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Aedes aegypti is an invasive mosquito species and major vector of human arboviruses. A
wide variety of control methods have been employed to combat mosquito populations.
One of them is the sterile insect technique (SIT) that has recently attracted considerable
research efforts due to its proven record of success and the absence of harmful
environmental footprints. The efficiency and cost-effectiveness of SIT is significantly
enhanced by male-only releases. For mosquito SIT, male-only releases are ideally
needed since females bite, blood-feed and transmit the pathogens. Ae. aegypti
genetic sexing strains (GSS) have recently become available and are based on eye
colour mutations that were chosen as selectable markers. These genetic sexing strains
were developed through classical genetics and it was shown to be subjected to genetic
recombination, a phenomenon that is not suppressed in males as is the case in many
Diptera. The genetic stability of these GSSwas strengthened by the induction and isolation
of radiation-induced inversions. In this study, we used the red eye mutation and the
inversion Inv35 line of the Ae. aegypti red-eye GSS s and introgressed them in six different
genomic backgrounds to develop GSS with the respective local genomic backgrounds.
Our goal was to assess whether the recombination frequencies in the strains with and
without the inversion are affected by the different genomic backgrounds. In all cases the
recombination events were suppressed in all Inv35 GSS strains, thus indicating that the
genomic background does not negatively affect the inversion result. Absence of any effect
that could be ascribed to genetic differences, enables the introgression of the key elements
of the GSS into the local genomic background prior to release to the target areas.
Maintaining the local background increases the chances for successful matings between
released males and wild females and addresses potential regulatory concerns regarding
biosafety and biosecurity.
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INTRODUCTION

Arthropod-borne viruses or “arboviruses” transmitted by Aedes spp.
mosquitoes are accountable for the emergence of human epidemic
diseases across the globe (Weaver and Reisen 2010; Lucey and
Gostin 2016; Siraj et al., 2017; Wilder-Smith et al., 2017). Zika,
dengue, yellow fever, and chikungunya viruses infect humans by the
bite of an infected Aedes aegypti L. (Diptera: Culicidae) mosquito
and result in a diverse array of clinical symptoms and implications
ranging from systemic febrile illnesses to neurological or
cerebrovascular diseases and death (Bhatt et al., 2013; Beckham
and Tyler 2015; Paixão et al., 2018). Ae. aegypti has successfully
spread in tropic and subtropic zones worldwide (Kraemer et al.,
2015). It is daylight-active, thrives in urban and peri-urban areas,
feeds exclusively on human blood multiple times during a
gonotrophic cycle, and shows high susceptibility to arboviruses
(Scott and Takken 2012; Wilder-Smith et al., 2017; Ryan et al.,
2019). Its ability to breed in human-made breeding settings facilitates
the increase of the vector’s population and fuels the spread of the
vector-borne diseases. Urbanization of rural areas, increase of
travelling activities, globalization, and climate change accelerate
the invasion potential of Ae. aegypti and enhance the viral
transmission (Wilder-Smith and Gubler 2008; Bhatt et al., 2013;
Struchiner et al., 2015; Ryan et al., 2019; Iwamura et al., 2020).

The lack of effective drugs and vaccines against these
arboviruses (apart from the yellow fever vaccine) has shifted the
spotlight on the vector population control methods (Achee et al.,
2015; Lees et al., 2015; Bourtzis et al., 2016; Flores and O’Neill
2018). Current efforts rely on insecticide applications and
elimination of breeding sites; however, these methods have been
proved both unsustainable and inefficient. The development of
insecticide resistance, the rapid expansion of Ae. aegypti
populations in urban areas and the inadequate control of the
cryptic breeding sites led scientists and communities to pursue
environmentally-friendly approaches that would control efficiently
the vector populations without compromising sustainability (Lima
et al., 2011; Achee et al., 2015; Louis et al., 2016; Moyes et al., 2017).

During the recent years, numerous genetically based
approaches have been developed aiming either to modify vector
populations (i.e., rendering them resistant in pathogen
transmission) or to suppress them below the threshold required
for disease transmission (Harris et al., 2012; O’Connor et al., 2012;
Alphey et al., 2013; Bellini et al., 2013; Carvalho et al., 2015; Mains
et al., 2016; Kittayapong et al., 2018; Kyrou et al., 2018; Kandul
et al., 2019; Kittayapong et al., 2019; Zheng et al., 2019; Crawford
et al., 2020). Some of the population suppression approaches,
including the sterile insect technique (SIT), have been tested in
the field with encouraging results (O’Connor et al., 2012; Bourtzis
et al., 2014; Bourtzis et al., 2016; Kittayapong et al., 2018; Kandul
et al., 2019; Kittayapong et al., 2019; Zheng et al., 2019; Crawford
et al., 2020). The SIT which relies on the mass production and
release of sterile males, has historically been applied for the control
and eradication of insect pest populations (Bushland et al., 1955;
Knipling 1955; Klassen et al., 2021). When considering the SIT as
part of a mosquito control project, one of the greatest challenges to
be addressed is the sex separation and elimination of females
(Papathanos et al., 2009; Gilles et al., 2014). Unlike agricultural

