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Summary 
We have assessed during B cell development, the regulation and function of bcl-x, a member of 
the bcl-2 family of apoptosis regulatory genes. Here we show that Bcl-xr, a product of  bd-x, is 
expressed in pre-B cells but downregulated at the immature and mature stages of B cell devel- 
opment. Bcl-xr but not Bcl-2 is rapidly induced in peripheral B cells upon surface immuno- 
globulin M (IgM) cross-linking, CD40 signaling, or LPS stimulation. Transgenic mice that 
overexpressed Bcl-xt within the B cell lineage exhibited marked accumulation of peripheral B 
cells in lymphoid organs and enhanced survival of developing and mature B cells. B cell sur- 
vival was further increased by simultaneous expression of  bcl-xL and bcl-2 transgenes. These 
studies demonstrate that Bcl-2 and Bcl-x t are regulated differentially during B cell develop- 
ment and activation of mature B cells. Induction of Bcl-XL after signaling through surface IgM 
and CD40 appears to provide mature B cells with an additional protective mechanism against 
apoptotic signals associated with antigen-induced activation and proliferation. 

N 'aturally occurring cell death is common during B cell 
maturation and is accomplished by apoptosis, a mor- 

phologically defined process that is widespread during em- 
bryogenesis and postnatal development (1). During B lym- 
phocyte differentiation, it is estimated that as few as one 
tenth of the daily 3-5 • 107 newly formed B cells is incor- 
porated into the peripheral mature pool (2, 3). Death ap- 
pears to be the fate of most B cell precursors with the ma- 
jority of the cell loss occurring during the transition from 
large, cytoplasmic ~ chain-producing B cell precursors to 
small pre-B cells (4, 5). Because rearrangement of Ig genes 
is a stochastic process, many B cell precursors fail to com- 
plete successful assembly of H and L Ig chains and appear to 
undergo cell death in the bone marrow (BM) 1 (4, 5). Later 
in development, IgM+IgD - immature B cells undergo fur- 
ther selection based on the specificity of their IgM surface 
receptors. Newly formed B cells that recognize self-anti- 
gens are eliminated by apoptosis in the BM or are function- 

~Abbreviations used in this paper: BM, bone marrow; CD40L, CD40 ligand; 
HIKP, horseradish peroxidase; MCF, mean channel fluorescence. 

The first two authors contributed equally to this work. 

ally inactivated (6). In the periphery, IgM+IgD + mature B 
cells can undergo T cell-dependent affinity maturation of 
their surface antigen receptors after encounter with anti- 
gen. This process involves a high rate of somatic mutations 
in the rearranged Ig genes during antigen-induced prolifer- 
ation in germinal centers (7). Mature B cells exhibiting 
high affinity for antigen are preferentially selected whereas 
those displaying low affinity for antigen die by apoptosis (8, 9). 

The intracellular mechanisms that implement and regu- 
late apoptosis are still poorly understood, but it is thought 
that cell death is controlled by a genetic program induced 
within the dying cell (1, 10-12). Little is known about the 
signals that regulate developmental cell death in the B cell 
lineage. Because the selection of B cell precursors is largely 
based on the production of  functional H and L chain Ig re- 
ceptors, it has been hypothesized that failure to express a 
pre-B cell receptor complex leads to cell death (13-15). 
Later in development, signaling through surface IgM is 
critical for the elimination of B cells activated by self-anti- 
gens in the BM, whereas the Fas receptor appears to play a 
major role in the deletion of activated B cells in the periph- 
ery (16). Beyond those signals that regulate B cell death 
during development, apoptosis can be induced in B lym- 
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phocytes by a wide variety o f  stimuli including exposure to 
cytotoxic drugs, ~-irradiation, glucocorticoids, or withdrawal 
o f  growth factors (17-19). 

The  bd-2 protooncogene  was the first member  o f  an ex- 
panding family of  genes that suppresses the apoptotic mecha- 
nism (20), Enforced expression o f  bd-2 in lymphoid  cells 
prevents or  delays apoptosis induced by  multiple stimuli 
(17, 18, 21). A role for Bcl-2 in the selection o f B  lympho-  
cytes was suggested by its pattern o f  expression during B 
cell development  (22, 23). Analysis o f  Bcl-2-def ic ient  mice 
has demonstrated that Bcl-2 is essential for the maintenance 
o f  mature B and T lymphocytes (24, 25). In addition, Bcl-2 
appears to function as a survival signal for positive selection 
o f  B cells in germinal centers (8) and for recruitment or 
maintenance o f  high affinity memory  B cells (26, 27). 

Because mice deficient in Bcl-2 exhibited normal matu-  
ration o f  the B cell lineage (24, 25), we hypothesized that 
genes other than bd-2 could function as survival signals 
during the selection and maturation of  B cell precursors. A 
candidate is bd-x, a member of  the bcl-2 family of  apoptosis- 
regulatory genes. In the human, two distinct bd-x m R N A s  
(bcl-xL and bcl-xs) that encode proteins with different b io-  
logical function were identified (28). In the mouse, bcl-x L is 
the dominant  bcl-x m R N A  expressed in embryonic  and 
postnatal tissues including primary lymphoid  organs (29, 
30). Like Bcl-2, the product  o f  bcl-XL localized to mi to-  
chondria and perinuclear envelope (29) and can inhibit the 
apoptotic death of  hematopoiet ic  cell lines after growth.  
factor withdrawal (28). Analyses of  Bcl-x-deficient chimeric 
mice demonstrated significant alteration in the maturation 
o f  B and T cell precursors (31). However ,  the biological 
basis for the altered phenotype observed during B cell mat-  
uration in bcl-x mutant mice was unclear. In the present 
studies, we sought to determine the regulation and func- 
tion o f  bcl-x during B cell developmenc 

