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Abstract: A double staining protocol for image acquisition using confocal microscopy (CLSM) coupled
with image analysis was employed to elucidate the crust and cross-sectional properties of fried
dough. Penetrated oil by image analysis (POia), porosity and pore features were quantified from
the cross-section micrographs. Crust surface roughness was measured using fractal metrics and fat
content was determined by solvent extraction using the American Association of Cereal Chemists
method. Crumb porosity ranged between 54.94%–81.84% and reduced (p < 0.05) with bran addition.
Crumb pore sizes ranged from 0–475 µm with <1 circularity, indicating elliptical shape. POia values
were notably higher (p < 0.05) than PO by Soxhlet extraction (POsox), except for wheat bran (WB)
fried dough where the values of POia and POsox were closely ranked. The linear effect of initial
moisture content and bran concentration showed a significant impact on the image properties. The
mean fractal dimension (FD) decreased as initial moisture increased. The addition of WB caused a
significant reduction in the FD of fried dough, while the opposite effect was noted for its oat bran
counterpart. Due to non-collinearity of image properties (FD, POia and porosity), data were fitted
to cubic polynomial regression with R2 values > 0.70. CLSM and image analysis were effective in
measuring oil absorption and interpreting crumb properties of fried dough. The protocol used in
this study can be applied to other thick deep-fried foods for qualitative observation and quantitative
measurement of a specific physical or chemical property.
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1. Introduction

The transformation of dough and batter into magwinya encompasses vital microstructural changes
highly dependent on processing conditions such as mixing, and dough development, fermentation
(bubble formation as a result of CO2 release in the dough/batter), moulding of dough and/or scooping
of batter and thermal treatment (frying). The features of breadcrumbs, such as cell wall thickness, cell
size, void fraction, porosity and shape have been quantified using image analysis, as reviewed by
Pérez-Nieto et al. [1]. The application of confocal laser scanning microscopy (CLSM) for qualitative
analysis of food microstructures offers a visualisation of changes to food products, a characterisation
of complex food systems, and a distinction between food components [2]. CLSM use in the study of
fried foods offers a non-invasive approach to qualitative and measurable evaluation of oil uptake in
fried chicken nuggets [3], gluten-based and potato-based food matrices [4]. In addition to oil uptake,
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quality changes to the texture of the foods, such as crust formation, pore size distribution and porosity
measurement, have all been estimated using image analysis [5].

The CLSM choice in visualisation of changes in fried foods is due to its ability to produce
images with clear contrast, differentiating one food component (fat, protein or carbohydrates) from
the other and from the empty pores. This is achieved using dyes specific to a food component and
simultaneously viewing these components. Staining post-frying has been used, but this could yield
unreliable results due to the timing of staining which does not reveal oil uptake relative to frying unit
operation. Moreover, the formation of artefacts occurs, leading to errors in the data analysis from the
resulting image. Instead, staining the food and oil prior to frying is a better step in sample preparation
which excludes post-processing staining [6]. The choice of fluorophore depends on its affinity to the
food component of interest, emission spectra, and behaviour in the food matrix [4,7].

Quantitative analysis of food products observed microscopically has become a vital tool to
evaluate the quality of products. In the same way food is processed through the application of different
unit operations, significant information can be extracted from an image by subjecting it to processing
through mathematical operations on the raw image [8–11]. Raw and processed foods have irregular
and complex geometries and, as such, can be quantified using fractal metrics—a useful tool to measure
the surface topography of various objects, including food [12,13]. In fried food research, fractal analysis
has been used to measure surface roughness [5] and correlated to oil absorption [12–14]. The surface
roughness of foods is quite sensitive because what looks smooth to the human eye may be jagged
when examined microscopically. Fractal dimension (FD) measures how much space is filled in an
image using thresholding and edge detection tools [9].

Magwinya is a deep-fried dough/batter common to sub-Saharan Africa and has recently been
enriched with wheat bran [15], oat bran and psyllium husk fibre [16] for oil uptake reduction, and a
descriptive sensory profile [17]. However, the application of CLSM to study the microstructure and
surface topography of fried dough (magwinya) has not been carried out for quantitative evaluation.
Therefore, the aim of this paper was to extract meaningful empirical information from the crust and
cross-section confocal micrographs of magwinya in order to: (1) observe and enumerate the penetrated
oil, porosity and pore properties of the crumb; (2) determine the surface roughness of crust as affected
by bran levels in magwinya formulation, using fractal metrics; and (3) evaluate the effect of surface
roughness on surface and absorbed oil contents and assess the relationship between surface roughness
and crust texture.

2. Materials and Methods

2.1. Materials

Oat bran (Tiger Brands), wheat bran (Snowflake), sunflower oil (Spar) and wheat flour (Sasko) were
all sourced from South Africa. Nile Red-72485, (Sigma Aldrich, MO, USA), fluorescein-5-isothiocyanate
(Fluka, Switzerland) and petroleum ether (40–60 ◦C) were of analytical grade. Wheat and oat bran (OB)
were pulverised with an ultra-centrifugal mill (Retsch ZM 200, Haan Germany) fitted with a 200 µm
sieve. Milled bran was substituted and blended in wheat flour at 5%, 8%, 10%, 15% and 20%.

2.2. Fried Dough (Magwinya) Production and Frying Process

The depth of oil in the fried products was observed with confocal laser scanning microscopy
(CLSM), according to the non-invasive double staining method of Moreno and Bouchon [4].
For proper differentiation between oil and other components of the samples, two types of dyes
were used—fluorescein-5-isothiocyanate (FITC) (for batter and dough staining) and Nile red (for
oil staining). Fluorescein-5-isothiocyanate (FITC) was chosen for dough staining because it stains
starch and gluten well. It works on the principles of hydrophobicity—that is, its ability to gather in
hydrophobic regions, such as gluten rich portion of the dough [4]. Nile red was chosen for oil staining
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for its fat-soluble qualities, thermo-resistance, and emission spectra which are clearly distinct from
FITC [4]. The staining procedure was done in two phases.

Phase 1: Dry ingredients (flour 100 g, yeast 1 g, sugar 15 g, salt 1 g,) were weighed and mixed
thoroughly. About 0.01% w/w FITC was dissolved in distilled water at 20 ◦C for 1 h by agitation using
a magnetic stirrer. The FITC-stained water (65 mL and 100 mL) was added to the dry ingredients
for dough and batter preparation, respectively, for identification of the solid matrix during CLSM
observation, without further staining post-frying [4].

