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Abstract

Motivation: Allelic imbalance (AI), i.e. the unequal expression of the alleles of the same gene in a

single cell, affects a subset of genes in diploid organisms. One prominent example of AI is parental

genomic imprinting, which results in parent-of-origin-dependent, mono-allelic expression of a lim-

ited number of genes in metatherian and eutherian mammals and in angiosperms. Currently avail-

able methods for identifying AI rely on data modeling and come with the associated limitations.

Results: We have designed ISoLDE (Integrative Statistics of alleLe Dependent Expression), a novel

nonparametric statistical method that takes into account both AI and the characteristics of RNA-seq

data to infer allelic expression bias when at least two biological replicates are available for recipro-

cal crosses. ISoLDE learns the distribution of a specific test statistic from the data and calls genes

‘allelically imbalanced’, ‘bi-allelically expressed’ or ‘undetermined’. Depending on the number of

replicates, predefined thresholds or permutations are used to make calls. We benchmarked ISoLDE

against published methods, and showed that ISoLDE compared favorably with respect to sensitiv-

ity, specificity and robustness to the number of replicates. Using ISoLDE on different RNA-seq

datasets generated from hybrid mouse tissues, we did not discover novel imprinted genes (IGs),

confirming the most conservative estimations of IG number.

Availability and implementation: ISoLDE has been implemented as a Bioconductor package avail-

able at http://bioconductor.org/packages/ISoLDE/.

Contact: christelle.reynes@umontpellier.fr or robert.sabatier@umontpellier.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In diploid cells, genetic and epigenetic factors influence the relative

expression levels of alleles. In the case of parental genomic imprint-

ing, the preferred allele depends on its parental origin. Other forms

of AI involve the random selection of one allele, allelic exclusion at

the immunoglobin and olfactory receptor loci or strain-of-origin-

dependent expression. The statistical methods used to infer AI from

RNA-seq data all rely on data modeling. The inference of AI is then

highly dependent on model accuracy as minor deviations of the ex-

perimental data from the model may lead to false positives or false

negatives. A comprehensive survey of statistical methods used to

infer AI is presented in the Supplementary File, Section S2 and

Supplementary Table S1.
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The importance of model accuracy is illustrated by the contro-

versy over the number of genes undergoing parental genomic

imprinting in mice and humans. A key feature of a bona fide paren-

tally imprinted gene (IG) is the unequal expression of its two paren-

tal alleles that is demonstrated by parent-of-origin-dependent AI in

RNA-seq data. Until 2010, the number of IGs in eutherian mammals

was estimated to be approximately 100 (Babak et al., 2008). In

2010, Gregg et al. suggested that 1300þ loci displayed parent-of-

origin-dependent AI in the mouse embryonic and adult brain (Gregg

et al., 2010); this unexpected finding was highlighted in several com-

ments (Keverne, 2010; Tollkuhn et al., 2010; Wilkinson, 2010). In

2012, Babak et al. (DeVeale et al., 2012) showed that ‘the vast ma-

jority of the novel reported imprinted loci are false positives

explained by technical and biological variation of the experimental

approach’. They showed that ‘allele-specific expression measured

with RNA-seq is not accurately modeled with statistical methods

that assume random independent sampling and that systematic error

must be accounted for to enable accurate identification of imprinted

expression’. The number of bona fide IGs was estimated to be ap-

proximately 150–200 (DeVeale et al., 2012; Kelsey and Bartolomei,

2012). In 2015, Dulac’s group used a novel statistical method and

found 160 IGs, including 41 new ones that displayed a weak to

moderate parental bias (Perez et al., 2015). This study suggested

that a number of IGs remained to be identified in specific tissues or

cell types. Similarly, Gregg’s group designed a new statistical

method and identified 407 IGs, substantially more than the previous

estimates, including 142 autosomal IGs that were not previously

called ‘imprinted’ (Bonthuis et al., 2015). Babak et al. re-analyzed

published human and mouse datasets that covered many different

organs and found only a handful of new IGs (Babak et al., 2015).

To circumvent the limitations of the modeling approach, we

designed Integrative Statistics of alleLe Dependent Expression

(ISoLDE), a method that uses a nonparametric approach based on

data resampling. We designed a specific nonparametric test statistic

to take into account data specificities and make the best of biologic-

al replicates. ISoLDE identifies both biased and unbiased genes,

leaving some genes as undetermined. It may be applied when at least

two replicates of reciprocal crosses are available. We benchmarked

ISoLDE against 7 other methods using 13 experimental datasets and

2 simulated datasets; we concluded that ISoLDE is more sensitive,

specific and robust to the number of replicates than currently avail-

able methods. Using ISoLDE on different RNA-seq datasets gener-

ated from hybrid mouse tissues, we did not discover novel IGs,

confirming the most conservative estimations of IG number.

2 Materials and methods

For the sake of simplicity, we describe how ISoLDE performs when AI

depends on the parental origin of the alleles; the method works straight-

forwardly for AI with a different origin. A more detailed description of

ISoLDE is available in the Supplementary File, Section S1.1.

2.1 ISoLDE uses a robust and specific statistic
ISoLDE adapts usual statistics to RNA-seq data specificities. In a

usual z-test, for example, the denominator accounts for the variabil-

ity of the samples, assuming a binomial behavior, which underesti-

mates real RNA-seq data variability. Classical variance is also

inappropriate as many replicates are rarely available. To design a

specific statistic, we chose the MAD, median absolute deviation

(Hampel, 1974), to quantify the variability of the samples. MAD is

the median of the absolute deviations from the sample’s median. For

a sample X ¼ (x1, x2, . . ., xn), let Me be the median of X, then we

denote MAD(X) ¼ MADi(xi) ¼ mediani (jxi � Mej). Sequencing

depth also has to be taken into account as more reads implies more

reliable results. Hence, we divided the MAD by the median number

of normalized reads in the sample. This variability estimation is a ro-

bust version of the coefficient of variation, using the MAD instead

of the standard deviation and the median instead of the mean.