O u r  results indicate that the expression o f  Bcl-XL is es- 
sentially l imited to pre-B cells, a narrow stage o f  develop-  
ment  characterized by extensive clonal  selection. In con-  
trast, its functional homologue,  Bcl-2, was downregulated 
in pre-B cells but  expressed in pro-B and mature B cells 
(23). Consti tutive expression o f  Bcl-xr  p romoted  accumu- 
lation o f  B cell precursors and mature B cells in the animal 
and enhanced B cell survival in vitro. Our  results demon-  
strate that Bcl-xL, but  not  Bcl-2, was upregulated after sur- 
face IgM cross-linking, CD40 signaling, or LPS stimula- 
tion. Given that Bcl-2 and Bcl-x t were coexpressed in 
mature B cells after activation, we examined the effect o f  
simultaneous expression o f  bcl-2 and bcl-xL transgenes. Ex-  
pression o f  both Bcl-2 and Bcl-XL led to the enhanced ac- 
cumulation o f  B cells in the animal and increased the p ro-  
tection against an t i - IgD- induced  cell death in vivo. The 
implications o f  these findings for physiological pathways o f  
B cell development  and survival are discussed. 

Materials and Methods 

Mice and Injections. C57BL/6 mice were obtained from The 
Jackson Laboratory (Bar Harbor, ME). Animals used for these 

studies were between 8 and 12 wk of age unless otherwise indi- 
cated. The Ig-bcl-2 transgenic mice (32) were a gift from Dr. S. 
Korsmeyer (Washington University, St. Louis, MO). Mice were 
bred and maintained in a pathogen-free environment at the Uni- 
versity of Michigan Animal Facilities. To study the effects ofdexa- 
methasone on BM B cell populations, animals received a single 
i.p. injection of 2 mg ofdexamethasone (American Regent Labo- 
ratories, Shirley, NY) or PBS as control. BM cells from two fe- 
murs were harvested 48 h later and stained as described below. 
To analyze the effect ofanti-IgD treatment on B cell populations, 
mice were treated according to the following schedule (33): 3 mg 
ofanti-IL-7 mAb (M25 clone; 34) injected intraperitoneally three 
times per week starting 2 wk before injection of anti-IgD anti- 
body and continuing for 1 wk; 1 mg ofanti-CD4 mAb (GK1.5 
clone; 35) once a week injected intravenously starting 2 wk be- 
fore injection of anti-lgD antibody and continuing for 1 wk; 1 
mg of anti-Fc3,RII mAb (24G2 clone; 36) injected intravenously 
along with the injection of anti-IgD antibody; 1 mg of anti-IgD 
mAb (HB86 clone; 37) injected 1 wk before killing. The number 
of BM and peripheral B cell populations was determined by flow 
cytometry as described below. To assess the efficiency ofanti-Igl) 
treatment, the expression of IgD on B cells was analyzed by flow 
cytometric analysis 2 d after injection ofanti-IgD mAb. After this 
treatment, IgD molecules were saturated to the same extent in all 
groups of mice (data not shown). 

Construction of SV40-Elz-bcl-xL Transgene and Generation of 
Transgenic Mice. To target bcl-xL to the lymphoid compartment, 
the human bcl-x L eDNA was cloned under the regulatory control 
of the SV40 promoter and IgH enhancer using a SV40-EH cas- 
sette (21). The 2.4-kb fragment containing the SV40-EH-bcl-x~. 
insert was microinjected into F 2 hybrid zygotes from (C57BL/6 • 
SJL/J)F l parents at a concentration of 2-3 ng/txl. After overnight 
incubation, the eggs that survived to a two-cell stage were trans- 
ferred to day 0.5 postcoitum pseudopregnant CS-1 females. 3 wk 
after birth, genomic DNA was prepared from tail tissue and the 
incorporation of the human bcl-x L transgene was assessed by dot 
blot analysis or by PCR as previously described (28). 

Cell Preparations. B cell-enriched populations were purified 
from spleens of normal and transgenic mice after in vitro treat- 
ment with anti-Thy-l.2 mAb (HO-13.4 clone, a rat IgM anti- 
mouse Thy-l .2 mAb) and complement (Cedarlane Laboratories, 
Ltd., Hornby, ON, Canada). The resulting cell populations were 
>90% slgM + and <1% CD4 + or CD8 +. To analyze the expres- 
sion of Bcl-x or Bcl-2 after B cell activation in normal mice, B 
cell-enriched spleen cells were cultured in RPMI supplemented 
with 2 mM L-glutamine, 10 -5 M 2-MER, and 10% heat-inacti- 
vated FCS (Hyclone Laboratories, Logan, UT) at a concentration 
of 5 • 106 cells/ml in the presence of different concentrations of 
affinity-purified F(ab')2 goat anti-mouse IgM polyclonal antibody 
(Jackson ImmunoResearch Laboratories, Inc., West Grove, PA), 
1 b~g/ml recombinant CD40L (38), or 10 ~g/ml LPS (Sigma 
Chemical Co., St. Louis, MO). At several time points, cells were 
harvested, washed twice in PBS, and cell lysates prepared as de- 
scribed below. Protein concentration in lysates was determined 
using a protein detection kit (Pierce Chemical Co., Rockford, 
IL). For cell viability assays, B cell-enriched spleen cells were cul- 
tured in triplicate at a concentration of 106 cells/ml in 96-well 
microtiter plates. Viable cells were determined at different days by 
trypan blue exclusion. 

Antibodies. FITC-labeled anti-CD4 (clone H129.19) and PE- 
conjugated anti-CD8 (clone 53-6.7) mAbs were purchased from 
GIBCO BRL Research Laboratories (Gaithersburg, MD). The 
following antibodies were obtained from PharMingen (San Di- 

382 bcl-x during B cell Development and Activation 



ego, CA): biotinylated anti-CD4 (clone RM-4-5), biotin- and 
PE-conjugated anti-CD45R (B220) (clone RA3-6B2), PE-con- 
jugated anti-CD24 (HSA) (clone M1/69), PE- and FITC-labeled 
anti-IgM (clone R6-60.2), FITC-labeled anti-IgD b (clone 217- 
170), and FITC-labeled anti-CD43 (leukosialin) (clone $7). The 
streptavidin-RED670 T M  reagent was bought from GIBCO-BRL 
Research Laboratories. 