Phase 2: The second staining was carried out by dissolving Nile Red at 0.05 g/L in the frying oil in
order to identify oil distribution in the magwinya during CLSM observation. The FITC-stained dough
and/ or batter was deep-fried in the Nile red-stained oil at 180 ◦C for 5 min. The fried magwinya was
cooled to ambient temperature in the desiccator until imaging.

2.3. Microstructural Observation

The cross-section and crust of samples were observed with a LSM780 confocal microscope
(Zeiss, Oberkochen, Germany) equipped with an Argon multiline laser at 200 µm depth. Four thin
cross-section slices (0.5 × 0.5 × 0.5 cm) were cut from each fried product and directly viewed under the
lenses of the microscope, with two channels of observation of the confocal microscope in fluorescent
mode. The FITC-stained solid matrix (dough and batter) was observed in channel one, while the
Nile-Red-stained oil showing fat distribution was viewed in channel two after exciting at 488 nm and
543 nm, respectively with the Argon laser. Images were acquired by setting the objective lens at 10×
magnification with numerical aperture of 0.3 over regions of 512 × 512 pixels. The two-dimensional
(2D) stack of images was collected to produce 8-bit 2D images in Carl Zeiss image (CZI) format at
2.768 µm/pixels in x and y directions. Images were collected to a computer using the ZEN 2.3 SP1
software (Carl Zeiss, Oberkochen, Germany 2012), which was used for image acquisition, simple image
processing (using the maximum intensity projection for image enhancement, and best fit function for
optimal contrast between the two channels) and documentation. ZEN software also offers the option
of saving the images in choice format. Images saved both in CZI and Tagged image file (TIF) format on
the ZEN software were then exported to ImageJ version 1.52q (National Institute of Health, Bethesda,
MD, USA) for further analysis.

2.4. Image Segmentation and Analysis

Image segmentation was done using ImageJ software [18,19]. The stack composite was opened in
software using the split channel function in the hyper stack plugin. The red channel was analysed for
fat distribution, while the green channel was analysed for the solid matrix. Automatic thresholding
was done in ImageJ using the Otsu algorithm, followed by two steps of erosion and dilation to remove
noise [3,20]. Demarcation between the pore and rest of the image was done in one of two ways: (1) the
TIF version of the composite image was opened in ImageJ software, and the pore area (in black) were
manually selected by holding down the SHIFT key and the lines were traced around the boundaries of
the pores; and/or (2) using the wand tool (at a connectedness of four and a tolerance level between one
and five) to automatically select the pore areas. The wand tool creates a selection by tracing objects of
uniform colour or similar pixels. The selected areas were then filled with an alternate colour (blue)
prior to thresholding with the Triangle algorithm in ImageJ software. Triangle algorithm was used
because it gave better pore segmentation from the solid matrix, with minimal noise. The segmented
images were analysed for pore circularity (Equation (1)), particle count (ΣP), total area (ΣA), average
size (ØA), solidity and perimeter (P) using the analyze particle function. Porosity and penetrated oil
by image analysis (POia) were calculated using Equations (2) and (3) [3,4].

Circularity (C) = 4π
Area

Perimeter2 (1)



Foods 2020, 9, 605 4 of 22

Porosity (%) =
Area of empty pores + Areas of pores filled with oil

Total image area
× 100 (2)

POia (%) =
Area of pores filled with oil

Total image area
× 100 (3)

2.5. Quantification of Surface Roughness of Magwinya Using Fractal Analysis

The surface roughness of the crust of magwinya was quantified with the box-counting method
through the fractal box count algorithm of Image software. The crust micrographs were opened in
the software and were binarized. Erosion and dilation operations were applied to remove noise from
the images. Thereafter, the edges of the images were automatically found with a Sobel edge detector.
This operation distinguished the edge from the background. The fractal dimension (FD) of the edged
image was calculated by applying the ‘fractal box-count plugin’ which counts the number of boxes of
increasing sizes (2, 3, 4, 6, 8, 12, 16, 32 and 64) needed to cover the boundary of binary object per pixel
and applies the method [21]. A graph of the logarithmic values of the fractal box size vs. the count was
plotted and fitted linearly. The slope of the graph taken as fractal dimension (Equation (4)). The value
of the slope is explained as the surface roughness index for the surface.

D = −
log(N)

log(r)
(4)

where N is the number of boxes, and r is the size (length) of the boxes and D (slope of the graph) is the
fractal dimension. As proposed by Rahimi and Ngadi [13], because the FD was quantified from a 2D
space, the addition of one extra dimension is necessary to fully capture the three-dimensional features
of the images of the batter surfaces. Therefore, FD was recalculated as per Equation (5).

FD = 1 + D (5)

2.6. Determination of Oil Content by Soxhlet Extraction

Fried products were dried to a constant mass and pulverised in a grinder. About 5 g of ground
sample was transferred into 25 × 80 × 1.5 mm cellulose extraction thimbles (Whatman Intl. Ltd., Maid
stone, UK). Extraction was done in an automated Soxhlet machine using petroleum ether (40–60 ◦C)
for 4 h based on the AACC method 30–25.01 [22].

2.7. Statistical Analysis

All images were acquired in a replicate of four per frying time. Analysis of variance was carried
out to determine the effect of bran concentration on the porosity, POia and fractal dimension. Means
were separated using Tukey’s honestly significant difference test at p < 0.05 where the effect of the
independent variable was significant. A test of significance for the FD of fried batter and dough was
carried out using an independent T-test, at a 95% confidence level [4]. Multivariate regression analysis
was carried out to determine the linear and interaction effect of bran addition, initial moisture content
and bran type on dependent variables. The relationships between crust parameters and the FD of the
fried products were fitted through a regression model using the curve estimation function of SPSS
software (SPSS statistics version 26, IBM Co., Armonk, NY, USA).

3. Results and Discussion

3.1. Qualitative Analysis of Microstructure

During preliminary experiments, the samples were stained with Nile red after frying and this led
to the formation of artefacts. Oil and water droplets moved from samples to the microscope slide, thus
yielding unreliable results. Therefore, the double staining protocol of dough and oil staining was used
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because it yielded a satisfactory contrast between the oil (red), empty pore (black) and the solid matrix
(green), as shown in Figure 1. The enhancement of the image contrast offers good benefits in terms of
the information that can be extracted from such an image [23].Foods 2020, 9, x FOR PEER REVIEW 5 of 22 
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Figure 1. Cross-section micrographs of fried dough enriched with oat bran (OB). Red = oil, green =

dough matrix. Blue arrows indicate depth of oil penetration in the solid matrix. OB5–OB20 represent
oat bran concentration (g) in product formulation.

