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The modulation of the transcriptome is among the earliest re-
sponses to infection. However, defining the transcriptomic signa-
tures of disease is challenging because logistic, technical, and cost
factors limit the size and representativeness of samples in clinical
studies. These limitations lead to a poor performance of signatures
when applied to new datasets. Although the study focuses on
infection, the central hypothesis of the work is the generalization
of sets of signatures across diseases. We use a machine learning
approach to identify common elements in datasets and then test
empirically whether they are informative about a second dataset
from a disease or process distinct from the original dataset. We
identify sets of genes, which we name transfer signatures, that are
predictive across diverse datasets and/or species (e.g., rhesus to
humans). We demonstrate the usefulness of transfer signatures in
two use cases: the progression of latent to active tuberculosis and
the severity of COVID-19 and influenza A H1N1 infection. This indi-
cates that transfer signatures can be deployed in settings that lack
disease-specific biomarkers. The broad significance of our work
lies in the concept that a small set of archetypal human immuno-
phenotypes, captured by transfer signatures, can explain a larger
set of responses to diverse diseases.
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Infection and vaccination trigger a robust transcriptome re-
sponse in tissues or in blood. These perturbations occur in the

setting of a preexisting immunophenotype in each individual char-
acterized by a transcriptome that is regulated by genetics, the en-
vironment, the microbiome and virome, and prior infections (1–7).
In the case of acute infections such as viral respiratory diseases, viral
disease transmitted by arthropod vectors, or in chronic viral infec-
tions such as HIV, responses in peripheral blood mononucleolar
cells may lead to the transcriptional deregulation of thousands of
genes that vary significantly between individuals based on the status
of their immune system at the time of infection (8–14). Cellular,
biological, and functional factors contribute to this aggregate
transcriptomic response. For example, changes in cell composition,
the nature of inflammatory responses, bystander effects of tissue
damage, and therapeutic intervention generate complex patterns of
expression that vary between individuals. The diversity of ap-
proaches used to investigate transcriptome responses—study de-
sign, timing, technical platform—also contribute to the patterns of
expression across studies. Additional sources of noise in tran-
scriptome profiles may result from the relatively small sample size
that characterize many publications and the pervasive impact of
batch effects (15). Given these variations, it is perhaps not surprising
that consensus transcriptomic signatures that reliably operate across
studies have been challenging to identify. This is important for de-
signing prospective analyses of the human immunophenotype and to
taking advantage of the wealth of legacy data from earlier work and
data repositories, for example, to establish host response–based di-
agnostics (9, 16), with an emphasis on meta-analytical approaches
(17, 18).
Because of the above considerations, there is significant interest

in developing methods that reproducibly identify transcriptome

profiles as biomarkers of disease susceptibility or prediction of
vaccine responses. A key challenge is the generation of appro-
priate datasets for each pathogen and study endpoint. This effort
requires considerable planning and resourcing. Once biomarkers
are identified, they still need to undergo extensive validation in
additional cohorts and applied in settings other than the pop-
ulation in which the study was originally conducted. Ideally, bio-
markers would be so robust that they could be transferred across
studies and possibly across pathogens and species. For example, the
severity of responses to viral respiratory infections could be pre-
dicted using a set of shared responses based on a strong deregu-
lation of interferon-stimulated genes observed in the setting of
different viral infections (19). Similarly, vaccine protection could be
predicted using shared markers of response (12). Underlying these
questions is the possibility of baseline human immunophenotypes
that can be predictive of differential responses to various pertur-
bations (20, 21). The overarching concept tested herein is that while
the broad field of biomarkers—and specifically transcriptomics-
based biomarkers—emphasizes specificity (to pathogen, perturba-
tion, and/or study endpoint), we hypothesize that there are sets of
common responses having the desirable properties of generalization
and transferability.
Here, we identify patterns of gene response comprising transfer

signatures that can be learned from deposited datasets and tested
for predictive power in independent transcriptomes associated
with clinical metadata. This work evaluates the performance of
such transfer signatures across pathogens and studies, including
the validity of transfer signatures learned from animal models for
studies of human disease. We present two use cases of transfer
signatures for infection. Our work establishes the validity of this
approach and explores the nature of human immunophenotypes.
If generally applicable in additional studies, the methods described
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here may lead to a rapid evolution of clinically and biologically
relevant concepts in immunity and pathogenesis.