Flow Cytometric Analysis. Single cell suspensions from spleen, 
LN, and BM were prepared as previously described (39). Cells 
(106 ) were incubated with different combinations of antibodies 
specific for cell surface markers in 100 b~l ofPBS-I% BSA for 30 
min on ice and washed twice with PBS-I% BSA. When indi- 
cated, streptavidin-IkED670 TM was used for three-color analysis. 
Cells were analyzed with a FACScan | flow cytometer and a min- 
imum of 3 • 104 events per sample was counted using Lysys II 
software (Becton Dickinson & Co., Mountain View, CA). Anal- 
ysis of  Bcl-x expression in B cell progenitors was performed by 
flow cytometry as previously described for Bcl-2 (23), using a 
mouse IgG3 anti-Bcl-x mAb (40) followed by a biotin-conju- 
gated goat anti-mouse IgG3 (Caltag Laboratories, South San 
Francisco, CA) and streptavidin-RED670 TM. 

Western Blot Analysis. Bcl-x L or Bcl-2 expression was deter- 
mined by Western blot analysis as previously described (23). 
Briefly, proteins (25-100 Ixg/sample) were transferred to nitro- 
cellulose membranes by electrophoresis and then incubated at 
4~ overnight with a rabbit anti-Bcl-x polyclonal serum (41) di- 
luted 1/500, 4 C l l ,  a rat anti-mouse Bcl-2 (42), or with a mouse 
anti-~-Tubulin antibody (Sigma Chemical Co.) in 1.5% milk- 
TBS (Tris-but}?red saline) with 30 Ixl of normal goat serum 
(Sigma Chemical Co.) After five washes in TBS with 0.05% of 
Tween 20, the membrane was incubated for 1 h at room temper- 
ature with horseradish peroxidase (HRP)-conjugated goat anti- 

rabbit, goat anti-rat, or goat anti-mouse antibodies (Jackson Im- 
munoResearch Laboratories, Inc.) diluted 1/50,000 in 1.5% milk- 
TBS. The reaction was developed by enhanced chemilumines- 
cence using the ECL kit (Amersham Corp., Arlington Heights, IL). 

Results 

Bd-xL Expression Is Highly Regulated during B Cell Devel- 
opment in Normal Mice. The  expression o f  Bcl-x proteins 
was assessed in developing and mature B cells by  three-  
color flow cytometric  analysis using different combinations 
of  antibodies directed to specific surface markers and a 
mouse ant i-Bcl-x mAb (40). The  Bcl-x  protein was de-  
tected at very low levels in B220a"nCD43 + pro-B cells, up-  
regulated in I g M - B 2 2 0  a~" pre-B cells, and downregulated 
again in IgM+HSA high immature B cells (Fig. 1). Bcl-x was 
not  detected in mature B cells from spleen (Fig. 1). This 
difference in.Bcl-x expression was quantified by calculating 
the ratio o f  mean channel fluorescence (MCF) o f  Bcl-x to 
M C F  o f  control  Ig in each subpopulation. The  M C F  ratio 
for pro-B cells was 1.6 -- 0.3, increased to 3.0 -+- 0.2 for 
pre-B cells and decreased again for immature B cells to 1.7 -+ 
0.2. For mature B cells from the B M  and spleen, the ratio 
was 1.1 -+ 0.2. To confirm these observations and to deter-  
mine which form of  Bcl-x was expressed, populations o f  
BM B cells enriched in B220+IgM - (pro- and pre-B cells) 
and B220+IgM + (immature and mature B cells) were 
sorted at high purity by flow cytometry and cell lysates an- 
alyzed by Western blot analysis. Bcl-XL was the only bcl-x 
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Figure 1. Expression of endogenous Bcl-x during B cell development. BM and spleen cells from 8-wk-old C57BL/6 mice were labeled with FITC- 
conjugated anti-lgM or anti-CD43, PE-conjugated anti-B220 or anti-HSA, or biotinylated anti-lgD antibodies. Cells were fixed with PBS containing 
2% paraformaldehyde, permeabilized with saponin, labeled with anti-Bcl-x mAb or isotype-matched control antibody, and analyzed by flow cytometry. 
(Top) Contour plots of BM cells stained with different combinations of mAbs. BM cell populations were determined as follows: pro-B cells 
(IgM-CD431~ pre-B and pro-B cells (lgM+B2201~ immature B cells (lgM+HSAhigh), and mature cells (IgM+HSAI~ (Bottom) Intensity of Bcl- 
x staining (histogram b) in the B cell populations gated in the upper panels. Background staining with control mouse IgG3 is shown for comparison (his- 
togram a). Results are representative of three different experiments. 
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Figure 2. Bcl-x L is the bcl-x product expressed during B cell develop- 
ment. B220+-IgM - and B220+-IgM + B cell populations were sorted 
from BM by flow cytometry. The expression of Bcl-x in cell lysates from 
these fractions (25 ~g of protein each lane) was assessed by Western blot 
analysis using a polyclonal anti-Bcl-x antibody followed by HRP goat 
anti-rabbit serum. 

product  detected in preparations o f  developing and mature 
B cells (Fig. 2). The  30-kD Bcl-xL protein was expressed in 
lysates from B220+IgM - B cell precursors but  downregu-  
lated in more  mature B220+IgM + B cells (Fig. 2). These 
results demonstrate that Bcl-xL is the bcl-x product  ex- 
pressed during B cell development.  Furthermore,  the ex- 
pression pattern o f  Bcl-xL is predominant ly  restricted to 
pre-B and differs considerably from that previously re- 
ported for Bcl-2 (23, 43). 