3.1.1. Oat Bran (OB) Magwinya

Cross-sectional micrographs of OB fried dough are presented in Figure 1. As can be noticed in all
samples, there is intensity of red colour (oil) clusters at the crust section and subsequent penetration
at different depths into the solid matrix - indicated by the diminishing intensity of red dye (or blue
arrows) from the crust to the crumb in the solid matrix, thus confirming that oil uptake in magwinya is
a surface-related phenomenon following a crust-to-crumb path flow. Depth of oil penetration shows a
similar proximity to the crust at 5 and 8 g and further from the crust at 10–20 g OB. It is worth noting
that the sample size used for microscopy may not reflect the whole sample compared to conventional
techniques. Pores in fried dough (Figure 1) were small and almost evenly distributed while in fried
batter (Figure 2), the pores were mostly large. Large pores are indicative of a weak gluten–starch
matrix and thin liquid lamellae caused by reactions between surface active agents of the dough and
gluten network, which collapses upon heating, leading to the formation of large coalesced gas cells in
the crumb [24]. This consecutively causes large pathways in the dough for oil penetration—hence the
increased depth of penetration compared to fried dough samples, which had better stronger structural
integrity. These qualitative observations are supported by the Soxhlet extraction results, where fried
batter absorbed more oil than fried dough samples.
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green = batter matrix. Blue arrows indicate depth of oil penetration in the solid matrix. OB5–OB20
represent oat bran concentration (g) in product formulation.

3.1.2. Wheat Bran (WB) Magwinya

The depth of oil penetration was more in fried batter (Figure 3) than fried dough (Figure 4).
Comparing both cereal brans, the least oil penetration was observed in WB-enriched magwinya. This
implies that WB reduced oil uptake better than OB. Generally, fried batter had larger geometric
features than fried dough. The differential water contents and viscosity of dough and batter (liquid
dough) explains the reason for the structural differences among the samples. Like its OB counterpart,
large pores were also observed in WB fried batter. Pores of magwinya develop and increase as steam
is generated in the crumb. Subsequently, crumb pressure and temperature drop during cooling
and pores are stabilised as they assume their final shape. In addition to these visual observations,
measurable comparisons made using quantitative image analysis are presented in the subsequent
section. Quantifiable data (porosity, pore size, penetrated oil) were extracted from the micrographs
using Image J software.
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dough matrix. Blue arrows indicate depth of oil penetration in the solid matrix. WB5–WB20 represent
WB concentration (g) in product formulation.

As the onset of fermentation, gas cells expand, and their stability hinges on the viscoelastic gluten
starch matrix. However, later in the fermentation process, on liquid lamellae is formed from flour
surface active components like lipids, polysaccharides and proteins. The liquid lamellae act as a dual
protection on each side of the cell wall to prevent the rupturing of the gas cells [24]. In batter products
with high moisture content, the gas cells become highly discontinuous, thus leading to the formation of
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large holes in the final product, as seen in fried batter products in this study. However, bran addition
in batter formulation reduced large pores in the magwinya crumb at 8–20 g OB (Figure 2) and 15–20 g
WB (Figure 3). This is because soluble fibres have been reported to strengthen dough structure. In this
case, beta glucans in OB caused a gel-like structure which contributed to improvement of the magwinya
crumb. On the other hand, insoluble fibre in WB has been reported to lower gas cell stability through
interference with gluten reaggregation, thus impacting the dough negatively [25,26]. The large crumb
pores in WB fried batter suggests that the negative effect is related to increased surface area of fine
WB, which accelerated chemical interactions with gluten. Components like phytates, glutathione and
monomers of conjugated ferulic acid binds to the cell wall of the insoluble fibre, thus altering the
functionality of gluten network to stabilise the gas cells [26].

3.2. Penetrated Oil Content by Image Analysis

Quantitative data were extracted from the micrographs as presented in Table 1 for porosity,
penetrated oil by Soxhlet extraction (POsox) and image analysis (POia). Fried batter showed significantly
higher POia values (p < 0.05) than fried dough for WB and OB magwinya.

Table 1. Porosity and penetrated oil (PO) content determined by image analysis (POia) and PO
by Soxhlet.

Bran Concentration
(g)

Fried Batter (%) Fried Dough (%)

POia POSox Porosity POia POSox Porosity

Control 19.66 b
± 0.92 8.67 b

± 0.08 81.84 b
± 1.24 8.29 b

± 0.74 8.20 e
± 0.05 80.03 d

± 4.31
OB5 16.55 ab

± 0.47 9.47 c
± 0.08 67.10 a

± 2.62 5.56 a
± 0.34 6.67 bc

± 0.16 69.21 c
± 1.35

OB8 16.03 ab
± 1.21 8.80 b

± 0.14 73.66 ab
± 0.84 14.28 d

± 0.37 7.13 cd
± 0.11 54.94 a

± 1.53
OB10 14.52 a

± 0.61 7.47 a
± 0.08 76.77 b

± 1.79 11.31 c
± 0.20 6.33 b

± 0.15 58.58 ab
± 1.41

OB15 18.22b ab
± 0.60 8.60 b

± 0.30 80.68 b
± 1.05 18.92 e

± 0.48 5.27 a
± 0.06 65.93 bc

± 2.79
OB20 14.97 a

± 1.63 7.87 a
± 0.11 65.91 a

± 1.68 11.73 c
± 0.42 7.53 d

± 0.08 60.76 ab
± 2.68

Control 19.66 c
± 0.74 8.53 b

± 0.46 81.84 c
± 1.24 8.29 bc

± 0.16 7.07 c
± 0.31 80.03 d

± 4.31
WB5 13.18 a

± 0.47 9.93 c
± 0.61 55.71 ab

± 3.92 4.57 a
± 0.22 8.00 d

± 0.26 52.15 a
± 0.59

WB8 13.81 ab
± 0.30 7.67 a

± 0.08 53.12 a
± 2.69 9.29 c

± 0.03 7.73 d
± 0.57 73.08 cd

±1.22
WB10 16.00 b

± 0.53 9.87 c
± 0.09 70.56 bc

± 2.10 6.43 b
± 0.03 6.07 b

± 0.31 54.68 ab
± 2.69

WB15 13.52 a
± 0.31 10.13 c

± 0.31 75.69 c
±2.57 7.58 bc

± 0.11 6.20 b
± 0.40 56.88 ab

± 2.33
WB20 15.31 b

± 0.30 8.73 b
± 0.98 76.05 c

± 2.23 7.94 bc
± 0.17 5.00 a

± 0.15 65.15 bc
± 2.66

Results are shown as mean ± standard deviation (n = 4). Values in the same column with different superscript for
each bran type are significantly different from each other (p ≤ 0.05) using Tukey’s honestly significant difference test.
Oat bran (OB) and wheat bran (WB). Values 5–20 represent the bran concentration in the product formulation.