pests where either bisexual release is the only feasible approach or
the accidental release of few females is not considered a major
concern, in mosquitoes, release of both males and females is a no
go, since adult females create biting nuisance, and are potential
disease vectors. Thus, an adequate and robust sex separation
system that will reliably separate male and female mosquitoes at
a large scale is of critical importance for the implementation of a
SIT program (Gilles et al., 2014; Papathanos et al., 2018). In Ae.
aegypti, sex separation is currently based on the inherent
characteristics of the species, i.e., the size dimorphism between
male and female pupae and male-specific body parts of adults
including genitalia and antennae (Focks 1980; Gunathilaka et al.,
2019; Crawford et al., 2020). This approach is rearing-dependent,
prone to errors, labor-intensive and appropriate for small-scale
operations. Although novel and (semi)-automated methods have
been developed, the critical need of a genetic sexing strain (GSS) for
Ae. aegypti rises as the ideal sex separation method particularly if
males and females could potentially be separated at early
developmental stages (Gilles et al., 2014; Papathanos et al.,
2018). Developing a GSS using classical genetics typically
requires a selectable marker (visually detectable or conditionally
lethal) and the linkage of the wild type allele of this marker to the Y
chromosome or to the sex-determining genetic locus (Franz et al.,
2021).

Aedes species have homomorphic sex chromosomes and their
maleness is defined by a dominant male-determining locus (M
locus) of chromosome 1 (Craig and Hickey 1967; Newton et al.,
1974; Hall et al., 2015; Aryan et al., 2020; Liu et al., 2020). Ae.
aegypti males are heterogametic (Mm) while the females are
homogametic (mm) for the M-locus (Timoshevskiy et al.,
2013). The competence of the selectable marker will in turn
determine the robustness of the GSS and in Ae. aegypti the
ideal marker would reside on chromosome 1, closely linked to
the M-locus. In such a strain, male mosquitoes would be
heterozygotes and express the “wild-type” phenotype while
females would be homozygous for the recessive alleles of the
selectable marker expressing the mutated phenotype (Franz
et al., 2021). Promising markers that could be used for Ae.
aegypti GSS development are related to eye colour (Red-eye (re)
and White-eye (w) markers) which are located on chromosome 1
linked to the M-locus and they are fully penetrant and expressive
(Bhalla and Craig 1970; Munstermann and Craig 1979). Both
markers have been used by our group for the construction of two
Ae. aegypti GSS, in which males have black eyes and females have
either red or white colour eyes (Koskinioti et al., 2020). The re and
w mutant lines were crossed with the wild-type “BRA” strain
collected from Brazil and the Red-eye GSS and White-eye GSS
were developed. Quality control of both GSSs evidenced no
significant differences regarding sex ratio and immature
development duration of both sexes. The Red-eye GSS showed
outstanding productivity compared to the White-eye GSS and
significantly elevated lifespan and flight ability compared to the
wild type “BRA” strain (Koskinioti et al., 2020).

The stability of a GSS, in particular under the demanding mass-
rearing conditions, is a pivotal factor for its successful
implementation in operational population suppression
programmes. Instability during mass-rearing conditions is mainly
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attributed to genetic recombination events. Unlike other Diptera, in
Aedes mosquitoes, recombination events occur in males almost as
frequently as in females, and these events can compromise the GSS
stability and lead in breakdown of the GSS due to accumulation of
recombinants. Incorporation of recombination-suppressing factors,
such as inversions, can improve the stability of a GSS (Franzet al.
2021; Gilles et al., 2014; Zacharopoulou et al., 2017). In Ae. aegypti
induction of inversions has been shown to suppress recombination
between the M locus and morphological markers of chromosome 1
(Bhalla 1973). Using irradiation our group induced inversions inAe.
aegypti and showed that irradiation frequency can be suppressed
between re and theM locus (line 35), while at least two lines in which
recombination is suppressed betweenw and theM locus (lines 5 and
35) were identified (Augustinos et al., 2020). Inversion line 35 was
incorporated in the Red-eye GSS and White-eye GSS by crossing
wild-type males having the recombination suppressor (from the
Inv35 line) with females from the two GSSs. Recombination
frequencies were measured for consecutive generations under
filtered and non-filtered conditions, i.e., removal or not of

recombinant progeny from each generation, and recombination
was consistently reduced for both strains (Koskinioti et al., 2020).