Bcl-x L but Not Bd-2 Is Induced in Mature B Cells after Acti- 
vation. Rest ing B cells from peripheral lymphoid  tissues 
express Bcl-2 but  are devoid o f  Bcl-x protein (23 and Fig. 
1). To assess whether  Bcl-x is regulated during cellular acti- 
vation, purified populations of  splenic B cells were st imu- 
lated with purified F(ah)' 2 ant i - IgM antibody or LPS, two 
signals that induce activation and proliferation o f  B cells 
(44). Bcl-xL was clearly upregnlated by 6 h and reached 
maximum expression at 24 h after surface IgM cross-link- 
ing (Fig. 3 A). The  Bcl-x product  was detected as a doublet  
o f  29-31 kD in agreement with previous reports (41, 45). 
Induction o f  Bcl -x t  with ant i - IgM was dose dependent  and 
reached a plateau with 10 Ixg/ml o f  ant i - IgM antibody 
(data not  shown). Similarly, stimulation o f  B cells with the 
mitogen LPS upregulated Bcl-xL with kinetics comparable 
to that observed with anti-IgM (Fig. 3 B). Similarly, signaling 
through CD40 using recombinant  CD40 ligand (CD40L) 
induced Bcl-x L in splenic B cells (Fig. 3 C). The  level o f  
Bcl-x L induced by CD40 signaling was very similar to that 
observed after ant i - IgM cross-linking (Fig. 3 C). Induction 

Figure 3. Activation of mature B cells with anti-lgM antibody, LPS, or 
CD40L induces Bcl-x L but not Bcl-2 expression. B cell enriched popula- 
tions were obtained from spleens of normal mice and stimulated in vitro 
with 10 p,g/nll of F(ab')2 goat anti-mouse IgM polyclonal antibody (A 
and D), 10 txg/ml ofLPS (B), or 1 ~g/ml recombinant CD40L (C and 
D). After 3, 6, 12, 24, or 48 h of incubation, cells were harvested and the 
expression of Bcl-x in cell lysates (50 p,g of protein in each lane) was as- 
sessed by Western blot analysis using a polyclonal anti-Bcl-x antibody (A- 
C) or 4C11, a rat anti-Bcl-2 mAb (D) followed by HP,.P goat anti-rabbit 
or anti-rat serum. In C, the last lane represented a lysate from cells stimu- 
lated with anti-IgM antibody for 24 h to allow comparison between Bcl-x 
and Bcl-2 expression. In the experiment shown in C, activation of B cells 
with anti-IgM and CD40L was performed in parallel. Activation of B 
cells with LPS (B) was performed in a separate experiment. 

o f  Bcl-xL with ant i - IgM or CD40L was specific in that 
both  B cell activators failed to modulate Bcl-2 expression 
(Fig. 3 D). Thus, peripheral B cells that constitutively p ro-  
duce Bcl-2 can be induced to express Bcl-xL after signaling 
through surface IgM receptors, stimulation by LPS, or 
CD40. 

Generation of Transgenic Mice Expressing Constitutively Bcl- 
xL in the B Cell Lineage. W e  developed a transgenic mouse 
model  to assess the effects o f  Bcl-xL overexpression in the 
animal. The  bd-xL human c D N A  was placed under  the 
control  o f  the IgH enhancer (Fig. 4 A), which is known to 
target genes to lymphoid  cells (21, 46). Three  founder mice 
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Figure 4. Ep,-bcl-x L transgene construct and Western 
blot analysis of Bcl-x L expression. (A) A 0.75-kb cDNA 
fragment containing the coding region of human bcl-x L 
(closed box) was inserted into the EcoRl site of the 
EI.tSV40 cassette (21). EI~ is the IgH enhancer and SV40 
the early SV40 promoter. (B) Expression of Bcl-x r was 
assessed by Western blot analysis with a polyclonal anti- 
Bcl-x antibody followed by H1KP goat anti-rabbit serum. 
Lysates from these cells (50 llg of protein) were loaded in 
each lane. Lysates from FL5.12 cells stably transfected 
with the human bcl-x s, murine bcl-x~, or murine bcl-xl. 
cDNA (28, 29) are shown in the first three lanes, respec- 
tively, as positive controls and indicated as Bcl-x L, Bcl-x~3 
and Bcl-x~. Notice that FL5.12 cells transfected with bcl- 
xs and bcl-x~ also expressed endogenous Bcl-x r. (C) 
Comparison of Bcl-x t levels between resting B splenic 
cells from transgenic and activated B cells from control 
mice. B cells from normal mouse were activated for 24 h 
with 10 btg/ml of F(ab')2 goat anti-mouse IgM poly- 
clonal antibody. Western blot was performed using ly- 
sates containing 100, 50, or 25 Ftg of total proteins. As a 
control, expression of [3-tubulin was also assessed with a 
mouse antiq3-tubulin antibody followed by goat anti- 
mouse serum conjugated to HRP. Densitometry scan- 
ning showed that resting splenic B cells from transgenic 
animals expressed 30% more Bcl-x t than activated B cells 
from control mice. 