Let ng
i ,j,P denote the normalized number of reads with paternal

origin for gene g in the jth replicate (j 2 {1, . . ., ni}) of cross i (i 2 {1,

2} corresponding to one of the two reciprocal crosses, respectively

A�B and B�A) and ng
i ,j,M the normalized number of reads with

maternal origin. Then, for gene g, the statistic is expressed as

Sg ¼
pM;1 � pP;2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MADi;j ng
i;j;Mð Þ

mediani;j n
g
i;j;Mð Þ þ

MADi;j ng
i;j;Pð Þ

mediani;j n
g
i;j;Pð Þ

r

where

pM;1 ¼
Pn1

j¼1 ng
1;j;MPn1

j¼1 ng
1;j;M þ

Pn1

j¼1 ng
1;j;P

is the proportion of normalized reads from maternal origin in the

A�B cross and

pP;2 ¼
Pn2

j¼1 ng
2;j;PPn2

j¼1 ng
2;j;M þ

Pn2

j¼1 ng
2;j;P

is the proportion of normalized reads from paternal origin in the

B�A cross. If g is bi-allelically expressed, then pM, 1 ’ pP, 2 ’ 0.5

and Sg is close to 0. If g is parentally biased, then either pM, 1 is close

to 1 and pP, 2 is close to 0 or the reverse. Hence, the numerator of Sg

is close to either �1 (paternal expression) or þ1 (maternal expres-

sion). As the denominator is always positive, the expected behavior

of Sg is the following; bi-allelically expressed gene, Sg is close to 0;

paternally expressed gene, Sg is strongly negative; maternally

expressed gene, Sg is strongly positive.

2.2 ISoLDE calculates two different thresholds to detect

bi-allelically expressed and allelically biased genes de-

pending on the number of replicates
The next step was to specify thresholds defining both allelically

biased and bi-allelically expressed genes while keeping the possibil-

ity that some genes remained undetermined with regards to statistic-

al evidence. Two situations were considered depending on whether

only two or more than two biological replicates per cross were avail-

able. ISoLDE was purposely not designed for experiments with no

replicates because such experiments do not provide valuable bio-

logical information from statistical studies. In both cases, two differ-

ent statistical tests, Q1 and Q2, were performed; Q1 was testing

whether a given gene was allelically imbalanced, and Q2 was testing

whether it was bi-allelically expressed.

2.2.1 ISoLDE performed resampling when more than two biological

replicates were available in both reciprocal crosses

When enough information was available, ISoLDE performed resam-

pling. Some existing methods perform resampling to define a

P-value threshold to compensate for approximate modeling of data

behavior (Andergassen et al., 2015; Babak et al., 2015; Bonthuis

et al., 2015; DeVeale et al., 2012; Rozowsky et al., 2011; Zou et al.,

2014). ISoLDE performed resampling to learn the behavior of the Sg

statistic in a nonparametric way, with no reference to a predefined

distribution law.
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For each gene and each biological replicate, the observed reads

were randomly assigned ‘maternal’ or ‘paternal’ depending on the

current test:

• For Q1, ISoLDE generated the distribution of Sg under the null hy-

pothesis, i.e. bi-allelic expression and pM,1 ¼ pP,2, by equally

assigning the reads to maternal and paternal origins using the dis-

tribution of proportions observed between replicates within one

cross. Within a given cross, differences between maternal and pa-

ternal origins were expected to only account for biological noise.
• For Q2, ISoLDE generated the distribution of Sg under the null

hypothesis, i.e. AI and pM,1 6¼ pP,2, by randomly choosing a par-

ental bias ratio between 0.6 and 1 and randomly assigning the

reads to maternal and paternal origins according to this ratio.

We chose 0.6 as the minimum bias value because it is the lowest

threshold value considered a significant bias so far (Andergassen

et al., 2015; Smith et al., 2013; Tran et al., 2014; Wang and

Clark, 2014).

Resampling was performed 10 000 times in order to obtain the

distribution of Sg under the null hypothesis of Q1 or Q2 for each

gene. Then, empirical P-values were estimated following the method

described by Dudoit and van der Laan (2008) to obtain the null dis-

tribution of null shift and scale-transformed test statistics (Dudoit

et al., 2004; Pollard and van der Laan, 2004; van der Laan et al.,

2004) followed by Benjamini–Hochberg adjustment. Finally, the

two P-values were used to call genes ‘allelically imbalanced’ (‘AI’),

‘bi-allelically expressed’ (‘BA’) or ‘undetermined’ (‘UN’).

As this method was stochastic, a low number of genes that were

in-between allelically imbalanced and bi-allelic expression may have

different calls after different runs. Hence, the algorithm was run three

times by default in order to retrieve consensus results. When discrep-

ancies were observed among the runs, genes were called ‘UN’.

To help the user detect potentially interesting genes among un-

determined genes, we appended a consistency flag to undetermined

genes that exhibited a consistent bias direction, i.e. genes having the

same parental bias in all the replicates of each cross. We called ‘UN’

and appended a significance flag to genes called ‘AI’ but displaying

at least one inconsistency in the bias direction among all the repli-

cates of each cross.

2.2.2 ISoLDE relied on two predefined thresholds when only two

biological replicates in at least one cross were available

In such experimental situations, there was not enough information

to obtain reliable distributions of Sg under the null hypotheses for

Q1 and Q2. We then selected two thresholds for the Sg statistic

based on the analysis of 10 different experimental datasets compris-

ing two or more replicates for each cross:

• five datasets from Bouschet et al. (2017) including the two

in vivo datasets used in the Results section and three in vitro

experiments containing only two biological replicates;
• the dataset from Hasin-Brumshtein et al. (2014) comprising two

replicates of mouse adipose tissue from the reciprocal crosses of

C57BL/6J and DBA/2J strains;
• the dataset from Babak et al. (2008) comprising four replicates

of E9.5 mouse embryos from reciprocal crosses of CAST/EiJ and

C57BL/6J strains;
• three datasets from Lorenc et al. (2014) comprising three to six

replicates of three mouse tissues [vomeronasal organ (VNO),

hypothalamus (HYP) and liver (LIV)] from reciprocal crosses be-

tween WSB and PWD strains.