3.2.1. Oat Bran Magwinya

The POia values for OB-enriched fried batter and fried dough were in the ranges 14.52%–18.22%
and 5.56%–18.92%, respectively; while POsox values for OB fried batter and dough were in the ranges
7.47%–9.47% and 5.27%–8.20% The POia values for fried batter were significantly lower than the control
(19.66%) except for OB15 (18.22%) while the opposite trend was observed for the fried dough. POia was
significantly higher (p < 0.05) than POsox for all samples except for the control and OB5 fried dough,
possibly due to the small amount of bran, thus showing no significance from the control. In fried
batter, OB5–10 and OB20 samples were not significantly different (p < 0.05) from each other, but were
markedly lower than the control and OB15. In OB fried dough, a reverse trend was observed. A similar
trend was observed in POsox results (Table 1). POia values at OB8–20 for fried dough samples were
significantly higher than the control. During frying, moisture evaporates from the product, creating
crevices which serve as pathways for oil influx into the food. This reduction effect of OB observed in
magwinya may be linked to the water retention capacity of OB fibres and the slight gelling effect of
OB β-glucan, which impedes moisture loss and, in turn, reduces oil uptake in the products. Results
of POia and POsox for OB fried batter and POsox for fried dough were similar to that of Yadav and
Rajan [27], where a significant reduction in the oil content of Indian deep-fried dough (poori) was
reported at 11 g OB inclusion. The effect of OB in the products differed based on the initial moisture
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content which affected moisture loss and, in turn, oil uptake in the products. Either by conventional
Soxhlet extraction or image analysis, both methods are valuable for the quantification of the oil uptake
of deep-fried products.

3.2.2. Wheat Bran Magwinya

The POia of WB fried dough and batter ranged from 4.57% to 9.29% and 13.18% to 16.00%, while
POsox values for WB fried dough and batter ranged from 5% to 8% and 7.67% to 10.13%, respectively
(Table 1). The results of oil content were comparable in WB fried dough for both image analysis
(4.57%–9.29%) and Soxhlet extraction (5%–8%). Moreno and Bouchon [4] reported a similar trend
where the oil content of gluten fried matrices was ranked similarly by CLSM and Soxhlet extraction
methods. On the other hand, POia was markedly (p < 0.05) higher than POsox in WB fried batter.
A significant reduction was noted in POia from the control to WB10 and an increase beyond this in
the fried batter. This implies that WB reduced oil penetration in fried batter up to 10 g substitution.
In fried dough, oil uptake reduction was noticed at WB10–20; and can be linked to a reduction in
moisture loss because of the increased bran concentration. Yadav and Rajan [27] reported a significant
reduction in poori at 3 g incorporation of coarse WB. Particle size reduction in WB in this study
(200 µm) could account for the variation in these results. Moreover, the results of this study were
comparable to those of Kim et al. [28], where fat reduction in doughnuts were significant at 10 g WB
(60.7 µm) incorporation. The oil uptake reduction effect of WB in magwinya can be attributed to the
particle size reduction, which lowered its oil holding capacity, which is related to the hydrophilic
nature and change in density and surface properties of the bran particles [28]. The insoluble fibre
of WB potentially hinders oil uptake. Based on these data, low-fat magwinya can be produced from
wheat flour- bran composites. While Soxhlet extraction is a conventional, destructive and invasive
method, image analysis is a non-destructive technique, where the samples can be imaged whole or in
sections. However, the information collected was restricted to the image resolution, which accounted
for differences in results.

The effect of frying time and temperature on oil location in potato chips using CLSM was studied
by Pedreschi and Aguilera [29]. Although only a visual observation was made, crucial information
regarding the mechanical effect of cutting potato and its implication on oil uptake was reported.
As previously stated, oil absorption is predominantly a surface-associated phenomenon. Bouchon
et al. [6] demonstrated this phenomenon by observing a fried potato slice under a CLSM, and it was
noted that oil absorbed post-frying was in the crust microstructure, as observed in this study. Moreno
and Bouchon [4] developed the double staining procedure where the dough matrix and oil were both
stained prior to frying. A relationship was established between the microstructure of the products
and the oil absorption by comparing the values of fat content from Soxhlet extraction and image
analysis. A positive correlation was established between the results. Moreover, porosity, and pore
size distribution were estimated from the confocal images and a direct proportional relationship was
established between oil absorption and porosity of a gluten-based product, revealing that higher
porosity led to higher oil absorption. Fat distribution, pore sizes, surface topography and the porosity
of fried chicken nuggets were also estimated using CLSM. However, the samples were stained with
Nile A and images were collected in reflective and fluorescent mode for the determination of surface
topography and fat distribution in the chicken nuggets. There was a positive correlation between the
results from the CLSM image analysis and conventional Soxhlet fat extraction [3].

3.3. Porosity of Magwinya

Porosity is a measure of the void fractions in a material [30]. These voids can be closed or open,
connected or disconnected (Figure 5). Control fried dough and batter were highly porous at values
≥80%. Bran addition significantly reduced porosity of the products. The porosity of OB and WB fried
dough ranged from 54.94% to 69.21% and 52.15% to 73.08%, respectively, and were significantly lower
than the control fried dough (80.03%). The porosity of OB and WB fried batter ranged from 65.91% to



Foods 2020, 9, 605 10 of 22

80.86% and 53.12% to 76.05%, respectively and were significantly lower (p < 0.05) than the control fried
batter (81.84%), except for OB8–OB15 (Table 1). The overall effect of bran type showed no significant
effect on porosity (p > 0.05). These results majorly imply that bran incorporation improved the crumb
structure of the products. Large pores associated with high porosity values are characteristic of gas
cell collapse during heat treatment (frying). With bran addition, gas cell coalescence reduced, most
especially in fried dough products. The higher range of porosity in fried batter may be due to the
higher coalescence of gas cells. This reduction effect may be linked to the increased viscosity of the
batter and dough imposed by increasing bran concentration, as also observed by Sabanis et al. [31].
Statistically, bran type showed no effect (p > 0.05) on porosity, whereas initial moisture content and bran
concentration showed a significant reduction effect (p < 0.05) on porosity. In addition, the interaction
of bran type × bran concentration × initial moisture content was a statistically significant factor of
variation in the porosity of the samples (Table 2). Porosity reduced significantly in fried dough
compared to fried batter.
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The porosity values in this study fall within the range reported in the literature for similar foods
such as bread [31,32] and doughnuts [33]. However, the variations in these values may be attributed to
different image acquisition methods and scales used in analysis. The use of X-ray microtomography
by Wang et al. [32] showed bread crumb porosity values (79% – 84%) in the same range as values
in this study. The use of microscopic image acquisition may account for this similarity. The use of
digital camera imaging in the study of Ghaitaranpour et al. [33] may have accounted for the lower
porosity profile of deep-fried doughnut crumbs in the range of 54%–66%. Moreover, ingredients in
their doughnut formulation, like eggs, gluten, xanthan gum, milk powder, vegetable oil, accounted
for differences in the dough rheology, which impacted the aeration and stability of cell sizes in the
doughnut crumb.