expressing Bcl-xr  in lymphoid  tissues were identified and 
used to establish transgenic lines. Each hne was assessed for 
expression o f  Bcl-xr  protein by Western  blot  analysis using 
a polyclonal ant ibody reactive with the murine and human 
Bcl-x proteins (41). One  line (bcl-x-87) that exhibited re-  
stricted expression o f  the bcl-x L transgene to the B cell 
compar tment  was further characterized. As shown in Fig. 4 
B, Bcl-XL was the only bcl-x product  detected by Western  
blot analysis in the B M  and thymus o f  normal mice. Bcl-x r 
protein was overexpressed in the B M  of  bcl-x-87 as com-  
pared to the levels o f  endogenous Bcl-XL in nontransgenic 
littermates (Fig. 4 B). Moreover ,  Bcl-x L was undetectable 
in the spleen and lymph nodes o f  normal mice but  it was 
expressed in bcl-x-87 animals (Fig. 4 B). The  bcl-x L trans- 
gene was not  detected in purified populations o f T  cells and 
in several non lymphoid  organs including brain, liver, k id-  
ney, and lung as determined by comparison to endogenous 
levels o f B c l - x  r observed in control  mice (data not  shown). 
The  relative levels o f  Bcl-x L in activated splenic B cells 
from normal mice and those in resting B cells from trans- 
genic mice were similar when  compared by Western  blot 
analysis (Fig. 4 CO. 
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Bcl-x L Protects Immature and Pre-B Cells against Dexametha- 
sone-induced Cell Death. Pre-B and immature B cells are 
highly sensitive to treatment with glucocorticoids (23). To  
assess the effect o f  Bcl-xr  overexpression in mice, bcl-x-87 
transgenic and control  httermate animals were treated with 
2 mg ofdexamethasone or PBS as a vehicle control, and 48 h 
later the different B cell populations in the B M  were quan- 
tiffed by flow cytometry. In accordance with previous results 
(23), 80% o f  IgM-B220  auu pre-B and 95% IgM+IgD - im-  
mature B cells were preferentially depleted after dexa- 
methasone treatment (Table 1). In contrast, pre-B and im-  
mature B cells from bcl-x-87 transgenic mice were largely 
protected (Table 1). For  comparison, parallel experiments 
were performed with bcl-2 transgenic mice that express 
Bcl-2 in the B cell lineage (32). As previously reported, 
overexpression o f  Bcl-2 protects pre-B and immature B cells 
against dexamethasone- induced cell death (21, 32, 47). 
These results indicate that Bcl-xr  can protect  developing B 
cells from glucocor t icoid- induced death in a manner  indis- 
tinguishable from that o f  Bcl-2 (Table 1). 

Bcl-x L Increases the Survival of Splenic B Cells In Vitro. 
Splenic B cells, when cultured in vitro wi thout  growth fac- 



T a b l e  1. Overexpression of Bcl-x L Protects Pre-B and Immature BM Cells against Dexamethasone (Dex)-induced Cell Death In Vivo 

Bone marrow B cell populations (• 106) * 

Mice Dex Total B220 + Pro-B Pre-B Immature Mature 

Control - 31 +_ 3.0 7.8 _+ 1.7 1.4 -+ 0.2 3.3 +- 0.2* 1.3 _+ 0.2* 1.8 -+ 0.2* 

+ 28 -+ 2.0 5.4 _+ 1.5 1.0 -+ 0.2 0.7 -+ 0.2* 0.1 -+ 0.0' 3.6 -+ 0.6* 

bd-x-87 - 35 -+ 5.5 19.0 _+ 5.1 2.0 -+ 0.1 6.8 _+ 2.5* 3.9 _+ 0.5 6.3 + 0.6* 

+ 36 + 4.6 19.8 _+ 5.2 1.2 -+ 0.2 4.0 --- 0.3* 4.6 _+ 0.5 9.9 + 1.9' 

Ig-bd-2 - 38 _+ 5.0 18.0 + 4.7 1.8 -+ 0.2 6.4 _+ 1.3' 3.6 -+ 1.0 6.2 +- 1.0 r 

+ 40 _+ 6.1 19.1 _+ 4.0 1.9 -+ 0.1 4.0 _+ 0.4* 4.0 + 0.4 9.2 -+ 1.5' 

*Results were obtained by three-color flow cytometric analysis of BM cells from two femurs simultaneously labeled with PE-conjugated anti-B2(~), 
biotinylated anti-IGD, and F1TC-conjugated anti-IgM or anti-CD43. Cell populations were determined as follows: mature B cells (lgM+lgD*), im- 
mature B cells (IgM + IgD-), pre-B cells (IgM-B2201~ pro-B cells (IgM-B220J~176 Values represent the mean + SD for 10 15-wk- 
old animals. 
* Cell number between control and transgenic animals were significantly different (p < 0.01) as determined by the Student's t test. 

tors, rapidly begin to die by apoptosis (48). To  assess the ef- 
fect of  bd-xL on B cell survival, spleen cells from bcl-x-87 
transgenic and control littermates were cultured in tLPMI 
medium supplemented with 10% FCS and their viability 
assessed by trypan blue exclusion from day 1 to 10. There 
was an improved survival of spleen cells from transgenic 
mice when compared to spleen cells from control mice 
(Fig. 5). After 10 d of culture, only 5% of spleen B cells 
from normal mice were viable whereas 40% of the B cells 
from bcl-x-87 mice survived (Fig. 5). By comparison, we 
assessed the survival of  spleen cells from bd-2 transgenic 
mice (32) (Fig. 5). As previously reported, survival was sig- 
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Figure 5. Expression of the bd-xL transgene increases B cell viability in 
vitro. Spleen cells were cultured in tripficates in 96-well flat-bottomed 
plates at a concentration of 106 cells/ml in 1LPMI 10% FCS. From day 1 
to 10, viability of spleen B cells was assessed by trypan blue exclusion. 
Results are representative of four separate experiments. Cells were ob- 
tained from bd-x-87 (D), bcl-2 (A), bd-x-87/bd-2 transgenic mice (O), or 
control littermates (O). 

nificantly increased for splenic B cells from bd-2 transgenic 
mice (21, 32) in a manner  similar to that observed in bd-x- 
87 transgenic mice (Fig. 5). 

Resting mature B cells constitutively express high levels 
of  Bcl-2 (23) but undetectable levels of  Bcl-x L (Figs. 1, 3, 
and 4 B). However,  after activation, Bcl-xe was induced in 
splenic B cells whereas Bcl-2 expression remained un-  
changed (Fig. 3). To determine whether coexpression of 
Bcl-2 and Bcl-x t confers an increased resistance to cell 
death, we compared the capacity of  B cells from bd-x-87/ 
bcI-2 double transgenic mice, bd-2 or bcl-x L single trans- 
genic mice, and control littermates to survive in vitro. The 
viability of  splenic B cells coexpressing bcl-x and bcl-2 trans- 
genes was significantly enhanced as compared to that of  
single bd-x or bcl-2 transgenic mice (Fig. 5). 