The majority of these datasets had few replicates, and we

excluded other datasets with many replicates to avoid biasing the

thresholds toward values that were sensible only when many repli-

cates were available. Moreover, the selected datasets included very

different biological conditions and sequencing depth to cover a

range of experimental situations.

We used the resampling version of ISoLDE when datasets had

more than two replicates. For two-replicate datasets, we applied the

Storer–Kim test to each gene, or its normal approximation when ap-

propriate. To prevent false positives, we set a Storer–Kim test P-value

threshold using mock reciprocal crosses (DeVeale et al., 2012) with a

false discovery rate (FDR) threshold set at 0.05. We applied two add-

itional filters based on biological assumptions. The first filter selected

only AI candidates whose parental bias was the same for both repli-

cates. The second filter selected those genes for which the Storer–Kim

test was significant for most replicates taken independently. We used

again the mock reciprocal crosses approach to set a threshold on sig-

nificance agreement.

Then, the statistic Sg was computed for all genes of a dataset. A

first threshold was defined as the fifth percentile of the absolute

value of the statistic distribution among allelically imbalanced can-

didates identified in the previous step. Genes whose statistic absolute

value was higher than this threshold were considered allelically

imbalanced. Finally, a second threshold was defined as the 99th per-

centile of the absolute value of the statistic distribution among genes

not identified as allelically imbalanced candidates in the previous

step. Genes whose statistic absolute value was lower than this

threshold were considered bi-allelically expressed. Genes whose stat-

istic absolute value was between the two thresholds were called ‘un-

determined’ (‘UN’).

This method was applied to the 10 different datasets mentioned

above. The two selected thresholds were the median values of the

thresholds obtained among the 10 datasets: genes with a Sg absolute

value lower than 0.7133 were called ‘bi-allelically expressed’ (‘BA’)

and genes with a Sg absolute value higher than 1.7712 were called

‘allelically imbalanced’ (‘AI’).

2.3 Filtering method
Filtering is an important step when gene-by-gene statistical testing is

performed. It directly impacts the number of positives in the final re-

sult. ISoLDE performed a two-step filtering:

• threshold definition: for each parental origin, the maximum

number of reads was computed for genes with at least 66% of

their replicates as zero counts in the raw data. The 95th percent-

ile of the distribution of those maximum values was considered a

threshold value below which the gene had close to no expression

(e.g. threshold filter was 2.95 for the P0 cortex and 2.79 for the

E13.5 cortex samples).
• only genes with all replicates for at least one parental origin

above the threshold were considered expressed and kept for the

subsequent analyses.

3 Results

3.1 Comparison of the resampling-based and

predefined thresholds versions of ISoLDE
3.1.1 The resampling-based version of ISoLDE provides detailed

and easy to process results

We first surveyed 18 mouse strains to determine the number of genes

whose AI is searchable in the F1 progeny of any cross, i.e. the num-

ber of genes that have at least one exonic SNP for the cross under
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study (see Supplementary File, Section S1.4 and Supplementary Fig.

S1 for details). We selected the C57BL/6J and JF1 inbred strains

whose genomes diverge at more than 12 million SNPs (Takada

et al., 2013) and enable the interrogation of 21 256 genes out of the

22 569 that were surveyed (94.2%). These strains were reciprocally

crossed, and three to four biological replicates of each cross were

obtained. We ran the resampling-based version of ISoLDE on the

RNA-seq data generated in our laboratory from E13.5 and P0 mur-

ine cortices (Bouschet et al., 2017). Read counts were normalized

using the RLE method as implemented in the edgeR package

(Robinson et al., 2010).

Each gene was projected according to its Sg denominator value

(ordinate) and numerator value (abscissa), which corresponds to the

allelic bias (Fig. 1A and Supplementary Fig. S2A). The ordinate

scales are not the same in Figure 1A and Supplementary Figure S2A

due to the different number of replicates in both experiments; three

replicates for each cross at E13.5 and three and four replicates for

the crosses at P0.

A total of 37 genes displayed significant parent-of-origin depend-

ent expression at E13.5 (Supplementary Fig. S2A) or P0 (Fig. 1A),

all of which have already been identified in previous AI studies. The

allelic expression of nine genes was confirmed by other methods

(Bouschet et al., 2017).

As expected, lower allelic bias, i.e. lower absolute value of Sg nu-

merator, required lower variability to result in an ‘AI’ call. The min-

imal bias that resulted in an ‘AI’ call was 0.35 for the E13.5

condition (Supplementary Fig. S2A). Because P0 samples included

one additional replicate, ISoLDE was able to call genes ‘AI’ with a

bias as low as 0.2 for the P0 condition (Fig. 1A). This illustrates the

improved ability of ISoLDE to call genes ‘AI’ with only one add-

itional replicate.

As the final decision is made on individual permutations at the

gene level, genes with the same Sg value may be called differently.

However, ISoLDE called only few genes differently from their neigh-

bors; for example, at E13.5 (Supplementary Fig. S2A), Igf2 was

located between the paternally biased Impact and Slc38a4 genes and

was called ‘UN’ because of the high variability of the paternal read

numbers (range, 25–795; MAD¼294) while the maternal reads

were less variable (range, 13–64; MAD ¼ 10.5). ISoLDE eliminated

such ambiguous genes, and the flagging process highlighted those

situations.

3.1.2 The predefined thresholds version of ISoLDE gave results

comparable to the resampling-based version

The predefined thresholds and the resampling-based versions of

ISoLDE generally agreed, with some noteworthy exceptions illus-

trating the benefits of the resampling version (Fig. 1B and

Supplementary Fig. S2B). Impact and Adam23 at P0, and Impact

and Asb4 at E13.5 were called ‘UN_flag’ using the predefined

thresholds version due to low bias values and/or high variability

(Fig. 1A and Supplementary Fig. S2A) whereas they were called ‘AI’

using the resampling version. Impact, Adam23 and Asb4 were all

previously shown to undergo parental genomic imprinting, which is

in favor of the resampling results. On the other hand, Dlk1, Igf2,

C130071C03Rik and Ltv1 were called ‘AI’ at E13.5 using the pre-

defined thresholds version, whereas they were called ‘UN_flag’ by

the resampling version. Dlk1 and Igf2 are bona fide IGs, whereas

C130071C03Rik and Ltv1 were not previously reported as

imprinted. Very little is known about C130070C03Rik, and there is

no published data supporting its parental genomic imprinting.