The mechanism of pore development in magwinya follows water movement from the core to
the evaporation zone at the crust followed by its dissipation from the product as vapour. However,
remnant vapour left within the pores becomes superheated and expands, causing the distortion of
the pore walls [34], hence contributing to the porosity development of magwinya. Regression analysis
revealed that the linear effect of independent variables (bran type, initial moisture content and bran
concentration) showed significant effects on the POia of fried products. The interaction effect of the
independent variables showed a significant effect (p < 0.05) on POia (Table 2).
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Table 2. Regression analysis showing main and interaction effects of independent variables on
percentage porosity and penetrated oil by image analysis.

Source Dependent
Variable (%)

Type III Sum of
Squares df Mean

Square F Significance c

Corrected Model PorosityPOia 29,879 a 23 1299.09 20.04 <0.001
4661 b 23 202.67 55.83 <0.001

Intercept Porosity 825,377 1 825377 12,732.53 <0.001
POia 27124 1 27,124.72 7471.72 <0.001

X Porosity 88 1 88.427 1.36 0.244
POia 1000 1 1000.281 275.54 <0.001

Y Porosity 6938 1 6938.65 107.04 <0.001
POia 1104 1 1104.91 304.36 <0.001

Z Porosity 13,384 5 2676.86 41.29 <0.001
POia 715 5 143.034 39.4 <0.001

X * Y Porosity 2256 1 2256.54 34.81 <0.001
POia 1.56 1 1.56 0.43 0.513

X * Z Porosity 1005 5 201.12 3.10 0.01
POia 533 5 106.52 29.34 <0.001

Y * Z Porosity 2927 5 585.48 9.03 <0.001
POia 1047 5 209.32 57.66 <0.001

X * Y * Z Porosity 3278 5 655.62 10.11 <0.001
POia 261 5 52.05 14.34 <0.001

Error Porosity 10,891 168 64.82
POia 610 168 3.63

Total Porosity 866,147 192
POia 32,396 192

Corrected Total Porosity 40,769 191
POia 5271 191

df = degree of freedom, X = bran type, Y = initial moisture content (mL), Z = bran concentration (g). Interaction
effect of variables is denoted by X * Y, X * Z, Y * Z and X * Y * Z. Penetrated oil by image analysis (POia) (%). (a) R2 =
0.733 (b) R2 = 0.884 (c) computed using alpha = 0.05.

Similar to bread, pore development in magwinya is influenced by product ingredients and
processing unit operations, as follows: yeast as a leavening agent causes bubble formation in the
dough. This leads to formation of gluten–starch matrix, characterised by a network of pores that are
fully developed during mixing, moulding and fermentation unit operations [23]. The onset of gas
cells begins during the mixing of ingredients through aeration or the incorporation of air into the
dough matrix. As heat is applied during frying, the porous structure becomes stabilized, which causes
modification of the molecular arrangement of the polymers in the cell wall.

3.4. Pore Distribution

Three types of pores which may influence oil penetration have been identified [34] in fried
products: (a) interconnected pores—these are accessible from various points and greatly influence the
flow of oil due to the continuous paths formed by the interconnection of the pores, (b) non-connected
pores, which are inaccessible and do not influence flow of oil through the food matrix, (c) isolated pores,
which are accessible from just one direction and have limited influence on oil flow. Non-connected
and inter-connected pores are open, while blind pores are closed pores (Figure 5). These pores were
identified in our products.

Pore sizes of magwinya obtained from cross-section micrographs were found in a range of
0–475 µm (Figure 6). In fried dough samples, the control pore sizes between 0–25 µm had the highest
frequency (80%), while in fried batter samples, control pore sizes of 0–25 µm peaked at 35% and 50%
for OB and WB fried batter, respectively. For the rest of the samples at 5%–20% bran addition, pore
sizes of 0–175 µm peaked at 52%, 40%, 60% and 47% in WB and OB fried dough, WB and OB fried
batter, respectively, then dipped at >125 µm size. Moreno and Bouchon [4] reported a pore size range
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of 0–85 µm for gluten-based fried matrices. These differences in pore sizes could be accounted for by
the following variations: (i) sample weight and size variation—thick products (at least 50 g weight and
> 50 mm diameter) in this study and thin products in theirs (4 g weight, 2 mm thickness), (ii) the extent
of sample dehydration/moisture loss which contributes to the enlargement and shrinkage of pores.
At a final moisture content of 2% in the report of Moreno and Bouchon [4], the associated extreme
shrinkage of pores could be explained by maximum moisture loss and total starch gelatinisation, which
led to the alteration of gas cell sizes formed during mixing and kneading unit operations.
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Figure 6. Pore size distribution in cross-section micrographs of fried dough and batter samples. Oat
and wheat bran (OB and WB, respectively); values between five and 20 represent the concentration of
bran in the sample formulation.

Magwinya consists of a solid medium of interconnected webs of pores, filled with either oil or air.
The properties of empty pores of magwinya are presented in Table 3. After segmentation of the image
using the wand tool in the hue-saturation-brightness colour space, the number of pores in each image
was estimated with the analyse particle function.
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Table 3. Pore properties of magwinya samples, as influenced by the addition of water and bran variation.