Constitutive Expression of Bcl-x L Leads to Accumulation of 
Developing and Mature B Cells. The results shown above 
indicated that the bd-xL transgene expressed in bd-x-87 
mice was functional in pre-B, immature B, and peripheral 
B cells (Table 1 and Fig. 5). We  next assessed whether Bcl- 
xt overexpression affected B cell homeostasis. In 5-mo-old  
bcl-x-87 mice, the total number  of spleen cells was in-  
creased by 108% (283 X 106 vs. 136 X 106 in control mice) 
and the total number  of LN cells was increased by 92% 
(15.5 • 106 in bd-x-87 mice vs. 7.8 • 106 in control mice; 
Table 2). This increase was due to an accumulation of  
B220 + cells in all tissues examined since the number  of  
CD4 + and CD8 + T cells remained practically unchanged 
(Table 2). In the BM, the total number  of  B220 + cells was 
increased by 158% (18.6 • 106 in bcl-x-87 mice vs. 7.2 • 
106 in control mice). Although pre-B and immature B cells 
were significantly augmented in bcl-x-87 mice, the number  
of mature IgM+IgD + B cells was particularly increased 
when compared to control littermates (Table 2). Given the 
distinct pattern of expression of Bcl-2 and Bcl-xr during B 
cell development, we compared the phenotype of bcl-x-87 
transgenic animals with that of  bd-2 transgenic mice (32). It 
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T a b l e  2. Accumulation of Mature B Cells in bcl-x-87, bd-2, and bd-x-87 /bd-2 Transgenic (tg) Animals 

Number  of  cells in mice (X 106) 

Cell populations Control bcl-x-87 tg bcl-2 tg bcl-x-87/bcl-2 tg 

BM* 33.0 + 1.9 34.7 + 3.5 36.7 -+- 2.4 52.0 - 5.011 

B220 + cells 7.2 + 0.5 18.6 + 2.89 18.9 +_ 1.99 26.2 + 2.91 

Pro-B cells 1.5 + 0.2 2.0 + 0.29 1.9 + 0.2 2.1 • 0.211 

Pre-B cells 2.9 + 0.3 6.0 + 1.0S 6.2 + 0.8~ 9.4 • 1.711 

Immature B cells 1.2 + 0.0 4.0 + 0.2~ 4.3 + 0.4S 4.9 + 0.511 

Mature B cells 1.6 _+ 0.1 6.6 + 1.3~ 6.5 + 1.69 9.8 + 2.011 

Spleens 156.0 ___ 10 263.0 --_ 15~ 248.0 _ 23~ 328.0 • 4211 

B220 + cells 81 -• 7.1 184.0 + 129 171.0 _+ 169 227.0 --- 3511 

CD4 § cells 25.8 + 2.6 27.4 - 2.9 28.0 + 1.9 26.8 • 3.0 

CD8 + cells 20.9 • 3.1 20.4 • 1.9 20.6 --- 2.4 22.3 --- 2.5 

7.8 - 0.3 15.5 • 3.3~ 17.5 • 2.0~ 20.5 --- 0.51f 

B220 + cells 3.2 - 0.2 8.3 • 0.6~ 8.8 --- 0.3~ 12.0 --- 1.411 

CD4 + cells 2.5 --- 0.3 3.3 + 0.7 2.9 • 0.4 3.5 • 0.8 

CD8 § cells 1.6 - 0.1 1.8 + 0.3 1.8 + 0.1 1.7 • 0.2 

*Results were obtained by three-color flow cytometric analysis of BM cells from two femurs simultaneously labeled with FITC-conjugated anti- 
IgM or anti-CD43, PE-conjugated anti-HSA, and biotinylated anti-B220 antibodies. Immature B cells were defined as IgM+HSAhighB2201~ ma- 
ture B cells as IgM+HSAL~ ~gh, pre-B cells as IgM-CD43-B220 low, and pro-B cells as IgM-CD431~ l~ 
~tAnalyses of cells from spleen and inguinal and axillary LN were performed by simultaneously labehng with FITC-conjugated anti-CD4, PE-conju- 
gated anti-CD8, and biotinylated anti-CD3 antibodies. Values represent the mean + SD for 10 15-wk-old animals. 
~. HValues between single transgenic and control littermates or between double and single transgenic mice, respectively, were statistically different 
(p <0.01) as assessed by the Student's t test. 

is interest ing to no te  that the pheno type  and  accumula t ion  
pat tern o f  B cell popula t ions  in the BM,  LN,  and  spleen 
were  similar in  bcl-x L and  bd-2 t ransgenic animals (Table 2). 
Because activated B cells can express bo th  Bcl-2  and Bcl-  
xt,  we  tested the possibility o f  a funct ional  in terac t ion  be -  
tween  the two proteins in  v ivo by  ma t ing  bcl-x-87 and bd-2 
t ransgenic mice.  Co-express ion  o f  bo th  bd-x L and bcl-2 
transgenes resulted in  a significant increase o f  mature  B cells 
in  BM,  spleen, and  L N  as compared  to bcl-xL or bcl-2 trans- 
genic animals (Table 2). 

