, Z.; Yang, H. Gait event detection of a lower extremity exoskeleton robot by
an intelligent IMU. IEEE Sens. J. 2018, 18, 9728–9735. [CrossRef]

11. Leardini, A.; Benedetti, M.G.; Berti, L.; Bettinelli, D.; Nativo, R.; Giannini, S. Rear-foot, mid-foot and fore-foot
motion during the stance phase of gait. Gait Posture 2007, 25, 453–462. [CrossRef]

12. Howell, A.M.; Kobayashi, T.; Hayes, H.A.; Foreman, K.B.; Bamberg, S.J.M. Kinetic gait analysis using a
low-cost insole. IEEE Trans. Biomed. Eng. 2013, 60, 3284–3290. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/RBME.2018.2848518
http://dx.doi.org/10.1056/NEJMoa020441
http://dx.doi.org/10.3390/s120202255
http://dx.doi.org/10.1249/MSS.0b013e3182399bc8
http://dx.doi.org/10.1109/RBME.2018.2887301
http://www.ncbi.nlm.nih.gov/pubmed/30571646
http://dx.doi.org/10.1109/TSMCB.2010.2089978
http://www.ncbi.nlm.nih.gov/pubmed/21095871
http://dx.doi.org/10.1007/s42242-019-00038-7
http://dx.doi.org/10.1109/TNSRE.2008.2008280
http://dx.doi.org/10.3390/s140101705
http://dx.doi.org/10.1109/JSEN.2018.2871328
http://dx.doi.org/10.1016/j.gaitpost.2006.05.017
http://dx.doi.org/10.1109/TBME.2013.2250972
http://www.ncbi.nlm.nih.gov/pubmed/23475336


Sensors 2019, 19, 5197 19 of 20

13. Lee, J.A.; Cho, S.H.; Lee, J.W.; Lee, K.H.; Yang, H.K. Wearable accelerometer system for measuring the
temporal parameters of gait. In Proceedings of the Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 483–486. [CrossRef]

14. Lin, Z.; Wu, Z.; Zhang, B.; Wang, Y.C.; Guo, H.; Liu, G.; Chen, C.; Chen, Y.; Yang, J.; Wang, Z.L. A triboelectric
nanogenerator-based smart insole for multifunctional gait monitoring. Adv. Mater. Technol. 2019, 4, 1–7.
[CrossRef]

15. Joshi, C.D.; Lahiri, U.; Thakor, N.V. Classification of gait phases from lower limb EMG: Application to
exoskeleton orthosis. In Proceedings of the IEEE Point-of-Care Healthcare Technologies, Bangalore, India,
16–18 January 2013; pp. 228–231. [CrossRef]

16. Zheng, E.; Chen, B.; Wang, X.; Huang, Y.; Wang, Q. On the design of a wearable multi-sensor system for
recognizing motion modes and sit-to-stand transition. Int. J. Adv. Robot. Syst. 2014, 11, 30. [CrossRef]

17. Ko, J.; Lu, C.Y.; Srivastava, M.B.; Stankovic, J.A.; Terzis, A.; Welsh, M. Wireless sensor networks for healthcare.
Proc. IEEE 2010, 98, 1947–1960. [CrossRef]

18. Niu, S.; Matsuhisa, N.; Beker, L.; Li, J.; Wang, S.; Wang, J.; Jiang, Y.; Yan, X.; Yun, Y.; Burnett, W.; et al. A
wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2019, 2, 361–368. [CrossRef]

19. Chen, S.; Lach, J.; Lo, B.; Yang, G.Z. Toward pervasive gait analysis with wearable sensors: A systematic
review. IEEE J. Biomed. Heal. Inform. 2016, 20, 1521–1537. [CrossRef]

20. Najafi, B.; Ron, E.; Enriquez, A.; Marin, I.; Razjouyan, J.; Armstrong, D.G. Smarter sole survival: Will
neuropathic patients at high risk for ulceration use a smart insole-based foot protection system? J. Diabetes
Sci. Technol. 2017, 11, 702–713. [CrossRef] [PubMed]