Interestingly, Ltv1 is located between Plagl1, an established IG, and

Phactr2, which was also called ‘AI’ at E13.5 (Supplementary Fig.

S2A and B) and in the placenta (Wang et al., 2011). In conclusion,

both versions of ISoLDE called ‘AI’ or flagged known IGs. The

more equivocal gene, C130071C03Rik, which had few reads and

displayed high variability (Supplementary Fig. S3), was called ‘AI’

using the predefined thresholds version and flagged using the resam-

pling version, illustrating that the resampling version performed bet-

ter with the available information, especially for lowly expressed

genes.

3.2 Benchmarking of the ISoLDE method
We used simulated datasets to compare ISoLDE specificity and sen-

sitivity to those of other methods. We generated two simulated data-

sets (see Supplementary File, Section S1.2 for details). The first

dataset consisted of 10 882 genes, including 59 imprinted ones, with

three replicates in each cross. The second dataset consisted of 11

889 genes, including 68 imprinted ones, with five replicates in each

cross. We also used experimental datasets to further compare

ISoLDE and other methods (Table 1). We occasionally did not suc-

ceed to match gene IDs between the published article and the corre-

sponding data submitted to GEO. When we did not solve such

discrepancies by manual curation and/or by contacting the authors,

we discarded the corresponding genes from the comparisons. As the

A B

C D

Fig. 1. ISoLDE calls on the P0 cortex dataset and comparison with the meth-

ods by DeVeale et al. and Bonthuis et al. (A) Output of the resampling version

of ISoLDE. For each gene, the variability (denominator value of the Sg statis-

tic) was plotted against the allelic bias (numerator value of the Sg statistic).

Violet crosses correspond to bi-allelically expressed (‘BA’) genes. Red and

blue crosses correspond to genes called maternally and paternally imbal-

anced (‘AI mat’ and ‘AI pat’, respectively). Gray crosses correspond to un-

determined (‘UN’) genes. Gray circled crosses correspond to flagged genes

(consistency or significance flag, ‘UN_flag’). (B) Output of the ISoLDE version

using predefined thresholds. Crosses were colored as in (A). Dashed lines

represent the empirical threshold values. (C) Discordant ISoLDE (resampling

version) and DeVeale calls. The P0 cortex dataset was analyzed using the

method by DeVeale et al. (2012). Genes that were called ‘AI’ by only one of

the two methods are represented as colored circles on the ISoLDE output.

See the figure for the color code; the left call is the ISoLDE call. Numbers in

brackets are the numbers of genes in each category. (D) Same as C using the

method by Bonthuis et al. (2015)
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actual status of genes was unknown for experimental datasets, we

attempted to make a decision on the discordant calls by observing

data distribution of individual genes and by comparing the calls to

the lists of published IGs.

We organized the benchmarking according to the modeling used

by the published methods. We first compared ISoLDE to methods

based on Poisson, binomial and beta-binomial modeling and repre-

senting a variety of significance testing. For the simulated datasets,

we chose the method by DeVeale et al. (2012) that accounted for the

most classical approaches based on binomial modeling, v2 test and

mock reciprocal crosses to correct for false positives and filter for

consistency in the bias direction. This method has been used in sev-

eral other reports (Babak et al., 2015; Lorenc et al., 2014). We also

tested the method by Pirinen et al. (2015), which explored an alter-

native modeling based on beta-binomial and Bayesian estimation.

For the experimental datasets, we used the method by DeVeale et al.

as well as those by Babak et al. (2008) and Lorenc et al. (2014). We

also tested the method by Perez et al., which used Poisson-based

modeling and Bayesian estimation.

We then benchmarked ISoLDE against two methods based on

negative-binomial modeling and GLM. We tested the method by

Bonthuis et al. (2015) on simulated and experimental datasets, and

the method by Hasin-Brumshtein et al. (2014) on the corresponding

experimental dataset.

Finally, we tested the behavior of ISoLDE with respect to repli-

cate number, and compared it to that of the methods by Perez et al.

(2015) and Bonthuis et al. (2015).

When appropriate, we optimized the thresholds used in the com-

pared methods as recommended by authors, independently for each

used dataset.

3.2.1 ISoLDE is more conservative than methods based on Poisson,

binomial and beta-binomial distributions

3.2.1.1 Comparison of ISoLDE, DeVeale and Pirinen methods on

simulated datasets. Table 2 summarizes the results of the analysis of

the two simulated datasets by the different methods. The results for

two additional datasets with 7 and 10 replicates are displayed in

Supplementary Table S2.

ISoLDE resulted in five possible calls; allelic imbalance (‘AI’),

undetermined call with consistency flag (‘UN_flag’), undetermined

call with significance flag (‘UN_flag’), unflagged undetermined call

(‘UN’) and bi-allelically expressed (‘BA’). To compute sensitivity

and specificity, we considered ‘AI’ and ‘UN_flag’ as ‘positive’ calls

and ‘UN’ and ‘BA’ as ‘negative’ calls. The analysis of the simulated

three-replicate dataset by ISoLDE resulted in 99.4% sensitivity and

a 99% specificity; we obtained only three genes called ‘BA’ whereas

they were imprinted. Moreover, the 10 remaining IGs were undeter-

mined and flagged for consistency. On the other hand, 66 bi-

allelically expressed genes were flagged for consistency and 40 other

ones were called undetermined. We concluded that, in this applica-

tion, flags did not provide specific information.

The analysis of the five-replicate dataset by ISoLDE resulted in

94.1% sensitivity and 100% specificity. Only 13 genes were consid-

ered as undetermined, 7 of which were flagged, 5 true IGs and only

2 true BA genes. In this case, the flags were informative. ROC curves

and other performance indices can be found in Supplementary

Figure S4.