Bran Concentration
(g)

Fried Dough

Particle Count
(ΣP)

Total Area
(×104 µm2)

Average Size
(µm2)

Perimeter
(µm)

Circularity
(C)

Solidity
(S)

Control 18 12 728 150 0.29 0.73
OB5 44 27 6120 948 0.10 0.64
OB8 44 23 5216 1119 0.15 0.67

OB10 45 12 2746 696 0.13 0.65
OB15 60 15 2503 435 0.18 0.73
OB20 67 22 3303 551 0.15 0.69
WB5 76 23 3085 611 0.14 0.64
WB8 48 29 6036 566 0.19 0.77

WB10 59 28 4756 545 0.16 0.70
WB15 49 26 5237 389 0.24 0.75
WB20 59 22 3703 606 0.14 0.66

Fried batter

Control 28 25 3470 343 0.42 0.81
OB5 20 42 2102 861 0.15 0.72
OB8 40 17 4207 415 0.34 0.84

OB10 34 20 5846 508 0.19 0.77
OB15 62 17 2692 430 0.16 0.67
OB20 62 23 3690 495 0.18 0.72
WB5 59 17 2836 319 0.16 0.66
WB8 41 43 10,288 564 0.20 0.74

WB10 24 38 15,662 544 0.19 0.73
WB15 69 27 3890 558 0.14 0.66
WB20 73 25 3361 311 0.22 0.72

Oat and wheat bran (OB and WB, respectively); values between five and 20 represent the concentration of bran in
the sample formulation.

Fried batter was characterised by large pores evidenced by the cell size (Table 3). Circularity is
a shape descriptor, defined as the ratio of the area of an object to the area of a circle with the same
perimeter and it is also known as the compactness of an object/shape [35,36]. It describes how perfect
to a circle an object is, because a circle is a compact shape. A value of one describes a perfect circle,
while zero describes an elliptical/ irregular shape. A pore with perfect circle with no connectedness to
other pores is an isolated pore and will not aid oil flow, whereas irregularity of the pores may aid in oil
flow. Solidity is another shape descriptor that measures the density of a particle, which is derived from
the ratio of the area to the convex hull area of a particle. A solidity value of one means the particle is a
solid object and value less than one represent an object with an irregular boundary [35].

3.4.1. Pore Distribution in Fried Dough

The empty pores of magwinya were found in a broad range of sizes (0–475 µm), as gas cells in an
uninterrupted foam-like structure. The particle counts of the empty pores of fried dough samples are
shown in Table 3. Pore particle count increased with an increase in bran concentration (Table 3). Bran
incorporation facilitated the even distribution of gas cells in the samples. The particle count in fried
dough was higher than fried batter, which implies an even distribution of pores in the former, due to
the incorporation of air during kneading. Solidity values of 0.64–0.77 in fried dough samples fall into
the category of the star-shaped particles described by Wirth [35], while circularity ranged from 0.13 to
0.39. The total area (11.98–28.97 × 104 µm2), average size of the gas cells (727.79–6120.47 µm2) and
perimeter (150.14–1119.44 µm) are presented in a wide range of sizes in the samples (Table 3). The
circularity of fried dough samples (0.10–0.29) were all less than one, which denotes an elliptical shape
for magwinya pores.



Foods 2020, 9, 605 15 of 22

3.4.2. Pore Distribution in Fried Batter

The particle counts of pores increased with bran increase in fried batter samples, especially at
15% and 20% (Table 3). Circularity was highest in the control at 0.42, meaning the pores in the control
sample were less elongated compared to the rest of the samples. Similarly, solidity was highest in
sample OBB8 at 0.84, meaning the pores had boundaries close to a perfect solid object (circle). Solidity
was higher in OB samples at 0.72–0.81 than WB samples (0.66–0.74). Other properties, like total area
(17.69–42.03 × 104 µm2), average size (2691–21016 µm2), and perimeter (310.75–860.90 µm), were found
in a wide range of sizes across WB and OB concentrations. Fried batter was characterised by large pores
linked to the rupture of gas cells as a result of a weak gluten network in the batter, because stability
against coalescence is maintained when the gluten film expands biaxially without rupturing [37].
The extent of the expansion of gas cells at the frying stage determines the final volume and crumb
structure of the fried products. Shearing/disruption of the pore network could also occur as a result
of mechanical stress induced during the moulding of dough and the cutting of the fried sample for
imaging. These pores are an interconnected network which can be empty or filled with oil.

Unlike breadcrumbs made up of two phases (air and cell wall), magwinya crumb is made up of
three phases—a fluid (oil), a solid (cell wall material) and a gas (air) phase. Aeration of the magwinya
dough/batter matrix may occur through one or both of two ways: (i) physical aeration as a result of air
entrapment in the dough during mixing of the batter and kneading of the dough and (ii) biological
aeration of the gas cells due to the action of baker’s yeast, Saccharomyces cerevisiae, which releases CO2

in the dough and causes an almost ten-fold increase in the air incorporated at the mixing stage [38].
Air is entrapped into the porous structure during mixing [39]. The nuclei for gas cells found in the
breadcrumb is majorly formed at this stage and is reliant on the mixer type used [23]. The air entrapped
during mixing forms the basis of the cell size in the crumb, especially kneading, which promotes an
increase in gas volume fraction. An increase in gas cell size as fermentation commences in bread dough
has been reported [39,40]. Considering this and the type of mixing in this study—manual mixing
(use of spatula) for batter and mechanised mixing (dough mixer) for dough—air incorporation and
occlusion differed in both dough types and the final crumb structure of magwinya.

The homogeneity of the foam structure during dough development is influenced by gravitational
force and pressure differences exerted by CO2 during gas cell expansion at various points in the dough
mass. Where gravitational force is negligible or insignificant, gas cell sizes attain homogeneity, but
when gravity is significant, the distribution of gas cells at the top, centre and bottom will differ from
each other [41]. During proofing, as the gas cells expand under CO2 gas released by the leavening agent,
coalescence and liquid drainage/separation from the dough may occur. However, the stability and
coalescence of gas cells in the crumb are both set during thermal treatment (baking, frying or steaming).
As dehydration occurs during frying, phase conversion from liquid to solid occurs causing gluten
protein to reaggregate. This reaggregation gives a rigid structure to the gas cells, thus terminating
coalescence [42].

3.5. Relationship between Microstructural Properties against Soxhlet Fat Extraction

In order to categorise the relationship between the microstructure and oil absorption, POsox data
was plotted against POia and porosity. The data presented non-linear relationships and were thus fitted
to a cubic polynomial model, as established in the regression equations (Table 4). The effectiveness
of the image analysis technique for oil absorption measurement was assessed by the R2 value of the
regression equations. As established in Table 1, fried batter products were more porous, hence they
retained more oil than fried dough.
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Table 4. Cubic polynomial regression equation for plots of image properties and Soxhlet extraction.