Results
Selection of Signatures and Datasets. We conceived this study
under the assumption that the literature provides short lists of
genes (here described as “signatures”) that are predictive of study
outcomes across different biological settings. The study design is
shown in Fig. 1. Previously identified and published signatures—
referred to as “literature signatures”—may or may not be associ-
ated with full access to raw data/sequencing counts. Thus, we
collected 148 literature signatures to support exploratory analysis
and selected raw data from 15 studies to train and test machine
learning models (Materials and Methods and Dataset S1). The
pairing of literature signatures, training, and test datasets are
depicted in Fig. 1, and the analytical are steps detailed in SI Ap-
pendix, Fig. S1. By design, we built the study on RNA sequencing
and microarray datasets. Many comparative studies have shown
that their results are not always consistent. These inconsistencies
notwithstanding, transforming expression levels from either tech-
nology into biologically relevant gene set enrichment scores sig-
nificantly increases their correlation (22).
Our study focused on infectious diseases; thus, we obtained

literature signatures from papers investigating 1) infection with den-
gue, severe acute respiratory syndrome coronavirus-1 (SARS-CoV-
1), SARS-CoV-2, Middle East respiratory syndrome coronavirus
(MERS-CoV), influenza A virus (IAV) H1N1, H5N1, H3N2, mea-
sles, and respiratory syncytial virus (referred to as “infection signa-
tures,” n = 43); 2) vaccine response to hepatitis B virus (HBV), IAV

H1N1, H3N2 and/or influenza B virus, and against tuberculosis
(TB) and simian immunodeficiency virus (referred to as “vaccine
signatures,” n = 13); and 3) progression to active TB (referred to
as “TB signatures,” n = 20). We also explored the information
that is encoded in collections of signatures that characterize cell
composition (referred to as “cell type signatures,” n = 22) (23) and
biological states assessed through hallmark gene sets of the Mo-
lecular Signatures Database (referred to as “hallmark signatures,”
MSigDB, https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp,
N = 50). The reason for including the latter two groups was to
evaluate whether these literature signatures could be informative
of the processes under study. For example, cell type composition
in bulk measurements is critical for the final aggregate readout of
sequencing and hallmark gene sets because they are a compact
representation of biological processes/pathways and may be in-
formative. Of note, literature signatures were not restricted to
human studies, as some were sourced from studies in rhesus and
cynomolgus macaques (Dataset S1).
Five publications provided training datasets (SI Appendix, Fig.

S1): one study on dengue infection (24), one study on IAV H1N1
infection (25), one study on trivalent influenza vaccination [com-
prising two cohorts, one with males and one with females (26)],
one study on HBV vaccination (27), and one study on TB vacci-
nation in rhesus macaques (28). Their descriptions and sources are
provided in Dataset S1. Of note, these studies contain multiple
(n = 14) nonindependent datasets representing different time
points. We expected this design to help understand the biology of
transcriptome signatures and to allow the determination of the
earliest time points with predictive power.

CBA

Fig. 1. Study design. Three steps to progress from (A) literature signatures to (B) transfer signatures to (C) prediction in unseen datasets. The study aims at
predicting 1) SARS-CoV2 and influenza severe disease (purple) using a transfer signature extracted from a dengue infection dataset and 2) TB progression in
humans (orange) using transfer signatures extracted from a Rhesus TB vaccine dataset. The study includes (in gray) other biologically related training datasets
and other biologically related or unrelated test datasets to evaluate the performance of transfer signatures. For detailed information on the three steps,
reference SI Appendix, Fig. S1. Description of signatures, datasets, and studies are provided in Dataset S1. D0, Day 0 is equivalent to prevaccine. D1, Day 1.
D3, Day 3. D7, Day 7. D14, Day 14. F, Female. M, Male. TARGET, Therapeutically Applicable Research to Generate Effective Treatments. TCGA, The Cancer
Genome Atlas.
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Training and Testing of Transcriptome Signatures. We used random
forest models to evaluate the collection of literature signatures on
each training transcriptome dataset (Fig. 1A, SI Appendix, Fig. S1,
and Dataset S1) followed by the extraction of a common set of

predictive genes (transfer signature) from each training dataset
(Fig. 1B, SI Appendix, Fig. S1, and Dataset S1). We then used the
transfer signature obtained from one training dataset to predict
the outcome in unseen unrelated test datasets using unsupervised