Analysis of the same datasets with the DeVeale method resulted

in 52.5% sensitivity (28 false negatives) and 99.8% specificity (21

false positives) on the three-replicate dataset, and 45.6% sensitivity

(37 false negatives) and 99.8% specificity (27 false positives) on the

five-replicate one.

Table 1. Datasets and methods used for benchmarking of ISoLDE

Reference dataset name Replicate

number in

each cross

Statistical method used in the

original publication

Bouschet et al. (2017)

P0 cortex 4-3 ISoLDE

E13.5 cortex 3-3

Hasin-Brumshtein

et al. (2014)

2-2 Beta-binomial (DESeq)

Babak et al. (2008) 4-4 Binomial þ bias direction

agreement between

replicates

Lorenc et al. (2014)

LIV, HYP 6-3 v2 on the sums over

VNO 4-3 replicates þ mock reciprocal

cross

Perez et al. (2015)

P8, P60 12-12 Generalized linear model þ
Bayesian parameters

estimation

Bonthuis et al. (2015)

DRN, ARN 9-9 Generalized linear model þ
Liver, muscle 9-9 mock reciprocal cross

Table 2. Comparison of ISoLDE and other methods on simulated

datasets

Simulated Method Se. Sp. Calls True calls

Dataset ‘AI’ ‘BA’

Three- ISoLDE 94.9 99.4 ‘AI’ 46 0

replicate ‘UN_flag’

dataset consistency 10 66

‘UN_flag’

significance 0 0

‘UN’ 0 40

‘BA’ 3 10 717

DeVeale 52.5 99.8 ‘AI’ 31 21

‘BA’ 28 10 802

Bonthuis 28.8 100 ‘AI’ 17 0

‘BA’ 42 10 823

Pirinen 79.7 98.8 ‘AI’ 47 126

‘UN’ 4 1347

‘BA’ 8 9350

Five- ISoLDE 94.1 100.0 ‘AI’ 59 0

replicate ‘UN_flag’

dataset consistency 4 0

‘UN_flag’

significance 1 2

‘UN’ 0 6

‘BA’ 4 11 813

DeVeale 45.6 99.8 ‘AI’ 31 27

‘BA’ 37 11 494

Bonthuis 64.7 100 ‘AI’ 44 0

‘BA’ 24 11 821

Pirinen 77.9 98.5 ‘AI’ 53 172

‘UN’ 8 1694

‘BA’ 7 9955***

Note: The number of genes in each category, the sensitivity (Se.) and the

specificity (Sp.) values for each method are indicated
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The Pirinen method provided six calls that we grouped in the fol-

lowing way to compare with ISoLDE calls:

• genes called ‘moderately’ or ‘strongly’ biased by the Pirinen

method were considered ‘AI’;
• genes called ‘heterogeneous’ across replicates by the Pirinen

method were considered ‘UN’;
• genes called ‘unbiased’ by the Pirinen method were considered

‘BA’.

As for ISoLDE, we considered ‘undetermined’ calls as ‘negative’

calls to compute sensitivity and specificity. This method achieved

79.7% sensitivity and 98.7% specificity. The undetermined genes

comprised 8 IGs and 1694 BA genes.

This study on simulated data showed that ISoLDE compared fa-

vorably to published methods based on binomial modeling/v2 test or

beta-binomial modeling/Bayesian estimate.

3.2.1.2 Comparison of ISoLDE and DeVeale method on data from

P0 and E13.5 cortex. DeVeale method was also applied to the P0

and E13.5 murine cortex datasets (Figs 1C and 2, Supplementary

Figs S5 and S6). One gene called ‘AI’ by the method of DeVeale in

the E13.5 dataset has been filtered out by ISoLDE in the P0 and

E13.5 samples due to very low expression (see Section 2 for more

details about filtering). Similarly, three and two genes called ‘AI’ by

ISoLDE in the P0 and E13.5 datasets, respectively, were filtered out

by the method of DeVeale. The other genes called ‘AI’ by ISoLDE in

both datasets were also called ‘AI’ by the method of DeVeale.

Sixteen and nine genes were called ‘AI’ by the method of DeVeale

alone in the P0 and E13.5 datasets, respectively (Figs 1C and 2 and

Table 3). Among these genes, 3 and 5, respectively, were called ‘UN’

and flagged by ISoLDE; 2 and 1, respectively, were called ‘UN’; 11

and 3, respectively, were called ‘BA’. The corresponding normalized

read counts mostly supported ISoLDE’s calls (Supplementary Figs

S5 and S6) but for a few exceptions; Slc38a4 displayed a high vari-

ability and low read counts (Supplementary Fig. S5) and was called

‘UN’ by ISoLDE; visual inspection of the data (Supplementary Fig.

S5) suggested AI.

We concluded that ISoLDE was more conservative and flagged

genes whose expression was close to AI.

3.2.1.3 Comparison of ISoLDE and Babak method on Babak’s

dataset. The dataset from Babak et al. (2008) contains four repli-

cates of E9.5 mouse embryos from reciprocal crosses between

CAST/EiJ and C57BL/6J. Forty genes were called ‘AI’ using a bino-

mial modeling combined with signal consistency filter and mock re-

ciprocal crosses to assess the FDR (Babak et al., 2008). The

resampling version of ISoLDE confirmed 24 of these and called two

additional ones (Fig. 2 and Supplementary Fig. S7 and Table 3).

Among the 16 genes not called ‘AI’ by ISoLDE, 6 were filtered out

due to low expression levels, 7 were called ‘UN’, including one

flagged for consistency and 3 ‘BA’. Supplementary Figure S8 showed

that six of the undetermined genes (Rian, Asb4, Neurabin, Usp29,

Peg1 and Dlk1) exhibited strain-biased expression as, depending on

the gene, either the C57BL or the CAST allele was systematically

overexpressed. Air, Meg3 and Zac1 were biased in only one of the

crosses. Finally, Zdbf2 exhibited inconsistency in bias direction

within replicates. These observations were not in favor of AI of these

10 genes.