Fried Dough Porosity vs. POia POia vs. POSoxhlet POSoxhlet vs. Porosity

OB y = 0.0976x3
− 3.3741x2 +

34.041x − 30.943
y = −1.4146x3 + 32.453x2

− 242.33x + 601.78
y = 5.757x3

− 110.56x2 +
698.29x − 1386.4

R2 0.84 0.70 0.72

WB y = −1.1344x3 + 24.837x2

− 169.76x + 417.88
y = 0.0276x3

− 0.2017x2
−

1.3834x + 15.904
y = −16.047x3 + 309.49x2

− 1957.3x + 4120.2
R2 0.76 0.73 0.99

Fried batter

OB y = −0.6708x3 + 35.179x2

− 608.8x + 3551
y = 0.0603x3

− 3.2654x2 +
58.596x − 339.77

y = −22.873x3 + 577.36x2

− 4839.6x + 13544
R2 0.73 0.91 0.71

WB y = 0.0001x3 + 0.0038x2
−

2.3198x + 105.18
y = 6.1133x3

− 164.02x2 +
1457.5x − 4274.8

y = 0.0009x3
− 0.2033x2 +

14.426x − 325.69
R2 0.95 0.84 0.71

Penetrated oil by image analysis and Soxhlet extraction (POia and POSoxhlet, respectively). Oat and wheat bran
(OB and WB, respectively).

3.5.1. Oat Bran Fried Batter

The strongest relationship was found in POsox vs. POia, where R2 = 0.9051 (Table 4), also
corroborating the strong positive Pearson’s correlation found among both parameters (p < 0.001).
Porosity vs. POsox (R2 = 0.7298) follows and could be as a result of differences in conversion parameters
at macroscopic and microscopic levels of analysis, while porosity vs. POia (R2 = 0.7252) showed the
weakest relationship, which could be attributed to product type and variation in the oil penetration of
fried batter samples.

3.5.2. Oat Bran Fried Dough

The relationship between POia, POsox and porosity of OB fried dough is shown in Table 4. The
data was fitted to a third order (cubic) polynomial regression. The strongest relationship was found in
porosity vs. POia (R2 = 0.8432), attributable to the similarity of the scale used in image analysis, hence
the higher fitness of the data. Porosity vs. POsox was R2 = 0.7243 and the weakest was POia vs. POsox
(R2 = 0.7011). Moreno and Bouchon [4] reported R2 = 0.8372 for a linear relationship between POia
and POsox in a gluten-based fried matrix.

3.5.3. Wheat Bran Fried Dough

Although both methods ranked the oil content of WB fried dough in similar ranges, the relationship
between POia and POsox in WB fried dough products were the weakest (R2 = 0.7283). This weakness
may be accounted for by the difference in the micron range scale in image analysis compared to the
macro scale factors in Soxhlet extraction. This contradicts the report of Moreno and Bouchon [4],
where POia and POsox ranked gluten-based fried products in the same manner, with a strong linear
relationship. Porosity and POsox had the strongest regression coefficient (R2 = 0.9885), whereas
porosity vs. POia was R2 =0.7555 (Table 4)

3.5.4. Wheat Bran Fried Batter

In WB fried batter, the strongest to the weakest relationships were POia and porosity (R2 = 0.9521),
POia and POsox (R2 = 0.8420) and POsox and porosity (R2 = 0.7077), as shown in Table 4. The Pearson’s
correlation showed that an increase in porosity led to an increase in oil penetration (p < 0.01). It is
worth noting that the relationships between fried batter ranked higher than fried dough and this may
be because the POia of fried batter ranked higher than the Soxhlet data for the samples.
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3.6. Crust Surface Roughness of Magwinya

Crust micrographs and the grey level intensity maps of the crust micrographs of WB fried batter
and fried dough is presented in Figure 7, while that of OB fried batter and dough is shown in Figure 8.
The crust micrographs of fried products showed slight variations in terms of intensity. Fried dough
had a lower intensity than fried batter. Structurally, the geometric appearance of fried batter showed
closely knit cells, while the cells of fried dough were slightly larger, accounting for the lower intensity
in the former. Grey level intensity maps of a product can reveal the nature of its surface. The surface
plot maps were all jagged and closely related and had similar ranges of pixel intensity variation, except
for a few differences seen in WBB8 and WBD8. The similarities may also be attributed to the fact that
the close range of FD values in this study were within a narrow range which could be indicative of
similarity in product formulation with minimal differences. In a comparison of the surface roughness
of pumpkin and chocolate, Quevedo et al. [43] observed that pumpkin shell had a more jagged surface
intensity than chocolate. Rahimi and Ngadi [13] also reported strong similarities in the intensity of
the surface plots of fried batters made from wheat and rice flour. The use of fractal analysis has
been applied to in quantifying the surface roughness of fried potato, chocolate, pumpkin [40], fried
batter [13,14] and bread [29].
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3.7. Surface Roughness Using Fractal Metrics

Fractal dimension is ranked on a value scale from one to three depending on the extent of deviation
from regularity or as occupied in a Euclidean space [11]. The fractal dimension (FD) of fried dough
and fried batter ranged from 2.56 to 2.76 and 2.55 to 2.67 across WB and OB samples, respectively
(Table 5). These values were in a similar range to the report of Rahimi and Ngadi [13]. In WB samples,
the FD of fried batter was higher than that of fried dough, although there was no statistical significance,
indicating the former had a higher surface roughness than the latter. It appears WB had a similar
effect on surface roughness of the two types of products. In OB samples, fried dough had a higher FD
(p < 0.05), indicative of a rougher surface compared to fried batter. Thanatuksorn et al. [14] reported an
increase in the fractal dimension of a fried wheat dough model, with an increase in the initial moisture
content of fried batter. Compared to their study, a reverse trend was observed in our control sample
(with no bran), where fried dough had a rougher surface than fried batter. Moreover, Thanatuksorn
et al. [14] only determined the surface edge contours of the samples, whereas the entire crust surface
was taken into consideration in this study (and not the contours), hence a possible reason for the
difference in results.

Measurement of surface roughness is crucial because it displays the irregularities of the crust,
which may negatively impact oil absorption and consumer acceptance. Ghaitaranpour et al. [5]
reported a maximum FD value of 1.97 for deep-fried doughnuts. This value was lower than the results
in this study because of the extra dimension added to FD values in this study. We hypothesized that
the surface roughness of fried batter would supersede that of fried dough due to the higher moisture
loss in fried batter. This hypothesis can, however, be rejected based on the results obtained and the
sample type and shape—magwinya being a thick and round fried food meant that development of



Foods 2020, 9, 605 19 of 22

surface texture varied at different rates due to the nature of its shape. The effect WB and OB had on
surface roughness differed based on the initial moisture content, chemical composition of the fibres
and difference in solubility of the bran, which imparted surface texture during frying. In addition, the
higher surface roughness of fried dough could be attributed to the drier surface as a result of a lower
initial moisture content.