B

A

Fig. 2. Performance of literature signatures. (A) A heatmap of the AUROCs obtained through random forest models. Each column represents a signature
from the literature grouped by signature group. Each row represents a training dataset. In order to be able to compare the AUROC across the datasets (which
do not have the same case/control distribution), the AUROC are depicted in percentiles. The percentiles are obtained by comparing the performance of the
literature signature to 100 random gene lists of the same size. The same cutoff as used for the signature retention in the model was used (70th percentile).
Missing data are depicted in gray. The color annotation next indicates the infectious agent datasets. Influenza refers here to a trivalent vaccine consisting of
H1N1, H3N2, and influenza B virus. (B) The best performing hallmark and cell type signatures. Each row represents a training dataset (in the same order as in
A). Columns represent the signatures—hallmark (Left) and cell type (Right)—that reached the 70th percentile in at least one training dataset. For visual
simplicity, the coloring here is binary as depicted in the legend. Metab., metabolism. IL, interleukin. JAK, Janus kinase. STAT, signal transducer and activator of
transcription. mDC, myeloid dendritic cell. NK, natural killer cell. F, female. M, male. For additional information, see Materials and Methods and Dataset S1.
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methods to exclude overfitting (Fig. 1C, SI Appendix, Fig. S1, and
Dataset S1).
In the first step, in order to determine whether meaningful

data exists in previously identified literature signatures for the
prediction of orthogonal datasets, we characterized the perfor-
mance of all 148 literature signatures on each training dataset.
For each training dataset, we evaluated machine learning models
with the feature set restricted to the genes contained in each pre-
viously identified literature signature. Effectively, for each of the 14
training datasets (for example, dengue infection), we obtained 148
models, yielding a total of 2,072 models across the training datasets.
Then, for each model, we computed the receiver operating char-
acteristic (ROC) values and the individual importance of each gene.
We computed the ROC area under the curve (AUROC) using the
leave-one-out cross validation strategy.
Because the percent split between cases and controls is dif-

ferent in each dataset, AUROCs could not be compared directly.
We therefore expressed the results as percentiles rather than raw
AUROC. The percentiles were obtained by comparing the per-
formance of the literature signatures to random lists of genes of
identical size as a control. We observed that a large proportion
of literature signatures performed well across training datasets,
supporting the notion that published signatures contain valuable
shared information that can be used to train predictive models
and classifiers (Fig. 2A and SI Appendix, Table S1). We compared
the performance of the signature that was specifically provided in
the original study of the training dataset against literature signa-
tures (i.e., any other published signature considered in this study).
All but one training dataset (HBV prevaccine) revealed at least
one signature not reported in the original publication that out-
performed the reported signature as measure by ROC or precision-
recall (PR) AUCs (SI Appendix, Fig. S2). These results supported
the concept that our approach may identify signatures that can be
transferred between datasets while retaining predictive power.

Training and Testing of Hallmark and Cell Type Signatures. We also
assessed two general subsets of literature signatures, one sourced
from the Broad Institute’s MSigDB hallmark pathway identifiers
and one containing cell type signatures (23). These sets of litera-
ture signatures were not explicitly designed for association with

infection diseases (Fig. 2A). Despite that, a number of these
general-purpose literature signatures also performed well in
predicting in several training datasets (SI Appendix, Table S1). As
there is clear interest in understanding the nature of the signature
that endows the generalization from hallmark and cell type sig-
natures to other datasets, we further examined the signatures that
performed well in at least one training dataset. Fig. 2B presents
those top performing hallmark and cell type signatures across
testing against our training datasets.
As several training datasets were time course experiments, we