21. Malvade, P.S.; Joshi, A.K.; Madhe, S.P. IoT based monitoring of foot pressure using FSR sensor. In Proceedings
of the 2017 IEEE International Conference on Communication and Signal Processing, Chennai, India, 6–8
April 2017; pp. 635–639. [CrossRef]

22. Paredes-Madrid, L.; Fonseca, J.; Matute, A.; Velasquez, E.I.G.; Palacio, C.A. Self-compensated driving circuit
for reducing drift and hysteresis in Force Sensing Resistors. Electronics 2018, 7, 146. [CrossRef]

23. Ishiguro, Y.; Ishikawa, T.; Kojima, K.; Sugai, F.; Nozawa, S.; Kakiuchi, Y.; Okada, K.; Inaba, M. Online
master-slave footstep control for dynamical human-robot synchronization with wearable sole sensor. In
Proceedings of the IEEE-RAS 16th International Conference on Humanoid Robots, Cancun, Mexico, 15–17
November 2016; pp. 864–869. [CrossRef]

24. Yuan, C.; Luo, L.P.; Yuan, Q.; Wu, J.; Yan, R.J.; Kim, H.; Shin, K.S.; Han, C.S. Development and evaluation of a
compact 6-axis force/moment sensor with a serial structure for the humanoid robot foot. Measurement 2015,
70, 110–122. [CrossRef]

25. Yao, S.; Zhu, Y. Wearable multifunctional sensors using printed stretchable conductors made of silver
nanowires. Nanoscale 2014, 6, 2345–2352. [CrossRef] [PubMed]

26. Sanli, A.; Benchirouf, A.; Muller, C.; Kanoun, O. Piezoresistive performance characterization of strain
sensitive multi-walled carbon nanotube-epoxy nanocomposites. Sens. Actuators A Phys. 2017, 254, 61–68.
[CrossRef]

27. Wang, L.H. Piezoresistive sensor based on conductive polymer composite with transverse electrodes. IEEE
Trans. Electron Devices 2015, 62, 1299–1305. [CrossRef]

28. Park, H.; Jeong, Y.R.; Yun, J.; Hong, S.Y.; Jin, S.; Lee, S.J.; Zi, G.; Ha, J.S. Stretchable array of highly sensitive
pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars.
ACS Nano 2015, 9, 9974–9985. [CrossRef] [PubMed]

29. Khan, S.; Tinku, S.; Lorenzelli, L.; Dahiya, R.S. Flexible tactile sensors using screen-printed P(VDF-TrFE) and
MWCNT/PDMS composites. IEEE Sens. J. 2015, 15, 3146–3155. [CrossRef]

30. Saito, M.; Nakajima, K.; Takano, C.; Ohta, Y.; Sugimoto, C.; Ezoe, R.; Sasaki, K.; Hosaka, H.; Ifukube, T.;
Ino, S.; et al. An in-shoe device to measure plantar pressure during daily human activity. Med. Eng. Phys.
2011, 33, 638–645. [CrossRef]

31. Krause, A.; Smailagic, A.; Siewiorek, D.P. Context-aware mobile computing: Learning context-dependent
personal preferences from a wearable sensor array. IEEE Trans. Mob. Comput. 2006, 5, 113–127. [CrossRef]

32. LeMoyne, R.; Heerinckx, F.; Aranca, T.; De Jager, R.; Zesicwicz, T.; Saal, H.J. Wearable body and wireless
inertial sensors for machine learning classification of gait for people with Friedreich’s ataxia. In Proceedings
of the IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks, San Francisco,
CA, USA, 14–17 June 2016; pp. 147–151. [CrossRef]