GSSs may still face issues when released in the field that could
lead in performance reduction. The genomic background has
been shown to be a driving factor when it comes to mosquito
performance. Among others, variation in vector competence,
reproductive incompatibility, effects on fitness traits and
differences in the reproductive effects of Wolbachia infections
have been shown to stem from variations in the genomic
background of mosquito populations (Bennett et al., 2002;
Menge et al., 2005; Axford et al., 2016; Dickson et al., 2016;
Campbell et al., 2017; Carvalho et al., 2020; Enkerlin 2021). The
success of sterile mosquito releases relies massively on the mating
performance of the released males. However local mosquito
populations might vary significantly in terms of ecology,
biology, and behavior and this could in turn lead to mating
barriers which would compromise the efficiency of a SIT
programme (Krafsur and Ouma 2021). These barriers can be
overcome by developing mosquito GSS that will be integrated

FIGURE 1 | (A) Crossing scheme for the introgression of the red eye mutation into a local genomic background, (B) Crossing scheme for the introgression of the
red eye mutation and the inversion 35 into a local genomic background. Both schemes are simplified and not all genotypes retrieved after each cross are depicted. See
Supplementary Methods S1 and S2 for detailed analysis.
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into the local genomic background of the release area. In this
study theA. aegypti red eye mutation and the inversion Inv35, the
latter developed previously in the Insect Pest Control Laboratory
(IPCL, Seibersdorf, Austria), were introgressed in populations
originating from different geographic areas to develop Red-eye
GSS and Red-eye GSS/Inv35 strains with local genomic
backgrounds and their genetic stability was assessed for several
generations (Augustinos et al., 2020; Koskinioti et al., 2020).

MATERIALS AND METHODS

Ae. aegypti Strains and Rearing Conditions
The Rexvillle Red Eye strain, which is homozygous for the recessive
re allele, was used in the present study and was kindly provided by
Dr. Margareth Capurro at the Department of Parasitology,
University of Sao Paulo, Brazil. In the re strain all individuals
have red eye color which is evident throughout all developmental
stages and it darkens as adults age. Six wild type Ae. aegypti strains
originated from Brazil (BRA), Indonesia (IDN), Mexico (MEX),
Singapore (SGP), Sri Lanka (LKA), and Thailand (THA) were used
for the introgression crosses described below and checked for their
recombination rates. The Ae. aegypti inversion line 35 (Inv35)
(Augustinos et al., 2020) was used to incorporate the inversion in
all six genomic backgrounds. In all wild-type strains the eye color is
dark brown/black and remains stable at all developmental stages.
All strains were maintained in the insectary of the Insect Pest
Control Laboratory (Joint FAO/IAEACentre, Seibersdorf, Austria)
at 27 ± 1°C, 80% relative humidity and a 12/12 h day/night
photoperiod.

Adult mosquitoes were kept in standard (30 × 30 × 30 cm)
insect plastic rearing cages (BugDorm-41,515 insect cage) and a
10% sucrose solution was constantly provided. Female
mosquitoes were blood-fed with porcine blood twice per week.
The blood used was collected in Vienna, Austria during routine
slaughtering of pigs in a nationally authorized abattoir, conducted
at the highest possible standards strictly following EU laws and
regulations. Egg collections were initiated 72 h after the last blood
feeding using moistened oviposition papers (white germination
paper, Sartorius Stedium Biotech, Austria).

Crosses
Development of Red Eye-GSS Strains in Local
Genomic Backgrounds
Females of the Red Eye strain andmales from IDN, SGP and LKA
populations were used to initiate the three introgression crosses
while the respective crosses with males from BRA,MEX and THA
populations are reported in the study of Chen et al. (2021)
(Figure 1A).

The introgression of Inv35 in the local genomic backgrounds
was initiated independently and it was continued until a semi-
introgressed inversion line had been acquired. At that stage,
partially Introgressed Inv35 males were crossed with highly
introgressed Red Eye females to create a Red-GSS with Inv35
in a local genomic background (Figure 1B). The genomic
backgrounds of the introgressed Red Eye females were from
BRA, IDN, MEX, SGP, LKA and THA populations. In all

cases, fifty females and twenty males were crossed in every
generation in a 15 × 15 × 15 cm rearing cage (BugDorm-
4M1515). The detailed introgression protocols are provided in
the Supplementary Materials S1 and S2.