further inquired whether there existed patterns of performance
across the hallmark and cell type signatures that would be con-
sistent with the current understanding of biology. We noticed
that the relevance of particular signatures shifted according to the
timepoint in the experiment. For example, in the rhesus macaque
TB vaccine experiment (Dataset S1, study 6), predictors of vaccine
efficacy at the baseline included hallmark signatures of interferon
gamma response, fatty acid metabolism, ultraviolet response, bile
acid metabolism, KRAS signaling, and glycolysis as well as the cell
type signatures of mDC and NK cells (Fig. 2B, TB prevaccine). In
contrast, at the time of disease (TB postchallenge), the predic-
tive signatures expanded to include hallmark IL6, JAK, STAT3
signaling, complement, interferon alpha response, allograft re-
jection, hypoxia, and apoptosis as well as a cell type signature of
monocytes (Fig. 2B, TB postchallenge). The predictive value of
these hallmark and cell type signatures is broadly consistent with
the current understanding of biomarkers, pathogenesis, and cellu-
lar roles in TB (29–33). As another example, we observed differ-
ences in predictive signatures across gender category in the study of
Franco et al. (26) that evaluated the response to influenza vacci-
nation (Fig. 2). This is consistent with sex differences in the blood
transcriptome associated with immune responses (34, 35).
Overall, the analysis of literature signatures from various

sources supports the original hypothesis that there are shared
response elements that serve as biomarkers across multiple condi-
tions. On this basis, we next sought to create signatures with pre-
dictive power across a wider range of diseases (transfer signatures).

Defining Transfer Signatures. To establish a transfer signature for
each training dataset, we used every literature signature that had

BA

Fig. 3. Optimized performance of transfer signatures. The classifying performance of the predicted phenotypes obtained from the random forest models
using the transfer signature was assessed for each respective training dataset—where the transfer signatures were obtained from Materials and Methods and
Dataset S1. (A) ROC curves. (B) PR curves. Each line depicts the curve obtained for a given training dataset. The lines are colored based on the infectious agent
studied in the training dataset.
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a AUROC higher than the 70th percentile compared to random
lists of genes of identical size (Materials and Methods and Fig. 1B).
This step created one transfer signature per training dataset. Im-
portantly, for the purpose of defining transfer signatures, we excluded
the signature initially reported in each publication to minimize bias in
the generation of transfer signatures and to allow an inclusion of
genes that were potentially relevant in other published studies.
This approach optimized the potential to detect signatures with
generalizable properties. We then standardized the gene impor-
tance output from the random forest models of the signatures that
passed the 70th percentile threshold and selected the first 50 genes
(we also evaluated 10 and 20 gene signatures, SI Appendix, Fig. S3)

with the highest standardized importance feature score (Mate-
rials and Methods and Fig. 1B). As expected—given that transfer
signatures are made of the top-classifying genes for a given training
dataset—transfer signatures performed well on the datasets they
were trained on: AUROC varied between 0.85 and 0.97 and PR
AUC of 0.72 to 0.98 for the various training datasets (Fig. 3 A
and B). In all but one training dataset (TB prevaccine), transfer
signatures matched or improved the performance, in terms of
AUROC, of the best single performing literature signature. Fur-
thermore, the transfer signatures outperformed the original sig-
natures identified in each individual publication (SI Appendix, Fig.
S4). The nature of the genes retained in the transfer signatures

A

B

Fig. 4. TB and severe viral disease use cases—performance of unsupervised clustering. (A, Top) TB progression study design. (A, Bottom) Uniform Manifold
Approximation and Projection (UMAP) of the test dataset using the 50-gene long transfer signature obtained from the respective training dataset shown in
Top: prevaccine, preinfectious challenge, and postchallenge. (B, Top) Severe viral disease study design. (B, Bottom) UMAP projection of the test datasets using
the 50-gene long transfer signature obtained from the training dataset shown in Top. For both panels, each sample is represented by round or triangle. The
stroke color indicates the inferred label (from the unsupervised clustering), and the shape and fill color indicate the true label. The recall and percentage of
true cases in the different clusters (i.e., precision) is displayed below each UMAP projection. For both panels, we summarize the biological content of the
transfer signatures (TS) by displaying the gene set overrepresentation performed on the Biological Process Gene Ontology (GO) (Top: TB postchallenge TS;
Bottom: dengue TS). Dots represent term enrichment with color coding: red indicates high enrichment, and blue indicates low enrichment. The sizes of the
dots represent the percentage of contributing genes in a GO term. The significance was judged by a Benjamini–Hochberg correct P value cutoff of 0.01.
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(listed in Dataset S1) prominently include immune system and
metabolic processes.
By selecting genes for high importance from random forest

models, transfer signatures become inevitably optimized and po-
tentially overfit for each training study dataset. As we expect that
overfitting will limit the generalizability of signatures to new
datasets, we implement transfer signatures as lists of genes with
no weights attached. This approach was undertaken so that errors
from overfitting were not carried forward when using transfer
signatures for prediction in unseen data.