On the other hand, two genes (AK090117 and AK142799),

which were not detected by the Babak method, were called ‘AI’ by

ISoLDE with a strong paternal bias (Supplementary Figs S7 and S9).

A previous study supported imprinting of AK142799 (Mould et al.,

2013). The marked difference between maternal and paternal nor-

malized read counts of these two genes (Supplementary Fig. S9) sug-

gested that the discrepancy between ISoLDE and the method of

Babak might be due to inaccurate gene ID, as observed in other stud-

ies, rather than to methodological issues.

We concluded that ISoLDE was efficient at eliminating false

positives.

3.2.1.4 Comparison of ISoLDE and Perez method on Perez’s data-

sets. As previously mentioned, Perez et al. proposed a method based

on a complex generalized linear model assuming a Poisson distribu-

tion of variability (Perez et al., 2015). This method uses MMSEQ to

estimate the real expression level of each gene along with the vari-

ability. P8 and P60 cerebella of 24 mice derived from the reciprocal

crosses between CAST/EiJ and C57BL/6J strains were RNA

sequenced. As raw data were not available, we ran ISoLDE on

MMSEQ average expression outputs (Supplementary Fig. S10).

In the P8 cerebella, 91 out of 143 genes called ‘AI’ by Perez were

also called ‘AI’ by ISoLDE. Among the 52 discordant genes, 19 were

flagged by ISoLDE including 15 significance flags (Fig. 2 and

Supplementary Fig. S11, Table 3). Ten genes called AI by Perez were

called bi-allelically expressed by ISoLDE (Fig. 2); the corresponding

maternal and paternal numbers of reads did not support the calls by

Perez method (Supplementary Fig. S12).

Five genes (FR0149454, NM 009225.2-13, NM 011241.4-55,

NM 013762.2-23 and NM 027275.3-3) were considered biased by

Fig. 2. Comparison of ISoLDE to other published methods on a series of ex-

perimental datasets. The indicated datasets were analyzed in parallel by

ISoLDE and by one of the indicated published methods. For each method

comparison, the genes called parentally biased (‘AI’) by either method were

classified according to the calls of the two methods. ‘AI’, allelic imbalance.

‘BA’, bi-allelically expressed. ‘UN’, undetermined. ‘UN-flag’, undetermined

and flagged by ISoLDE. The AI-AI pair in legend denotes genes called paren-

tally biased by both ISoLDE and the compared method. The AI-BA and BA-AI

pairs in legend denote genes called parentally biased by one method and

bi-allelically expressed by the other. The UN-AI pair in legend, respectively

UN-flag-AI, denotes genes whose parental bias could not be determined, re-

spectively was flagged, by ISoLDE and was called parentally biased by the

other method
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ISoLDE but not by the Perez method (Fig. 2); these discrepancies

might be related to misidentification of gene IDs because the same

transcript was sometimes linked to different IDs.

The comparison of ISoLDE and Perez methods on P60 data gave

similar results (not shown).

These results showed that the sophisticated modeling of data by

the Perez method may still lead to false positives. A possible reason

for this observation was the high number of replicates, 12 per repli-

cate; parametric modeling implies a rapid increase in confidence

with sample size. The combination of this phenomenon with the po-

tential variability underestimation due to modeling may lead to false

positives.

3.2.1.5 Comparison of ISoLDE and Lorenc method on Lorenc’s

dataset. Three tissues were investigated: VNO, HYP and LIV

(Lorenc et al., 2014). They were collected from reciprocal crosses of

WSB and PWD strains with three to six biological replicates in each

cross. The method of Lorenc used a v2 test, which involved the nor-

mal approximation of the binomial distribution, followed by signal

consistency filter. Mock reciprocal crosses were used to control

FDR in a way similar to the one used by DeVeale et al. (2012).

Lorenc et al. first identified significant SNPs and then annotated

transcripts called ‘AI’ using Mus musculus GRCm38.68

(ENSEMBL) and named UCSC genes from the mm10 reference

annotation. As ISoLDE worked at the transcript/gene level, we first

annotated SNPs using ANNOVAR and mm10 UCSC refFlat file and

then summed all allele-specific sense read bases across a gene before

running ISoLDE. As we could not use the annotation database of

Lorenc, discrepancies between gene symbols might have occurred.

We analyzed all three datasets with ISoLDE (Supplementary Figs

S13–S15). The vast majority of ‘AI’ calls were identical between

ISoLDE and Lorenc method (Fig. 2 and Table 3). Among the seven

genes called ‘AI’ in at least one tissue by ISoLDE only

(Supplementary Figs S17 and S19), six were previously called ‘AI’ by

others (Babak et al., 2008; Chiesa et al., 2012; Perez et al., 2015;

Silva-Santiago et al., 2012; Tremblay et al., 1995; Wu et al., 2012;

Xiao et al., 2006). Of note, DQ267100 and Snord64 are snoRNAs

that might not be annotated in Lorenc’s database. DQ267100 is

located in an intron of the maternally expressed Rian gene. Snord64

is located in an intron of the paternally expressed Snrpn gene and

overlaps AK139082, an unclassifiable mRNA from GenBank that

was called paternal in HYP by Lorenc. Furthermore, Kcnq1ot1, a

long noncoding RNA, might not be present in Lorenc’s database.

Hence, misannotation may be the source of most of the observed

discrepancies.

Genes called ‘AI’ by the Lorenc method only displayed high vari-

ability with regards to bias (Adam23, Bcl2l1, Ppp1r9a, Asb4, Igf2,

Klhdc10 and Wars), discrepancies in the bias direction depending on

the replicate (Ddc, Supplementary Fig. S16) or allelic bias in only

one cross (Nnat, Supplementary Fig. S18). Four of those genes were

called ‘UN’ and flagged by ISoLDE with consistency across repli-

cates in bias direction. ISoLDE called Wars ‘BA’ whereas the visual

inspection of the read counts showed a weak and constant bias in

favor of paternal reads (Supplementary Fig. S16).

