MEETING ABSTRACT **Open Access** ## Preliminary evaluation of a brain PET insertable to MRI Gyuseng Cho^{1*}, Yong Choi², Jae Sung Lee³, Hyun Joon An³, Jin Ho Jung², Hyun Wook Park¹, Chang Hyun Oh¹, Kyeongjin Park¹, Kyung Taek Lim¹, Minsik Cho¹, Woo Suk Sul⁴, Hyoungtaek Kim¹, Hyunduk Kim¹ From PSMR14: 3rd Conference in PET/MR and SPECT/MR Kos Island, Greece. 19-21 May 2014 ¹Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea There is a new trend of the medical image that diagnoses a brain disease as like Alzheimer dementia. The first qualified candidate is a PET-MRI fusion modality because MRI is a more powerful anatomic diagnosis tool than other modalities. In our study, in order to solve the high magnetic field from MRI, the development was consisted with four main items such as photo-sensor, PET scanner, MRI head-coil and attenuation correction algorithm development. In the case of a silicon based Geiger-mode Avalanche Photo Diode (GADP), its pixel dimension is in 3 x 3 mm². Fabricated GAPD has a high geometric fill-factor with quenching resistors of the high resistive poly-silicon layer and a high gain 10⁶. PET scanner was consisted of 72 detector modules arranged in a ring of 390 mm diameter. Each detector module was composed of a 4 x 4 array GAPD coupled with an array LYSO. The signals from each PET module were fed into preamplifiers using a 3 m long flat cable and outputs were fed into field programmable gate array (FPGA)-embedded data acquisition (DAQ) boards. A high-pass quadrature birdcage coil for high uniformity was developed in order to minimize the signal loss when it combines with PET module. In order to quickly and effectively fuse the taken image from each modality, we study a reconstruction and attenuation correction algorithm for PET images using MRI data. Finally, each component was integrated at the inside of 3 T MRI. The preliminary test was performed while the PET-MRI system is operated simultaneously. We obtained a good performance of PET scanner that is the 16 % energy resolution and the 3.0 mm spatial resolution. Also the PET's sensitivity in the center of field of view is a 1.2 %cps/Bq. In the case of a primary characteristic of MRI, the spatial resolution and the uniformity is a 1.0 mm (T1, T2) and 91 %(T1) / 87 %(T2) respectively. The preliminary results indicate that the GAPD silicon photo sensor is excellently operated under the strong magnetic field and the developed PET-MRI system can provide high-quality PET and MRI images. Finally, an experiment of performance evaluation of a human brain of 3 candidates was conducted. ## Authors' details ¹Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea. ²Department of Electronic Engineering Sogang University, Seoul 121-742, South Korea. ³Department of Nuclear Medicine, Seoul National University, Seoul 110-744, South Korea. ⁴National NanoFab Center, Deajeon 305-806, South Korea. Published: 29 July 2014 doi:10.1186/2197-7364-1-S1-A13 Cite this article as: Cho et al.: Preliminary evaluation of a brain PET insertable to MRI. EJNMMI Physics 2014 1 (Suppl 1):413 ## Submit your manuscript to a SpringerOpen journal and benefit from: - ► Convenient online submission - ► Rigorous peer review - ► Immediate publication on acceptance - ► Open access: articles freely available online - ► High visibility within the field - ► Retaining the copyright to your article Submit your next manuscript at ▶ springeropen.com