http://dx.doi.org/10.1109/Iembs.2007.4352328
http://dx.doi.org/10.1002/admt.201800360
http://dx.doi.org/10.1109/PHT.2013.6461326
http://dx.doi.org/10.5772/57788
http://dx.doi.org/10.1109/JPROC.2010.2065210
http://dx.doi.org/10.1038/s41928-019-0286-2
http://dx.doi.org/10.1109/JBHI.2016.2608720
http://dx.doi.org/10.1177/1932296816689105
http://www.ncbi.nlm.nih.gov/pubmed/28627227
http://dx.doi.org/10.1109/ICCSP.2017.8286435
http://dx.doi.org/10.3390/electronics7080146
http://dx.doi.org/10.1109/HUMANOIDS.2016.7803374
http://dx.doi.org/10.1016/j.measurement.2015.03.027
http://dx.doi.org/10.1039/c3nr05496a
http://www.ncbi.nlm.nih.gov/pubmed/24424201
http://dx.doi.org/10.1016/j.sna.2016.12.011
http://dx.doi.org/10.1109/TED.2015.2403474
http://dx.doi.org/10.1021/acsnano.5b03510
http://www.ncbi.nlm.nih.gov/pubmed/26381467
http://dx.doi.org/10.1109/JSEN.2014.2368989
http://dx.doi.org/10.1016/j.medengphy.2011.01.001
http://dx.doi.org/10.1109/TMC.2006.18
http://dx.doi.org/10.1109/BSN.2016.7516249


Sensors 2019, 19, 5197 20 of 20

33. Rawassizadeh, R.; Momeni, E.; Dobbins, C.; Gharibshah, J.; Pazzani, M. Scalable daily human behavioral
pattern mining from multivariate temporal data. IEEE Trans. Knowl. Data Eng. 2016, 28, 3098–3112. [CrossRef]

34. Yu, Z.B.; Niu, X.F.; Liu, Z.T.; Pei, Q.B. Intrinsically stretchable polymer light-emitting devices using carbon
nanotube-polymer composite electrodes. Adv. Mater. 2011, 23, 3989–3994. [CrossRef]

35. Seghir, R.; Arscott, S. Extended PDMS stiffness range for flexible systems. Sens. Actuators A Phys. 2015, 230,
33–39. [CrossRef]

36. Luo, N.; Dai, W.; Li, C.; Zhou, Z.; Lu, L.; Poon, C.C.Y.; Chen, S.C.; Zhang, Y.; Zhao, N. Flexible piezoresistive
sensor patch enabling ultralow power cuffless blood pressure measurement. Adv. Funct. Mater. 2016, 26,
1178–1187. [CrossRef]

37. Pang, G.; Deng, J.; Wang, F.; Zhang, J.; Pang, Z.; Yang, G. Development of flexible robot skin for safe and
natural human-robot collaboration. Micromachines 2018, 9, 576. [CrossRef] [PubMed]

38. Crea, S.; Donati, M.; De Rossi, S.M.; Oddo, C.M.; Vitiello, N. A wireless flexible sensorized insole for gait
analysis. Sensors 2014, 14, 1073–1093. [CrossRef]

39. Lind, R.F.; Love, L.J.; Rowe, J.C.; Pin, F.G. Multi-axis foot reaction force/torque sensor for biomedical
applications. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, St.
Louis, MO, USA, 10–15 October 2009; pp. 2575–2579. [CrossRef]

40. Chen, G.; Qi, P.; Guo, Z.; Yu, H.Y. Gait-event-based synchronization method for gait rehabilitation robots via
a bioinspired adaptive oscillator. IEEE Trans. Biomed. Eng. 2017, 64, 1345–1356. [CrossRef]

41. Muralidharan, N.; Li, M.Y.; Carter, R.E.; Galioto, N.; Pint, C.L. Ultralow frequency electrochemical-mechanical
strain energy harvester using 2D black phosphorus nanosheets. ACS Energy Lett. 2017, 2, 1797–1803.
[CrossRef]

42. Rosenbaum, D.; Becker, H.P. Plantar pressure distribution measurements: Technical background and clinical
applications. Foot Ankle Surg. 1997, 3, 1–14. [CrossRef]

43. Büscher, G.H.; Kõiva, R.; Schürmann, C.; Haschke, R.; Ritter, H.J. Flexible and stretchable fabric-based tactile
sensor. Rob. Auton. Syst. 2015, 63, 244–252. [CrossRef]

44. Muro-de-la-Herran, A.; García-Zapirain, B.; Méndez-Zorrilla, A. Gait analysis methods: An overview
of wearable and non-wearable systems, highlighting clinical applications. Sensors 2014, 14, 3362–3394.
[CrossRef]