Combined Overexpression of Bcl-x L and Bcl-2 Can Protect 
against Anti-IgD-induced Cell Death In Vivo. Cross-linking o f  
m e m b r a n e  IgD on  mature  B cells, in  the absence o f  T cell 
help, has b e e n  s h o w n  to result in  B cell death in  vivo (33). 
T h e  an t i - IgD mode l  was used to evaluate the ability o f  Bcl-  
x r or  Bcl -2  to b lock  Ig receptor -media ted  B cell death in  
the absence o f  T cell cost imulatory funct ion.  Transgenic  
(bcl-x-87, bcl-2, bclox-87/bd-2) and  nont ransgen ic  mice  
were  treated wi th  an t i - IL-7  m A b  to b lock the genera t ion  
o f  newly  fo rmed  B cells (34), wi th  a n t i - C D 4  m A b  to b lock 
the genera t ion  o f  T cell help (49), and wi th  an t i -Fc 'yRII  
m A b  to avoid any potent ia l  inh ib i tory  interact ions b e t w e e n  
surface Ig and Fc~/IklI. In  bo th  bd-x L a n d / o r  bcl-2 trans- 
genic mice  and control  littermates, t reatment  wi th  ant i - IL-7 
an t ibody  induced  a 90% reduc t ion  in  the n u m b e r  o f  pre-B 
and  immatu re  B cells, indicat ing that overexpression o f  
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Bcl-2  a n d / o r  Bcl -xr  proteins canno t  overcome the inh ib i -  
tory effect o f  an t i - IL-7  m A b  o n  the genera t ion  o f  newly  
formed B cells (data no t  shown).  7 d after an t i - IgD treat- 
ment ,  a decrease o f  86 + 3% in the total n u m b e r  o f  IgM + 
mature  B cells was observed in  nont ransgenic  animals (from 
81.5 • 106 to 11.2 • 106; Fig. 6), wh ich  is in  agreement  
wi th  recently publ ished results (33). It is interest ing to no te  
that overexpression o f  Bcl-xL or  Bcl-2  had little or  no  ef- 
fect o n  a n t i - I g D - i n d u c e d  B cell death (79 + 2% reduc t ion  
for bcl-2 transgenic mice and 82 -+ 5% reduct ion for bd-x-87 
transgenic mice;  Fig. 6). In  contrast, IgM + mature  B cells 
f rom double  bcl-x-87/bd-2 t ransgenic animals were  partially 
bu t  significantly protected f rom a n t i - I g D - i n d u c e d  cell 
death w h e n  compared  to the n u m b e r  o f  B cells that sur- 
vived in  control ,  bcl-x-87, or  bcl-2 mice (53 + 6% reduc-  
t ion  f rom 110.2 • 106 to 52.1 • 106). Thus ,  coexpression 
o f  Bcl-2  and Bcl-xe, bu t  no t  Bcl-2  or  Bcl -x  r alone, partially 
protected B cells f rom death i nduced  by  surface IgD cross- 
l ink ing  wi th  a high affinity an t i - IgD ant ibody  (33). 

Discussion 
These studies demonstra te  that Bcl -x  L is developmenta l ly  

regulated in  the B cell l ineage and funct ions to protect  de-  
ve loping  and  mature  B cells f rom apoptosis. T h e  pat tern o f  
Bcl -x  L expression is strikingly different f rom that o f  Bcl-2,  



Figure 6. Protection of periph- 
eral B cells from anti-lgD-induced 
cell death by bcl-x-87/bd-2 trans- 
genes in vivo. 2-mo-old control 
and transgenic bd-x-87, bd-2, and 
bd-x-87/bd-2 mice were treated 
with anti-IL-7, anti-CD4, and 
anti-Fcyl<II mAbs and with anti- 
IgD mAb (empty bars) or PBS (gray 
bars). The number of IgM + mature 
B cells in the spleen was deter- 
mined by flow cytometric analysis 
using FITC-conjugated anti-lgM 
and biotinylated anti-B220 anti- 
bodies. Data represent the mean 
values obtained with four 7 wk- 
old nfice + SD. The reduction in 
the number of IgM + mature B 
cells between anti-IgD-treated and 
PBS-treated animals is indicated 
for each group as a mean percent- 
age -+ SD. The number of mature 

B cells after anti-IgD treatment in bd-x-87/bd-2 mice was statistically different when compared to the number of mature B cells in the other groups of 
mice (p <0.0l by Student's t test). Note that at 7 wk, bd-x-87, bd-2, and bd-x-87/bd-2 transgenic mice have not accumulated B cells in the spleen as 
much as the 15 wk-old mice shown in Table 2. 

a functional homologue  o f  Bcl-x L. Pre-B cells, a develop-  
mental stage in which Bcl-2 is downregulated (23), ex- 
pressed the highest levels o f  Bcl-x L. Al though the role o f  
Bcl-xL during B cell development  is not  fully understood, 
our studies argue that Bcl-x L provides a survival signal for 
the maintenance o f  pre-B cells and activated mature B 
cells. Recen t  studies with chimeric mice have shown a dif- 
ferential defect in the maturation and survival o f p r e - B  cells 
deficient in Bcl-x without  obvious alterations in mature B 
cells (31). O u r  studies provide an explanation for the latter 
findings in that Bcl-XL is expressed predominant ly  in pre-B 
cells, the developmental  stage particularly affected by the 
absence o f  Bcl-x (31). Furthermore,  transgenic mice over-  
expressing Bcl-x L exhibited accumulation of  immature and 
mature B cells, implying that Bcl-x L promotes  the matura- 
tion o f p r e - B  cells into B cells. Al though a specific role for 
Bcl-x L on B cell differentiation is possible, the results sug- 
gest that Bcl-x L acts primarily by inhibit ing cell death, a 
function that is essential for the maturation o f  pre-B cells 
into mature B ceils. 

Bcl-x L and Bcl-2 exhibit  a distinct expression pattern 
implying that these two related proteins play different roles 
in B cell selection and homeostasis. Bcl-2 but  not  Bcl-xL is 
highly expressed in large CD43 + early B cell precursors 
that undergo extensive rearrangements o f  IgH and IgL 
chain genes (23). Thus, Bcl-2 may play a role in the initial 
stage of  B cell maturat ion when a diverse pool  o f  pre-B 
cells is generated through IgH and IgL gene recombinat ion 
(14, 43). At the end o f  the pro-B cell stage, Bcl-2 is down-  
modulated (23). Most  o f  these B cell precursors will die 
during the transition to pre-B cells (4, 5) with survival o f  
those B cell precursors bearing a functional pre-B cell re- 
ceptor complex (50, 51). Because Bcl-x L expression is in-  
duced in pre-B cells, it may serve as a survival signal for the 
small populat ion o f p r e - B  cells that successfully complete a 

productive rearrangement o f  their IgG and IgL gene. Later 
in development,  both  Bcl-2 and Bcl-x L are downregulated 
in immature IgM+IgD - cells (23). Delet ion o f  developing 
B cells bearing self-reactive IgM receptors occurs at the im-  
mature B cell stage (52-54). Thus, downregulat ion o f  both 
Bcl-2 and Bcl-x L may facilitate the elimination ofau toreac-  
t i re  B cells by making the cells more vulnerable to death 
signals associated with negative selection. At  the mature 
stage, B cells express Bcl-2 but not Bcl-x L (23). Thus, Bcl-2 
induction at the mature B cell stage appears to represent a 
developmental  switch involved in the selection and main-  
tenance o f  peripheral B cells. The  continuous expression of  
Bcl-2 is critical for mature B cells since mice deficient in 
Bcl-2 are unable to maintain peripheral lymphocytes (24, 
25). A very similar pattern of  regulated expression for Bcl-XL 
has been observed during T cell development  (55, 56). The 
expression o f  Bcl-x is the highest in CD4+CD8 + thy- 
mocytes and downregulated in mature T cells. Thus, the 
regulation o f  bcl-x is conserved in both T and B cell l in- 
eages. 