Predictive Power of Transfer Signatures in Unseen Data. The use of a
transfer signature in an unsupervised approach, that is, without
retraining with known labels, is the most stringent implementa-
tion of the transfer signature. This is in particular true when the
training dataset is chosen to be only partially related, as we cur-
rently understand biology, to the target test dataset.
In a first use case, we tested the hypothesis that information

from a TB vaccine study in rhesus macaques can inform on pro-
gression from latent to active TB in a human cohort, that is, in-
terspecies application of a transfer signature. In the second use
case, we tested whether information from severe dengue infection
serves for the classification of cases of severe SARS-CoV-2 and of
influenza A infection, that is, interinfectious disease transfer sig-
nature application (Fig. 1 and Dataset S1). In these two scenarios,
we expressed the outcome as “enrichment,” that is, the ability of a
transfer signature to increase the number of true cases in a pop-
ulation, and “recall,” that is, the fraction of cases that are retrieved
in a given subpopulation selected using the transfer signature.
Use case one: Progression of latent to active TB.We modeled the value
of the transfer signature obtained in an animal study to assess the
challenge of identifying a subpopulation of subjects within a clinical
trial that are likely to reach a given clinical endpoint. The scenario
is the use of a pharmacological or vaccine intervention to prevent
progression from latent TB to active disease. Progression to active
TB is a rare event (estimated as 0.084 cases per 100 person/years)
(36); therefore, it would be important to be able to recruit indi-
viduals that are the most likely to develop active infection within 1
y. Indeed, in the presence of a limited numbers of individuals that
may reach a specific endpoint, the study may lack power to detect
differences between the placebo and vaccine or treatment group.
Here, we tested transfer signatures obtained with the three

time course datasets from Hansen et al. (28) (Dataset S1, study
6). Effectively, this implies training of all literature signatures
(excluding the signature identified in the original publication) on
each of the three datasets, selecting the best performing genes
for each respective dataset (Fig. 1). This training data derived from
a study that assessed the efficacy of a TB vaccine in rhesus ma-
caques, with longitudinal samples from 27 rhesus macaques col-
lected prevaccine, after vaccination, but before TB challenge and
4 wk postchallenge. The phenotype used for training the random
forest models was vaccine efficacy in protection from TB defined
as a computed tomography score of <10 (protected, n = 13) at any
time point postchallenge versus not protected (n = 14).
We used as a target dataset the data from Zak et al. (37), a

longitudinal study assessing progression from latent to active TB
(Dataset S1, study 9). We defined cases as individuals that de-
veloped TB within a year (n = 30) and controls as individuals that
did not develop TB within a year after entry in the study (n = 109;
Dataset S1). The results of the unsupervised clustering are shown
in Fig. 4A. With the transfer signature defined on the prevaccine
rhesus macaque samples, 32.8% (22/67) of the predicted cases
were true cases, that is, developed active TB within a year, while
the samples outside of this cluster contained only 11.1% (8/72) of
true cases. Here, the unsupervised clustering led to a threefold
enrichment (when comparing cases versus noncase cluster or a
1.5-fold enrichment when comparing the case cluster versus the
general population) and a 73.3% recall. In a similar setting, but