Table 5. Fractal dimension (FD) values of fried products.

Bran Concentration (g) Fried Dough Fried Batter Significance

Control 2.69 b
± 0.13 2.58 ab

± 0.04 0.02
OB5 2.73 b

± 0.05 2.55 a
± 0.04 0.001

OB8 2.74 b
± 0.02 2.62 bc

± 0.05 0.01
OB10 2.76 b

± 0.08 2.61 abc
± 0.05 0.01

OB15 2.57 a
± 0.08 2.58 ab

± 0.03 0.95
OB20 2.73 b

± 0.04 2.66 c
± 0.04 0.05

Control 2.69 c
± 0.13 2.58 a

± 0.04 0.02
WB5 2.67 bc

± 0.03 2.64 a
± 0.09 0.53

WB8 2.57 ab
± 0.09 2.64 a

± 0.06 0.30
WB10 2.66 abc

± 0.02 2.65 a
± 0.07 0.95

WB15 2.56 a
± 0.07 2.67 a

± 0.09 0.12
WB20 2.63 abc

± 0.06 2.64 a
± 0.05 0.60

Results are shown as mean ± standard deviation (n = 4). Values with same superscripts down the column for
each bran type show significance (p < 0.05) using Tukey’s HSD test. Significance values in the third column show
significant difference between fried batter and dough using independent samples T-test at p < 0.05. Oat and wheat
bran (OB and WB, respectively); values between five and 20 represent the concentration of bran in the sample
formulation. Fractal dimension is dimensionless.

Multivariate analysis showed that the linear effect of bran concentration had a significant effect
(p < 0.001) on FD, while bran type had no significant effect (p = 0.104). The main effect of initial
moisture content and bran type were significant (p < 0.05) in relation to the fractal dimension values of
the products. The interaction effect of bran type and initial moisture content (p < 0.001), bran type and
bran concentration (p = 0.03) significantly affected FD. The interaction effect of the three independent
variables (bran type, bran concentration and initial moisture content) all had no significant effect
(p = 0.243) on FD.

3.8. Correlation of FD to Surface Oil and Texture of Fried Products

Scatterplots revealed that the relationships between FD and crust properties (surface oil and
hardness) are non-linear; regression models using a curve estimation function were adopted to observe
and quantify the model. Some studies have shown that increased surface roughness had an impact on
oil uptake through a positive linear correlation between the surface oil and fractal dimension [13,14].
In this study, the data between FD and crust properties were fitted to a polynomial cubic model, as
shown by the regression equations and coefficient of determination (R2) in Table 5.

3.8.1. Fractal Dimension vs. Surface Oil

Surface oil was plotted against FD values for each product type and the cubic polynomial model
with the R2 values in the following order in Table 6: fried dough (WB: 0.98, OB: 0.97) and fried batter
(WB: 0.96, OB: 0.88). Fried dough samples ranked higher in terms of the fitness of the data. The surface
oil of fried dough was higher than in fried batter and this could be responsible for the higher R2 values
of the former.
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Table 6. Cubic polynomial regression equation for plots of fractal dimension vs. surface oil and
crust hardness.

Sample Cubic Polynomial Regression Model Equations R2

WB fried dough A = 67.39B3
− 51.454B2 + 12.752B + 1.6384 0.9822

Y = −3E + 06X3 + 2E+07X2
− 5E+07X + 4E+07 0.5615

WB fried batter A = 653.52B3
− 335.94B2 + 54.869B − 0.2328 0.9568

Y = −3E−10X3 + 1E−06X2
− 0.0008X + 2.5568 0.8451

OB fried dough A = 7.3707B3
− 14.254B2 + 5.9505B + 2.0324 0.9736

Y = 1E − 09X3
− 7E−06X2 + 0.0155X − 8.7206 0.8072

OB fried batter A = −291.74B3 + 158.88B2
− 28.375B + 4.2429 0.8771

Y = 465122X3
− 4E + 06X2 + 9E+06X − 8E + 06 0.9853

Where A and Y = fractal dimension, B = surface oil, X = crust hardness. Oat and wheat bran (OB and WB,
respectively).

3.8.2. Fractal Dimension vs. Crust Hardness

Fractal dimension values were also plotted against crust hardness and the relationship also fitted
a cubic polynomial model with the following R2 values: fried dough (WB: 0.56, OBM: 0.81) and fried
batter (WB: 0.85, and OB: 0.99), as shown in Table 6. A significant correlation was only noticed in fried
batter samples compared to fried dough. Fried batter ranked higher than fried dough in terms of
surface roughness and crust hardness. Factors like frying time, temperature, product composition and
initial moisture content, affect crust formation, which directly impacts the hardness of the food [44].
Fried batter was softer than fried dough because of the higher initial moisture content.

4. Conclusions

This paper presents the first study on the quantitative analysis of magwinya crumb and crust
properties determined from confocal micrographs. The use of distinct fluorescent dyes in sample
preparation proved adequate for characterisation of oil penetration and structural changes in the
samples using an image analysis technique, which revealed important knowledge about the relationship
between oil uptake and the microstructure of magwinya. The results obtained from the image analysis
were correlated to results from conventional Soxhlet extraction and the former could be used as an
alternative analysis choice for future studies.

Cross-section micrographs of magwinya revealed notable differences in terms of oil distribution,
depth of oil penetration, structure and pore properties of the fried products, thus emphasising the
impact of ingredient formulation (water and bran variation) on oil penetration. The incorporation
of oat and wheat bran in magwinya formulation reduced porosity and oil penetration. Fried batter
was more porous than fried dough, owing to the higher initial moisture content of the former,
which led to the increased evaporation of water, causing disproportionately heterogenous pore sizes
(consisting mainly of larger ones). In comparison to the control sample, a reduction in porosity was
observed for all samples. A cubic polynomial relationship was established between POia, porosity and
POsox for magwinya crumb, as well as between FD and crust hardness and surface oil for the crust.
The penetration of oil into the crumb was reduced and varied among the samples, with a reduction in
initial moisture content and an increase in bran concentration (p < 0.05), although a minimal effect was
observed for bran type. The utilisation of the double fluorescent staining protocol and multichannel
CSLM observation used in this study was satisfactory for the observation and quantitative analysis of
magwinya crumb and crust microstructure. Considering the information provided in this paper, there
exist rich prospects for future studies and improvements to the work done.
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