It is intriguing that Bcl-2 and Bcl-XL, two structurally re- 
lated proteins that exhibit similar function, are differently 
regulated during B cell development.  A possible explana- 
tion is that Bcl-2 and Bcl-xe differ in their ability to 
counter  death signals generated at specific stages during de- 
velopment.  Bcl-2 and Bcl-x L share remarkable structural 
homology  and localize to identical intracellular sites, sug- 
gesting that they inhibit  cell death by a similar biochemical  
mechanism (29, 57). However ,  it has been recently shown 
that Bcl-2 and Bcl-x t interact differentially with some in- 
tracellular targets in vivo (58 and see below). Thus, it is 
possible that Bcl-2 and Bcl-x L differ in a subtle manner in 
their functional ability to prevent  cell death. Consistent 
with this possibility is the observation that Bcl-x L is more 
efficient than Bcl-2 in protect ing the immature B cell line 
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WEHI-231 from apoptosis induced by certain chemother- 
apeutic agents (41). The antiapoptotic functions of  Bcl-2 
and Bcl-x r are controlled in part by several interacting pro- 
teins (58-60), one of which (Bad) exhibits a differential 
ability to heterodimerize with Bcl-2 and Bcl-xr (58). Thus, 
another possibility is that the expression of the interacting 
partners of  Bcl-2 and Bcl-x r is differentially regulated dur- 
ing B cell development. In this scenario, developmental 
regulation of Bcl-2 and Bcl-xr could reflect differential re- 
quirements for complexes between Bcl-2 or Bcl-xL and 
their interacting partners to perform specific functions dur- 
ing B cell development. 

The signals that govern Bcl-x L expression during B cell 
development remain to be estabhshed. Because Bcl-x L is 
upregulated at the pre-B cell stage, it is possible that signal- 
ing through the pre-B cell receptor complex is involved in 
Bcl-x L regulation. Mutant mice lacking a functional pre-B 
cell receptor complex display a block in B cell develop- 
ment that coincides with the massive loss of  precursor B 
cells in normal mice (13). Thus, it has been postulated that 
the pre-B cell receptor complex transduces signals that re- 
sult in enhanced survival o fp re -B cells (14, 15). A candi- 
date signal is Bcl-XL since it is upregulated at the pre-B cell 
stage of  development and promotes the survival of  devel- 
oping B cells. 

Cellular activation induces intracellular signals such as 
c-myc that are involved in both proliferation and cell death 
(61, 62). In B lymphocytes, cross-hnking with anti-IgM or 
anti-IgD induces cell proliferation and ultimately cell death 
(33, 63). In mature B cells, our studies demonstrate that 
Bcl-x L is upregulated by cross-linking of IgM receptors and 
presumably by antigen-IgM interactions. This notion is 
supported by the recent observation that Bcl-x protein is 
expressed in proliferating B cells of  the germinal center 
(45), arguing that Bcl-x L is upregulated during antigen- 
driven B cell activation in vivo. Similarly, Bcl-XL was in- 

duced after the CD40-CD40L interaction, a signaling 
pathway known to dehver survival signals to mature B cells 
(64). As with B cells, Bcl-x r can be induced after cellular 
activation in peripheral T cells (65, 66). Thus, under physi- 
ological situations, induction of Bcl-xr in Bcl-2-positive 
mature B and T cells may serve as a mechanism to counter 
more effectively the death signals associated with activation 
and prohferation (61, 62). Consistent with this hypothesis is 
our observation that accumulation of  B cells in the animal 
and B lymphocyte survival in vitro was further increased by 
simultaneous expression of bd-xL and bd-2 transgenes. Fur- 
thermore, combined overexpression of  both Bcl-2 and Bcl- 
x L in the absence o f T  cell costimulatory function protected 
mature B cells from anti-IgD-induced apoptosis more ef- 
fectively than either protein alone. This indicates that Bcl-2 
and Bcl-x L can function as autonomous survival proteins in 
B lymphocytes. Under our experimental conditions, coex- 
pression of  Bcl-2 and Bcl-xr only partially protected pe- 
ripheral B cells from anti-igD-induced cell death, presum- 
ably because of the powerful cell death signal provided by 
the high afl%ity anti-IgD antibody (33). The increased sur- 
vival of  B cell expressing both Bcl-2 and Bcl-xr could be 
explained by a gene dose effect, implying that resistance to 
cell death is determined by the relative levels of  apoptosis- 
inhibitory proteins. Preliminary results obtained in our lab- 
oratory favor this hypothesis since B cells from double bd-2/ 
bd-2 transgenic mice exhibit in vitro survival greater than 
heterozygous bd-2 transgenic mice and sim~ilar to that ofbcl- 
2/bcl-x L transgenic animals (Grillot, D., R.  Merino, and G. 
Nufiez, unpublished observation). Alternatively, the in- 
creased survival could be explained by a specific coopera- 
tion between Bcl-2 and Bcl-xr. Regardless of  the mecha- 
nism, our studies suggest that for certain death stimuli, 
particularly those associated with cellular activation, coex- 
pression of Bcl-2 and Bcl-x L may prove critical in deter- 
mining the fate of  certain populations of  B cells. 
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