45. Perry, J.; Davids, J.R. Gait analysis: Normal and pathological function. J. Pediatr. Orthop. 1992, 12, 815.
[CrossRef]

46. Taborri, J.; Palermo, E.; Rossi, S. Automatic detection of faults in race walking: A comparative analysis of
machine-learning algorithms fed with inertial sensor data. Sensors 2019, 19, 1461. [CrossRef]

47. He, S.B.; Chen, J.M.; Li, X.; Shen, X.M.; Sun, Y.X. Mobility and intruder prior information improving the
barrier coverage of sparse sensor networks. IEEE Trans. Mob. Comput. 2014, 13, 1268–1282. [CrossRef]

48. Yang, Z.; Zhou, Q.; Lei, L.; Zheng, K.; Xiang, W. An IoT-cloud based wearable ECG monitoring system for
smart healthcare. J. Med. Syst. 2016, 40, 286. [CrossRef] [PubMed]

49. Chen, M.; Ma, Y.; Li, Y.; Wu, D.; Zhang, Y.; Youn, C.-H. Wearable 2.0: Enabling human-cloud integration in
next generation healthcare systems. IEEE Commun. Mag. 2017, 55, 54–61. [CrossRef]

50. Chen, Z.; Klatzky, R.; Siewiorek, D.; Satyanarayanan, M.; Hu, W.; Wang, J.; Zhao, S.; Amos, B.; Wu, G.; Ha, K.;
et al. An empirical study of latency in an emerging class of edge computing applications for wearable
cognitive assistance. In Proceedings of the Second ACM/IEEE Symposium on Edge Computing, San Jose,
CA, USA, 12–14 October 2017; p. 14. [CrossRef]

51. Rawassizadeh, R.; Pierson, T.J.; Peterson, R.; Kotz, D. NoCloud: Exploring network disconnection through
on-device data analysis. IEEE Pervas. Comput. 2018, 17, 64–74. [CrossRef]

52. Shi, L.; Duan, F.; Yang, Y.; Sun, Z. The effect of treadmill walking on gait and upper trunk through linear and
nonlinear analysis methods. Sensors 2019, 19, 2204. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TKDE.2016.2592527
http://dx.doi.org/10.1002/adma.201101986
http://dx.doi.org/10.1016/j.sna.2015.04.011
http://dx.doi.org/10.1002/adfm.201504560
http://dx.doi.org/10.3390/mi9110576
http://www.ncbi.nlm.nih.gov/pubmed/30400665
http://dx.doi.org/10.3390/s140101073
http://dx.doi.org/10.1109/Iros.2009.5353917
http://dx.doi.org/10.1109/TBME.2016.2604340
http://dx.doi.org/10.1021/acsenergylett.7b00478
http://dx.doi.org/10.1046/j.1460-9584.1997.00043.x
http://dx.doi.org/10.1016/j.robot.2014.09.007
http://dx.doi.org/10.3390/s140203362
http://dx.doi.org/10.1097/01241398-199211000-00023
http://dx.doi.org/10.3390/s19061461
http://dx.doi.org/10.1109/Tmc.2013.129
http://dx.doi.org/10.1007/s10916-016-0644-9
http://www.ncbi.nlm.nih.gov/pubmed/27796840
http://dx.doi.org/10.1109/MCOM.2017.1600410CM
http://dx.doi.org/10.1145/3132211.3134458
http://dx.doi.org/10.1109/MPRV.2018.011591063
http://dx.doi.org/10.3390/s19092204
http://www.ncbi.nlm.nih.gov/pubmed/31086054
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Materials and Methods 
	Structure Design 
	Fabrication 

	Results and Discussion 
	Sensing Unit Stabilizing 
	Sensing Unit Characterization 
	Integration of Flexible Insole Sensor 
	Gait Reference System Based on Vision 
	Validation of Gait Phase Detection based on Flexible Insole Sensor 

	Evaluation and Analysis 
	Key Factors of kNN Algorithm and Data Processing 
	Performance Evaluation and Comparison of Classifiers 
	Statistical Analysis and Comparison of Two Methods 
	Adaptability Analysis of Pressure-Sensitive Insole 

	Future Work 
	Conclusions 
	
	References