Estimation of Recombination Rate
The recombination rate was estimated for all the newly
established Red-eye GSS and Red-eye GSS/Inv35. All progeny
were screened in every generation and recombinants (males with
red eyes and females with black eyes) were recorded and
subsequently discarded. At least six generations per strain
were screened. Black eye males and red eye females were used
to set up the new cages. A minimum number of 1,000 individuals
were used to set up the new cages.

Data Analysis
All statistical analyses were performed using R version 4.0.5 (R
Core Team, 2021). The recombination rates between the strains
with and without inversion of the same origin and among the
different origins represent proportional data and therefore, they
were analyzed using a GLM-binomial family and a logit link
function (Dunn and Smyth, 2018). In case overdispersion was
detected, a Quasi-Binomial model with a logit link function was
applied (Demétrio et al., 2014). Analysis of deviance was
performed with a Chi-squared test for GLM-Binomial models
and with a F-test for GLM-Quasi-Binomial models (Nelder and
Wedderburn, 1972). Residuals of the models were checked for
normality and homogeneity of variance. Goodness-of-fit of the
models was visually inspected with half-normal plots with
simulation envelopes (Moral et al., 2017). Emmeans package
was used for the pairwise comparisons of the fitted model
estimates (Searle et al., 1980).

RESULTS AND DISCUSSION

TheAe. aegyptiRed-eye GSS has been developed through classical
genetics and is based on the re morphological marker that has
been mapped to chromosome I (Koskinioti et al., 2020). The red
eye mutation presents full penetrance and expressivity and the
red eye color is evident throughout all developmental stages.
Estimation of the recombination frequency between re and M
locus confirmed that re is a recessive, sex-linked gene.
Recombination events in Aedes species occur both in males
and females and, in the case of a GSS under mass-rearing
conditions, they can eventually lead in reduced genetic
stability and colony collapse (Augustinos et al., 2017; Franz
et al., 2021). Elements that suppress recombination between the
M locus and the marker are therefore required to be
incorporated in the GSS. In the study by Augustinos et al.
(2020) an inversion (Inv35) was induced through irradiation
aiming to suppress recombination between re and the M locus.
Indeed, the recombination frequency was significantly
suppressed, and the inversion was incorporated in the Red-
eye GSS thus creating the Red-eye GSS/Inv35. These two strains
were screened for numerous generations and results
demonstrated significantly decreased recombination in the

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org February 2022 | Volume 10 | Article 8214284

Augustinos et al. Aedes aegypti Introgressed Red-Eye GSS

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Red-eye GSS/Inv35 compared to the original strain (Koskinioti
et al., 2020).

Variability in recombination frequencies can be attributed,
among other factors, to genomic differences, with chromosomal
rearrangements being the most likely reason (Dickson et al.,
2016). In the present study, we received six Ae. aegypti

populations from countries that could be possible target areas
of a future operational SIT programme. The red eye mutation line
and the inversion Inv35 were introgressed into the six genomic
backgrounds, following a crossing scheme that lasted for eleven
generations. Our goal was to assess whether the novel genomic
background would affect the recombination frequencies that had

FIGURE 2 |Recombination rates of the Red-eye GSS and Red-eye GSS/Inv35, after their introgression in six local genomic backgrounds. Recombinant males and
females were recorded in each generation and results were analyzed with a GLM (binomial family). In all genomic backgrounds, the strain incorporating the inversion had
significantly lower recombination rates compared to the respective strains without the inversion. The straight line represents the fitted linear model.

FIGURE 3 | Recombination rates of the Red-eye GSS and Red-eye GSS/Inv35 throughout the course of generations. Generations were used as replicates. No
significant effect was detected among the Red-eye GSS/Inv35 strains, indicating that Inv35 suppresses recombination irrespectively of the genomic background.
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been estimated in the original GSS. As soon as the introgression
crossing scheme was completed and the twelve new strains had
been established, the recombination frequencies were evaluated
for all strains. A total of 110,799 mosquitoes from 73 generations
of 12 strains were screened and recombination frequencies were
recorded (Supplementary Materials S3 and S4).