In short, the inspection of the data challenged some of the calls

made by the Lorenc method. The ability of ISoLDE to learn the vari-

ability of each gene from the data made it more efficient to remove

genes that had low bias at the expense of the sensitivity for those

genes displaying very weak bias.

In conclusion, the widely used modeling of RNA-seq data using

binomial, beta-binomial or Poisson distributions resulted in

underestimated variability and led to a high number of false positive

‘AI’ calls, which was the cause of the controversy over the number

of IGs.

3.2.2 ISoLDE is more sensitive than methods based on negative

binomial distribution

The negative binomial distribution was implemented in RNA-seq

data analysis to correct the strong underestimation of variability in

the more classical modeling using the binomial or Poisson

distributions.

3.2.2.1 Comparison of ISoLDE and Bonthuis method on simulated

datasets. The method by Bonthuis et al. (2015) is based on the

edgeR package (Robinson et al., 2010; Zhou et al., 2014) and uses a

negative binomial modeling combined with GLM for significance

testing. The results obtained with this method on the three- and five-

replicate datasets are given in Table 2; 28.8% sensitivity and 100%

specificity on the three-replicate dataset; 64.7% sensitivity and

100% specificity on the five-replicate dataset. Compared to

ISoLDE, the method by Bonthuis et al. displayed a marginally

improved specificity (100% versus 99.39% or 99.98%) at the ex-

pense of sensitivity (28.8% versus 94.9%, three-replicate dataset;

64.7% versus 94.1%, five-replicate dataset).

Table 3. Comparison of ISoLDE and other methods on experimen-

tal datasets

IsoLD E calls

Dataset Method Calls ‘AI’ ‘UN_flag’

(consist.)

‘UN_flag’

(signif.)

‘UN’ ‘BA’

Perez P8 Perez ‘AI’ 91 4 15 23 10

‘BA’ 5 0 141 2425 29 644

Babak Babak ‘AI’ 24 1 1 5 3

‘BA’ 2 1 2 8 628

Lorenc Lorenc ‘AI’ 5 0 0 0 0

LIV ‘BA’ 0 3 1 8 7402

Lorenc Lorenc ‘AI’ 41 3 0 0 5

HYP ‘BA’ 3 2 3 7 10 174

Lorenc Lorenc ‘AI’ 18 1 0 0 0

VNO ‘BA’ 2 9 1 65 10 663

Bouschet DeVeale ‘AI’ 35 3 0 2 11

P0 cortex ‘BA’ 0 13 4 52 10 685

Bouschet Bonthuis ‘AI’ 34 0 0 0 0

P0 cortex ‘BA’ 4 16 4 54 10 696

Bouschet DeVeale ‘AI’ 31 5 0 1 3

E13.5

cortex

‘BA’ 2 31 2 115 10 144

Bouschet Bonthuis ‘AI’ 27 0 0 0 0

E13.5

cortex

‘BA’ 6 36 2 116 10 147

Hasin-Bru. Hasin-Bru ‘AI’ 5 0 0 0 0

‘BA’ 4 56 0 89 5690

Bonthuis Bonthuis ‘AI’ 46 5 2 15 54

DRN ‘BA’ 0 0 0 83 12 496

Bonthuis Bonthuis ‘AI’ 53 7 1 44 211

ARN ‘BA’ 0 0 0 85 12 547

Bonthuis Bonthuis ‘AI’ 14 1 1 2 5

Liver ‘BA’ 0 0 1 36 10 776

Bonthuis Bonthuis ‘AI’ 23 1 1 9 47

Muscle ‘BA’ 0 0 1 68 10 261

Note: The number of genes in each category is indicated

510 C.Reynès et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz564#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz564#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz564#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz564#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz564#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz564#supplementary-data


3.2.2.2 Comparison of ISoLDE and Bonthuis method on data from

P0 and E13.5 cortex. We applied the method by Bonthuis et al. to

the E13.5 and P0 cortices datasets (Figs 1D and 2). In both datasets,

all genes called ‘AI’ by the Bonthuis method were also called ‘AI’ by

ISoLDE (Table 3). Four, respectively six, additional genes were

called ‘AI’ by ISoLDE only in P0 (Zdbf2, Copg2, Impact and

Adam23), respectively E13.5 (Snrpn, Adam23, Phactr2, Slc38a4,

Impact and Asb4). Those genes have already been shown to be

imprinted and their normalized read counts (Supplementary Figs

S22 and S23) supported this conclusion. Hence, those results were

consistent with the simulation results and confirmed the low sensi-

tivity of the Bonthuis method. In our cortex datasets, the number of

replicates was low (3–4 per cross), which caused edgeR and DESeq

to be restrictive. In this context, ISoLDE was still able to make the

most of the available data to highlight genes whose specific charac-

teristics allow for positive decisions.

3.2.2.3 Comparison of ISoLDE and Hasin–Brumshtein method on

Hasin–Brumshtein’s dataset. This dataset (Hasin-Brumshtein et al.,

2014) comprised two replicate experiments of mouse adipose tissue

from reciprocal crosses of C57BL/6J and DBA/2J strains. It used

negative binomial modeling of data combined with GLM as imple-

mented in the DESeq package (Anders and Huber, 2010). Because

this dataset included two replicates only, we used the predefined

thresholds version of ISoLDE.

Among the nine genes called ‘AI’ by ISoLDE (Supplementary

Fig. S20), five genes (Meg3, Zim1, Ndn, Trappc9 and Sgce) were

also identified by Hasin–Brumshtein (Supplementary Fig. S20 and

Fig. 2, Table 2). Four genes (H13, Snrpn, Snurf and Hoxb9) were

called ‘AI’ by ISoLDE only. H13, Snrpn and Snurf are known IGs

and inspection of maternal and paternal read counts of Hoxb9

(Supplementary Fig. S21) supported the ‘AI’ call despite low read

counts. ISoLDE called significantly more AI genes, with no obvious

signs of false-positives.