with the transfer signature derived from postvaccination but
prechallenge samples from macaques, we obtained a twofold
enrichment (34.7% [17/49] versus 14.4% [13/90] when compar-
ing cases versus noncase cluster or a 1.6-fold enrichment when
comparing the case cluster versus the general population) and a
56.7% recall. With the transfer signature derived from postchallenge
samples, we obtained a 5.5-fold enrichment (60.0% [18/30] versus
11.0% [12/109] when comparing cases versus noncase cluster or 2.8-
fold enrichment when comparing the case cluster versus the general
population) and 60.0% recall. Analysis of the content of the TB
transfer signatures confirmed the enrichment of genes of the
immune response (Dataset S1); we display the gene set over-
representation for the most predictive TB transfer signature in
Fig. 4A. Overall, the use of the transfer signatures from this animal
model would enable the prospective recruitment of individuals into
smaller clinical trials with a greater likelihood of reaching adequate
end point events to allow statistical power.
Use case two: Severity of viral infection. We next assessed whether
transfer signatures could be used in the setting of viral infection
to predict the severity of the symptoms of individuals that are hos-
pitalized. Here, we tested transfer signatures obtained from the
dataset from Devignot et al. (24) (Dataset S1, study 1), defining
transcriptomes of children with acute dengue infection whose blood
samples were collected within 3 to 7 d of the onset of fever. For our
analysis, we considered as cases the children with severe manifes-
tations of disease (shock syndrome and hemorrhagic fever; n = 32),
while children that had uncomplicated dengue fever were con-
sidered controls (n = 16). We then used data from Liao et al.
(38) (Dataset S1, study 7) and Dunning et al. (8) (Dataset S1,
study 8) as two different target datasets. The phenotypes in these
studies were established at the time when, or before, the RNA
samples were obtained. Therefore, the unsupervised clustering
results (Fig. 4B) reflect here the performance of transfer signa-
tures as classifiers rather than predictors.
The study of Liao et al. (38) characterized bronchoalveolar

lavage fluid immune cells from patients infected with SARS-CoV-2.
For the purpose of this analysis, we considered as cases the indi-
viduals that were described in the original report as having severe
disease (n = 6), while individuals with moderate disease (n = 3) or
not infected (n = 3) were considered as controls (total n = 6). The
RNA samples were obtained 4 to 10 d after the phenotypes were
established. Using a transfer signature derived from transcriptomes
of children with severe dengue, all true cases of severe SARS-CoV-2
were correctly classified. This represented 100% precision and 100%
recall with a twofold enrichment when comparing the case cluster
versus the total population studied (Fig. 4 B, Left Lower).
The study of Dunning et al. (8) characterized blood samples

from individuals hospitalized with influenza. We considered as
cases the individuals that were described in the original report as
requiring mechanical ventilation (n = 20), while individuals that
did not require mechanical ventilation were considered as controls
(n = 63). The use of a transfer signature from children with severe
dengue allowed us to infer a case cluster that included 57.1% of the
severe cases, while none of the severe cases appeared in the
inferred control cluster. This corresponds to a 2.4-fold enrich-
ment of severe cases when comparing the case cluster versus the
total population studied and a 100% recall (Fig. 4 B, Right Lower).
Analysis of the content of the dengue transfer signature confirmed
the enrichment of genes of the immune response (Dataset S1 and
Fig. 4A).
Of note, the results displayed for the various use cases used a

50-gene long transfer signature; however, similar results were
obtained when selecting only the top 20 genes, while the per-
formance dropped with some of the 10-gene transfer signatures
(SI Appendix, Figs. S5 and S6). We obtained similar results when
using transfer signatures derived with only hallmark signatures
(Dataset S1) compared to transfer signatures based on all liter-
ature signatures (SI Appendix, Figs. S7 and S8). Overall, both the
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SARS-CoV-2 and the influenza studies support the value of the
transfer of signatures, as defined by our approach, across dif-
ferent viral infections to classify disease severity.
Choice of training datasets for unseen data. The successful imple-
mentation of transfer signatures described above leaves open the
question of how to choose the optimal transfer signature to be
applied in a new dataset. We approached this question with the
parsimonious initial approach of selecting training and test datasets
from diseases that, based on our understanding of disease path-
ogenesis, might be related. For example, TB vaccination efficacy
might reasonably be assumed to relate to the prevention of the
progression of TB, and the severity of viral disease caused by
dengue, SARS-CoV-2, and influenza might reasonably be consid-
ered to be related. To challenge this biological understanding–
biased decision, we next evaluated the performance of transfer
signatures and test datasets from biological processes that were less
clearly related. To this end, we chose to test the transfer signatures
above and additional transfer signatures from influenza and hep-
atitis B vaccination (Fig. 1B) to predict the severity of inflammatory
and autoimmune diseases (rheumatoid arthritis and asthma) and to
predict survival from malignancy as measured in datasets from
cancer (Fig. 1C).
As hypothesized, the original training test pairs from diseases