The recombination frequency was estimated for each genomic
background individually and results indicated that the Red-eye
GSS/Inv35 presented significantly lower recombination rates
compared to the Red-eye GSS throughout the course of
generations (Figure 2). Except for Singapore for which data
availability is limited, the strains with the inversion were more
stable and with significantly lower recombination rates compared
to the ones without (Supplementary Material S5).
Recombination frequencies were analyzed to check for any
possible effect of the genomic background, using data from
different generations as replicates. In all genomic backgrounds
the recombination rates were significantly lower for the Red-eye
GSS/Inv35 (F = 51.375, df = 11, p < 2.2e-16), thus indicating that
the effect of inversion is evident in all genomic backgrounds
(Figure 3 and Supplementary Material S6). Assessment of the
recombination frequencies among the six Red-Eye GSS/Inv35
strains showed no statistically significant differences, thus
suggesting that the inversion suppresses recombination
similarly, irrespective of the genomic background
(Supplementary Material S6). Interestingly, the pairwise
comparisons of the six Red-Eye GSS strains showed an effect
of the genomic background on the recombination rates. Red-eye
GSS-BRA was shown to be significantly different from the MEX
(z = −3.495, p = 0.0005) and IDN (z = −3.035, p = 0.0024) strains,
while the same was also true for the IDN-LKA (z = 3.422, p =
0.0006), IDN-THA (z = 2.855, p = 0.0043), MEX-LKA (z =
−3.889, p = 0.0001), and MEX-THA (z = 3.353, p = 0.0008) Red-
Eye GSS comparisons. However, in some Red-eye GSS strains per
se the recombination frequencies varied among generations.
Results for Indonesia, Mexico, and Sri Lanka showed that
there was a statistically significant difference among the tested
generations (Supplementary Material S7) which could be
attributed to factors such as age, sex and temperature
(Augustinos et al., 2020). No variation was detected for the
Red-eye GSS from Brazil, Singapore and Thailand. The same
conclusion was also reached for the Red-eye GSS/Inv35 strains
(Supplementary Material S7). The recombination rates were
stable through the course of generations per strain and no
statistically significant differences were detected for all the
genomic backgrounds which confirmed the robustness and
effectiveness of the inversion in suppressing recombination
regardless of genomic background and generation. This clearly
indicated that the genomic background did not negatively affect
the genetic stability of the strains and confirmed the robustness
and effectiveness of the inversion in suppressing recombination
regardless of genomic background and generation. The Red-eye
GSS/Inv35-SGP is the only strain for which availability of data is
limited and therefore more generations are required to reach a
safe conclusion.

The results of the present study are encouraging, in respect to
the genetic stability of Red-eye GSS/Inv35 developed in local

genomic backgrounds. However, the biological quality of the
newly established GSS needs to be assessed first under
laboratory and later in field conditions (Carvalho et al.,
2020; Koskinioti et al., 2020). The genomic differences
might be proved detrimental to important fitness traits as
has been shown in both fruit flies and mosquitoes (Meza
et al., 2011; Facchinelli et al., 2013; Rempoulakis et al.,
2016; Ramírez-Santos et al., 2017; Ramírez-Santos et al.,
2017; Carvalho et al., 2020). An in-depth quality control
analysis that will assess important parameters like fecundity,
fertility, longevity, flight ability, male mating competitiveness
and response to irradiation, prior to upscaling and releasing in
the field.

The release of a mosquito GSS as part of an operational SIT
programme is ruled in most cases by concerns regarding the
biosafety and biosecurity of the released strain, as well as by
uncertainties related to the performance of the strain in the
wild. A mosquito GSS has been developed and reared in
laboratory conditions for several generations and carries its
own genomic background. Decision-making bodies could
reject the release of a GSS in an area based on the notion
that breeding of human disease vectors bearing different
genomic backgrounds could result in previously undetected
risks related to humans and the environment. To address these
issues, it is advisable to use either a local strain or to integrate
the mosquito strains into the local genomic background prior
to release. That way the potential effects associated with
mating incompatibility are minimized and the chances for
increased male mating competitiveness are raised since the
released males and the wild females will share the same
genomic background. In addition, maintaining the local
genomic background can resolve any regulatory issues
posed by the countries, reaffirm the biosecurity and
biosafety of the released strain, and enhance the public
acceptance towards the SIT programmes.

The recent discovery of the gene responsible for the red eye
phenotype in Aedes aegypti, namely cardinal, opens the way
for a faster and easier transfer of the sexing characters of the
red eye GSS in local genomic background and will thus avoid
the long (10–11 generations) and tedious genetic crosses
described in this manuscript (Chen et al., 2021). This can
be achieved by using CRISPR/Cas9 targeted mutagenesis of
the cardinal gene of the local population to de novo develop a
red eye mutant line. Next step would be to perform two
simple genetic crosses as the ones described for the original
construction of the red-eye GSS (Koskinioti et al., 2020).
First, mutant females should be crossed with wild type males
and second, F1 males should be backcrossed with mutant
females to establish a genetic sexing strain with local genomic
background.
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