3.2.3 ISoLDE is more robust to variations in replicate number

The comparison described above suggested that Perez method dis-

played overconfidence when the number of replicates increased. To

test how ISoLDE behaved with respect to replicate number, we

tested ISoLDE on the Bonthuis datasets that had nine biological rep-

licates for each reciprocal cross in four different tissues: ARN,

DRN, muscle and liver (Figs 2 and 3).

Surprisingly, this comparison revealed many probable false posi-

tives among the Bonthuis calls. Examples of discordant calls are

shown in Figure 3C. Ddc was called ‘BA’ by ISoLDE and ‘AI’ by the

Bonthuis method. Inspection of the read counts supported a strain

bias; the average number of paternal reads was marginally lower

than the average number of maternal reads, but the same number of

samples displayed a maternal or a paternal bias. To confirm this, we

ran ISoLDE in a strain bias mode; among the 132 genes called ‘AI’

by Bonthuis, 30, including Ddc, were called with a strain bias and

no parental bias by ISoLDE (Supplementary Fig. S24). Other kinds

of potential false positives were also identified. Gm20715 was called

‘UN’ by ISoLDE; 11 replicates exhibited a maternal bias, and 7 rep-

licates exhibited a paternal bias. Finally, Cobl was flagged for con-

sistency by ISoLDE, and this conservative decision was reasonable

given the low global difference between the maternal and paternal

read counts and the observed variability among the replicates.

The comparison of ISoLDE with Perez or Bonthuis method con-

firmed the trend of parametric methods toward overfitting, especial-

ly when the number of replicates increased. In contrast, ISoLDE

appeared to exhibit a more constant behavior whatever the number

of replicates.

4 Discussion

To the best of our knowledge, statistical analysis of AI relied only

on model-based methods. Classical distributions such as Poisson, bi-

nomial, beta-binomial and negative binomial have been used to

model RNA-seq data. In contrast, ISoLDE relies on a nonparametric

framework.

We designed a specific statistic to take into account both AI and

the characteristics of the RNA-seq data, i.e. discrete values, variable

sequencing depth and replicate variability. Its gene-by-gene distribu-

tion was learned directly from data through resampling. The com-

parison to published methods indicated that ISoLDE was more

conservative than methods based on binomial, beta-binomial or

Poisson distributions, whose intrinsic risk of underestimation of

variability leads to false positives. ISoLDE also circumvents the limi-

tations of methods based on negative binomial modeling, such as

edgeR or DESeq. These methods have been specifically designed to

avoid variability underestimation with few replicates and rapidly in-

crease confidence with replicate number. Consequently, their sensi-

tivity is adequate when many replicates are available but is limited

for few replicates. On the other hand, their good specificity with few

A

C

B

Fig. 3. Comparison of the ISoLDE and Bonthuis methods using the Bonthuis

DRN dataset. (A) Output of the resampling version of ISoLDE on the Bonthuis

dataset. For each gene, the variability (denominator value of SG statistics) is

plotted against the allelic bias (numerator value of the Sg statistics). Violet

crosses correspond to bi-allelically expressed genes (BA). Red and blue

crosses correspond to genes called maternally and paternally biased (AI), re-

spectively. Gray crosses label undetermined genes (UN). Gray circled crosses

correspond to flagged genes (consistency or significance flag). (B) Discordant

ISoLDE and Bonthuis calls. The Bonthuis dataset was analyzed using the re-

sampling version of ISoLDE. Genes that were called AI by only one of the two

methods are indicated by colored circles on the ISoLDE output. See the figure

for color code (first call is ISoLDE call). Numbers in brackets are the number

of genes in each category. (C) The fractions of maternal and paternal reads in

each replicate sample of the Bonthuis dataset are displayed in red and blue,

respectively. The black dashed line corresponds to an unbiased parental ori-

gin, i.e. a bi-allelic expression. A gene from each type of discordance in this

dataset has been chosen. F1r and F1i in the replicate names refer to the recip-

rocal crosses
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replicates decreases with bigger datasets. The data-driven frame-

work of ISoLDE seems to be more flexible and automatically adapts

to the sample size.

Another important benefit of ISoLDE is its capacity to provide

more informative results. Biological variability often prevents draw-

ing definitive conclusions. The expression of some genes may be nei-

ther clearly allelically imbalanced nor clearly bi-allelic. ISoLDE

classifies genes into three categories: allelically biased, bi-allelically

expressed and undetermined. Moreover, ISoLDE flags two subsets

of undetermined genes according to the significance or consistency

in their bias. Finally, the statistics of all genes are illustrated in an in-

formative, user-friendly graph so that the investigator’s attention

can be focused on genes having the most interesting characteristics

depending on his/her needs. In the present study, we focused on gene

level analyses but ISoLDE performs analysis at any level, gene, tran-

script or SNP.

Learning from the data is an advantage that comes with a limita-

tion; it requires at least three replicates of both reciprocal crosses.

To alleviate this limitation, we designed an option in ISoLDE

that uses precomputed thresholds. Whenever possible, we recom-

mend using the resampling option to compute gene-specific

thresholds.

We applied ISoLDE to identify genes displaying parent-of-

origin-dependent AI, which were therefore potentially imprinted.

We did not find any new parentally biased gene in the cerebral cor-

tex samples that we recently generated. We also found very few new

parentally biased genes in other published RNA-seq data. Our con-

clusion is that the total number of IGs is likely close to the most con-

servative estimates, i.e. �150–200. If new allelically biased genes are

to be discovered, they should be searched for specific cell types, tis-

sues and/or at precise developmental stages.

We designed ISoLDE with parent-of-origin-dependent AI in

mind, but ISoLDE is able to detect AI whatever the origin of the

bias. In the accompanying Bioconductor package, two options are

available; parental and strain bias. More generally, the user can pro-

vide any two-level variable defining two conditions between which

AI is to be compared.

ISoLDE is limited by the need for reciprocal crosses. This experi-

mental design is becoming standard in model organisms but is obvi-

ously unworkable in human studies. We plan to develop a novel

nonparametric method to analyze AI in human RNA-seq data in a

future version of ISoLDE. This method will also be helpful to iden-

tify random AI, in particular in single-cell RNA-seq data.
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