with more apparent biological relationships (dengue and SARS-CoV-
2 and influenza; TB in an animal model and in humans) were optimal
choices (“related pairs,” Dataset S2). However, we also observed
good performance for severe respiratory viral infection transfer sig-
natures in rheumatoid arthritis (Dataset S2), which reinforces the
concept of shared immunophenotypes and suggests that diseases
with less apparent relationships clinically may nevertheless have
underlying similarities in biology that are identified by our ma-
chine learning–based approach. In addition, some transfer sig-
natures were occasionally predictors of outcome for certain cancer
types (“unrelated pairs,”Dataset S2). Although these observations
may be expected by chance, it is worth discussing some of the
salient instances of transfer signature enrichment in cancer. A
prognosis of uterine carcinosarcoma and Wilms tumor were as-
sociated with the transfer signature of a severe respiratory viral
infection—a finding potentially related to the previously identified
inflammatory microenvironment of these cancers (39, 40). A
prognosis of acute myeloid leukemia was associated with a TB
transfer signature, a finding potentially related to the fact that
hematologic malignancies can be accompanied by the overpro-
duction of inflammatory cytokines based on different cellular
origins and concurrent chronic inflammatory responses (41). These
observations extend the interest of exploring transfer signatures
from infectious diseases to unrelated fields such as autoimmunity
and in cancer.

Discussion
The present work considers a transcriptomic response as a
complex set of expression profiles that includes genes uniquely
modulated by a given perturbation as well as shared responses
(e.g., up-regulation of interferon-stimulated genes), cell type com-
position, prior history of infection, and influence of genetics and the
environment on the individual as well as experimental noise. A
single study will inevitably sample from a complex transcriptome
response to generate a study-specific signature. Because many
studies are limited in size, the resulting signatures will be, to
some extent, the result of a random sampling of the large space
of deregulated genes and of noise. Against this backdrop, a transfer
signature aims at capturing informative markers of the broadest
use. Consistent with our working hypotheses, we found that many
signatures derived from data in the literature are informative when
tested in other datasets, including for related studies (e.g., same
pathogen) or even across pathogens, vaccines, and phenotypes.
Recognizing this, we systematized the identification of transfer
signatures using the concepts of transfer learning in the field of

artificial intelligence, wherein a model trained to solve one task
can be repurposed on a related task. Transfer learning also uses
information from larger compendia of datasets to inform and
constrain the models, and our work included this principle as
well via inclusion of pathway and cell type signatures. Our work
and that of others also supports the possibility of extending pre-
diction across species; for example, a recent study indicates that
the mouse transcriptome reveals potential signatures of protection
and pathogenesis in human TB (42).
The concept of transferability applies to two distinct steps in

the analysis presented here. In a first step, gene lists from a
multiplicity of unrelated datasets (termed literature signatures)
are applied to new training datasets. This step identified a good
performance of literature signatures over random gene lists of
the same length. In a second step, a gene list generated by ma-
chine learning from the ensemble of literature signatures through
the use of a training dataset—a transfer signature—is tested on an
unseen dataset to assess performance. This second step examines
the optimal predictive and classifying power of transfer signatures.
Our approach also revealed significant information content in

more general sets of initial signatures, such as those listed in the
hallmark gene sets of the MSigDB, a result consistent with re-
cent observations (43). We interpret this as an indication that
even in the absence of preexisting information in the literature,
well-defined sets of hallmark genes will enable the extraction and
creation of transfer signatures. Similarly, we observed that sig-
natures of cell type composition (23) have also classifying power
and could possibly inform on mechanisms of pathogenesis. A
number of resources use coexpression patterns to classify global
transcriptome patterns (44, 45) or to allow deconvolution of cel-
lular content (46). In general, most gene sets in those resources are
curated pathways (e.g., most of MSigDB). In addition, most of the
time, functional enrichment is done against the pathway gene sets,
not against experimental gene sets. Our approach goes one step
forward in 1) generalizing the concept to reuse signatures/fami-
lies of signatures and 2) creating a machine learning infrastruc-
ture to define the most discriminative learned signatures for a
particular disease/set of diseases, that is, transfer signatures.
We describe two use cases that illustrate the value of transfer

signatures in predicting the progression of TB and in classifying
the severity of viral respiratory disease. We suggest that transfer
signatures may therefore serve as biomarkers in clinical medi-
cine. For example, there are field applications of transcriptome
signatures created through metanalysis of up to 16 different
studies for the prediction of the progression of latent TB to active
disease (16) and from 17 studies to identify signatures for incipient
TB (47). The capability to identify such subjects is paramount to
targeting treatment of latent TB to individuals at the highest risk
for progression. We also emphasize the strategy of using transfer
signatures to enrich clinical trials for subjects that have a greater
likelihood of developing an endpoint. Such enriched clinical trial
designs could be smaller and, thus, cheaper.
It is possible that collections of validated transfer signatures

could serve as a basis to explore human immunophenotypes: the
baseline conditions that associate with the notable diversity of
individual responses in human when exposed to, for example, in-
fection or vaccines (48). The definition of human immunophe-
notypes currently requires complex genetic and immunological
phenotyping (20, 21). In the use cases, a number of the transfer
signatures were trained in samples at “baseline”—for example,
after vaccination, before the development of disease—and still
generated good classification power or a prediction of distant
endpoints. Thus, our work defines a general approach that cre-
ates transfer signatures to support immunophenotyping. A re-
lated concept is the interesting scenario of vaccine repurposing
that has been recently discussed in the context of vaccines for
SARS-CoV-2 infection (49). This concept implies that the gen-
eral or broad responses to a given stimulus, here an unrelated
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antigen, may confer protection to a second pathogen by means of
common or shared responses.
Further work in very large-scale datasets collected prospec-

tively and that contain relevant clinical metadata may allow the
identification of parameters that support or render irrelevant the
transfer learning approach. We speculate that such factors may
include the identification of diseases states that do or do not
have any underlying commonality. We predict that data from dis-
eases with an inflammatory component (many diseases) may fall
into different immunophenotype groupings, while noninflamma-
tory diseases will not segregate with transfer signatures containing
inflammation-related genes. It is possible, in contrast, that transfer
signatures from seemingly unrelated disease will be shared. We
argue that this is a significant value of our approach, as this would
generate hypotheses by which seemingly unrelated diseases are
related by underlying mechanisms. For example, we observed the
potential value of transfer signatures from infectious diseases to
serve as predictors of outcome for autoimmune diseases and for
a subset of cancers—an important area for future research. This
might have the effect of leveraging the depth of understanding of
some diseases to explore less well-understood diseases and rare
diseases that are not easily approached on a population basis.
This could yield drugs or clinical interventions that might be ap-
plied to poorly understood or understudied diseases. A final goal
is to define how many discrete and distinct transfer signatures/
immunophenotypes can be defined and whether there are com-
binations of such elemental immunophenotypes. In summary,
using machine learning approaches, we established the feasibility

to transferring optimized gene shortlists from multiple studies to a
target study with the retention of predictive and classifier power.
This could significantly facilitate the use of transfer signatures for
prospective studies before disease- and case-specific signatures
can be determined.

Materials and Methods
SI Appendix contains a methods section that describes in detail the datasets
and experimental procedures used in this study, including the signature
descriptions, sources, references, and gene lists as well as the training and
test datasets. We used categorical/binary phenotypes in order to be consis-
tent across datasets. A random forest model was run on each “literature
signature–training dataset” pair. The models were trained using the
leave-one-out cross validation. The ROC and PR AUC were computed using
the scores of the single left-out sample per trained model. For the extraction
of transfer signatures, we used literature signatures that had a ROC AUC
percentile above a defined threshold. Transfer signatures of length n = 10,
20, and 50 genes were tested empirically. Transfer signatures were used in
an unsupervised analysis to cluster samples from independent test data-
sets. Dimension reduction was performed using Uniform Manifold Ap-
proximation and Projection followed by Hierarchical Density-Based Spatial
Clustering.

Data Availability. All study data are included in the article and/or supporting
information (URLs of the datasets are provided in Dataset S1). Code to re-
produce this work is available in GitHub (https://github.com/virbio/
manuscript-transfer-signatures).
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